Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
/*
 * Copyright (c) 2017 Linaro Limited
 * Copyright (c) 2023 Google Inc
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <string.h>

#include <zephyr/device.h>
#include <zephyr/drivers/flash.h>
#include <zephyr/init.h>
#include <zephyr/kernel.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys/barrier.h>

#include <soc.h>

#include "flash_stm32.h"

LOG_MODULE_REGISTER(flash_stm32f4x, CONFIG_FLASH_LOG_LEVEL);

bool flash_stm32_valid_range(const struct device *dev, off_t offset,
			     uint32_t len,
			     bool write)
{
	ARG_UNUSED(write);

#if (FLASH_SECTOR_TOTAL == 12) && defined(FLASH_OPTCR_DB1M)
	FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
	/*
	 * RM0090, table 7.1: STM32F42xxx, STM32F43xxx
	 */
	if (regs->OPTCR & FLASH_OPTCR_DB1M) {
		/* Device configured in Dual Bank, but not supported for now */
		return false;
	}
#endif

	return flash_stm32_range_exists(dev, offset, len);
}

static inline void flush_cache(FLASH_TypeDef *regs)
{
	if (regs->ACR & FLASH_ACR_DCEN) {
		regs->ACR &= ~FLASH_ACR_DCEN;
		/* Datasheet: DCRST: Data cache reset
		 * This bit can be written only when the data cache is disabled
		 */
		regs->ACR |= FLASH_ACR_DCRST;
		regs->ACR &= ~FLASH_ACR_DCRST;
		regs->ACR |= FLASH_ACR_DCEN;
	}

	if (regs->ACR & FLASH_ACR_ICEN) {
		regs->ACR &= ~FLASH_ACR_ICEN;
		/* Datasheet: ICRST: Instruction cache reset :
		 * This bit can be written only when the instruction cache
		 * is disabled
		 */
		regs->ACR |= FLASH_ACR_ICRST;
		regs->ACR &= ~FLASH_ACR_ICRST;
		regs->ACR |= FLASH_ACR_ICEN;
	}
}

static int write_byte(const struct device *dev, off_t offset, uint8_t val)
{
	FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
#if defined(FLASH_OPTCR_DB1M)
	bool dcache_enabled = false;
#endif /* FLASH_OPTCR_DB*/
	uint32_t tmp;
	int rc;

	/* if the control register is locked, do not fail silently */
	if (regs->CR & FLASH_CR_LOCK) {
		return -EIO;
	}

	rc = flash_stm32_wait_flash_idle(dev);
	if (rc < 0) {
		return rc;
	}

#if defined(FLASH_OPTCR_DB1M)
	/*
	 * Disable the data cache to avoid the silicon errata ES0206 Rev 16 2.2.12:
	 * "Data cache might be corrupted during Flash memory read-while-write operation"
	 */
	if (regs->ACR & FLASH_ACR_DCEN) {
		dcache_enabled = true;
		regs->ACR &= (~FLASH_ACR_DCEN);
	}
#endif /* FLASH_OPTCR_DB1M */

	regs->CR &= CR_PSIZE_MASK;
	regs->CR |= FLASH_PSIZE_BYTE;
	regs->CR |= FLASH_CR_PG;

	/* flush the register write */
	tmp = regs->CR;

	*((uint8_t *) offset + CONFIG_FLASH_BASE_ADDRESS) = val;

	rc = flash_stm32_wait_flash_idle(dev);
	regs->CR &= (~FLASH_CR_PG);

#if defined(FLASH_OPTCR_DB1M)
	/* Reset/enable the data cache if previously enabled */
	if (dcache_enabled) {
		regs->ACR |= FLASH_ACR_DCRST;
		regs->ACR &= (~FLASH_ACR_DCRST);
		regs->ACR |= FLASH_ACR_DCEN;
	}
#endif /* FLASH_OPTCR_DB1M */

	return rc;
}

static int erase_sector(const struct device *dev, uint32_t sector)
{
	FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
	uint32_t tmp;
	int rc;

	/* if the control register is locked, do not fail silently */
	if (regs->CR & FLASH_CR_LOCK) {
		return -EIO;
	}

	rc = flash_stm32_wait_flash_idle(dev);
	if (rc < 0) {
		return rc;
	}

	/*
	 * If an erase operation in Flash memory also concerns data
	 * in the instruction cache, the user has to ensure that these data
	 * are rewritten before they are accessed during code execution.
	 */
	flush_cache(regs);

#if FLASH_SECTOR_TOTAL == 24
	/*
	 * RM0090, §3.9.8: STM32F42xxx, STM32F43xxx
	 * RM0386, §3.7.5: STM32F469xx, STM32F479xx
	 */
	if (sector >= 12) {
		/* From sector 12, SNB is offset by 0b10000 */
		sector += 4U;
	}
#endif

	regs->CR &= ~FLASH_CR_SNB;
	regs->CR |= FLASH_CR_SER | (sector << 3);
	regs->CR |= FLASH_CR_STRT;

	/* flush the register write */
	tmp = regs->CR;

	rc = flash_stm32_wait_flash_idle(dev);
	regs->CR &= ~(FLASH_CR_SER | FLASH_CR_SNB);

	return rc;
}

int flash_stm32_block_erase_loop(const struct device *dev,
				 unsigned int offset,
				 unsigned int len)
{
	struct flash_pages_info info;
	uint32_t start_sector, end_sector;
	uint32_t i;
	int rc = 0;

	rc = flash_get_page_info_by_offs(dev, offset, &info);
	if (rc) {
		return rc;
	}
	start_sector = info.index;
	rc = flash_get_page_info_by_offs(dev, offset + len - 1, &info);
	if (rc) {
		return rc;
	}
	end_sector = info.index;

	for (i = start_sector; i <= end_sector; i++) {
		rc = erase_sector(dev, i);
		if (rc < 0) {
			break;
		}
	}

	return rc;
}

int flash_stm32_write_range(const struct device *dev, unsigned int offset,
			    const void *data, unsigned int len)
{
	int i, rc = 0;

	for (i = 0; i < len; i++, offset++) {
		rc = write_byte(dev, offset, ((const uint8_t *) data)[i]);
		if (rc < 0) {
			return rc;
		}
	}

	return rc;
}

static __unused int write_optb(const struct device *dev, uint32_t mask,
			       uint32_t value)
{
	FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
	int rc;

	if (regs->OPTCR & FLASH_OPTCR_OPTLOCK) {
		return -EIO;
	}

	if ((regs->OPTCR & mask) == value) {
		return 0;
	}

	rc = flash_stm32_wait_flash_idle(dev);
	if (rc < 0) {
		return rc;
	}

	regs->OPTCR = (regs->OPTCR & ~mask) | value;
	regs->OPTCR |= FLASH_OPTCR_OPTSTRT;

	/* Make sure previous write is completed. */
	barrier_dsync_fence_full();

	rc = flash_stm32_wait_flash_idle(dev);
	if (rc < 0) {
		return rc;
	}

	return 0;
}

#if defined(CONFIG_FLASH_STM32_WRITE_PROTECT)
int flash_stm32_update_wp_sectors(const struct device *dev,
				  uint32_t changed_sectors,
				  uint32_t protected_sectors)
{
	changed_sectors <<= FLASH_OPTCR_nWRP_Pos;
	protected_sectors <<= FLASH_OPTCR_nWRP_Pos;

	if ((changed_sectors & FLASH_OPTCR_nWRP_Msk) != changed_sectors) {
		return -EINVAL;
	}

	/* Sector is protected when bit == 0. Flip protected_sectors bits */
	protected_sectors = ~protected_sectors & changed_sectors;

	return write_optb(dev, changed_sectors, protected_sectors);
}

int flash_stm32_get_wp_sectors(const struct device *dev,
			       uint32_t *protected_sectors)
{
	FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);

	*protected_sectors =
		(~regs->OPTCR & FLASH_OPTCR_nWRP_Msk) >> FLASH_OPTCR_nWRP_Pos;

	return 0;
}
#endif /* CONFIG_FLASH_STM32_WRITE_PROTECT */

#if defined(CONFIG_FLASH_STM32_READOUT_PROTECTION)
int flash_stm32_update_rdp(const struct device *dev, bool enable,
			   bool permanent)
{
	FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
	uint8_t current_level, target_level;

	current_level =
		(regs->OPTCR & FLASH_OPTCR_RDP_Msk) >> FLASH_OPTCR_RDP_Pos;
	target_level = current_level;

	/*
	 * 0xAA = RDP level 0 (no protection)
	 * 0xCC = RDP level 2 (permanent protection)
	 * others = RDP level 1 (protection active)
	 */
	switch (current_level) {
	case FLASH_STM32_RDP2:
		if (!enable || !permanent) {
			__ASSERT(false, "RDP level 2 is permanent and can't be "
					"changed!");
			return -ENOTSUP;
		}
		break;
	case FLASH_STM32_RDP0:
		if (enable) {
			target_level = FLASH_STM32_RDP1;
			if (permanent) {
#if defined(CONFIG_FLASH_STM32_READOUT_PROTECTION_PERMANENT_ALLOW)
				target_level = FLASH_STM32_RDP2;
#else
				__ASSERT(false,
					 "Permanent readout protection (RDP "
					 "level 0 -> 2) not allowed");
				return -ENOTSUP;
#endif
			}
		}
		break;
	default: /* FLASH_STM32_RDP1 */
		if (enable && permanent) {
#if defined(CONFIG_FLASH_STM32_READOUT_PROTECTION_PERMANENT_ALLOW)
			target_level = FLASH_STM32_RDP2;
#else
			__ASSERT(false, "Permanent readout protection (RDP "
					"level 1 -> 2) not allowed");
			return -ENOTSUP;
#endif
		}
		if (!enable) {
#if defined(CONFIG_FLASH_STM32_READOUT_PROTECTION_DISABLE_ALLOW)
			target_level = FLASH_STM32_RDP0;
#else
			__ASSERT(false, "Disabling readout protection (RDP "
					"level 1 -> 0) not allowed");
			return -EACCES;
#endif
		}
	}

	/* Update RDP level if needed */
	if (current_level != target_level) {
		LOG_INF("RDP changed from 0x%02x to 0x%02x", current_level,
			target_level);

		write_optb(dev, FLASH_OPTCR_RDP_Msk,
			   (uint32_t)target_level << FLASH_OPTCR_RDP_Pos);
	}
	return 0;
}

int flash_stm32_get_rdp(const struct device *dev, bool *enabled,
			bool *permanent)
{
	FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
	uint8_t current_level;

	current_level =
		(regs->OPTCR & FLASH_OPTCR_RDP_Msk) >> FLASH_OPTCR_RDP_Pos;

	/*
	 * 0xAA = RDP level 0 (no protection)
	 * 0xCC = RDP level 2 (permanent protection)
	 * others = RDP level 1 (protection active)
	 */
	switch (current_level) {
	case FLASH_STM32_RDP2:
		*enabled = true;
		*permanent = true;
		break;
	case FLASH_STM32_RDP0:
		*enabled = false;
		*permanent = false;
		break;
	default: /* FLASH_STM32_RDP1 */
		*enabled = true;
		*permanent = false;
	}
	return 0;
}
#endif /* CONFIG_FLASH_STM32_READOUT_PROTECTION */

/*
 * Different SoC flash layouts are specified in across various
 * reference manuals, but the flash layout for a given number of
 * sectors is consistent across these manuals, with one "gotcha". The
 * number of sectors is given by the HAL as FLASH_SECTOR_TOTAL.
 *
 * The only "gotcha" is that when there are 24 sectors, they are split
 * across 2 "banks" of 12 sectors each, with another set of small
 * sectors (16 KB) in the second bank occurring after the large ones
 * (128 KB) in the first. We could consider supporting this as two
 * devices to make the layout cleaner, but this will do for now.
 */
#ifndef FLASH_SECTOR_TOTAL
#error "Unknown flash layout"
#else  /* defined(FLASH_SECTOR_TOTAL) */
#if FLASH_SECTOR_TOTAL == 5
static const struct flash_pages_layout stm32f4_flash_layout[] = {
	/* RM0401, table 5: STM32F410Tx, STM32F410Cx, STM32F410Rx */
	{.pages_count = 4, .pages_size = KB(16)},
	{.pages_count = 1, .pages_size = KB(64)},
};
#elif FLASH_SECTOR_TOTAL == 6
static const struct flash_pages_layout stm32f4_flash_layout[] = {
	/* RM0368, table 5: STM32F401xC */
	{.pages_count = 4, .pages_size = KB(16)},
	{.pages_count = 1, .pages_size = KB(64)},
	{.pages_count = 1, .pages_size = KB(128)},
};
#elif FLASH_SECTOR_TOTAL == 8
static const struct flash_pages_layout stm32f4_flash_layout[] = {
	/*
	 * RM0368, table 5: STM32F401xE
	 * RM0383, table 4: STM32F411xE
	 * RM0390, table 4: STM32F446xx
	 */
	{.pages_count = 4, .pages_size = KB(16)},
	{.pages_count = 1, .pages_size = KB(64)},
	{.pages_count = 3, .pages_size = KB(128)},
};
#elif FLASH_SECTOR_TOTAL == 12
static const struct flash_pages_layout stm32f4_flash_layout[] = {
	/*
	 * RM0090, table 5: STM32F405xx, STM32F415xx, STM32F407xx, STM32F417xx
	 * RM0402, table 5: STM32F412Zx, STM32F412Vx, STM32F412Rx, STM32F412Cx
	 */
	{.pages_count = 4, .pages_size = KB(16)},
	{.pages_count = 1, .pages_size = KB(64)},
	{.pages_count = 7, .pages_size = KB(128)},
};
#elif FLASH_SECTOR_TOTAL == 16
static const struct flash_pages_layout stm32f4_flash_layout[] = {
	/* RM0430, table 5.: STM32F413xx, STM32F423xx */
	{.pages_count = 4, .pages_size = KB(16)},
	{.pages_count = 1, .pages_size = KB(64)},
	{.pages_count = 11, .pages_size = KB(128)},
};
#elif FLASH_SECTOR_TOTAL == 24
static const struct flash_pages_layout stm32f4_flash_layout[] = {
	/*
	 * RM0090, table 6: STM32F427xx, STM32F437xx, STM32F429xx, STM32F439xx
	 * RM0386, table 4: STM32F469xx, STM32F479xx
	 */
	{.pages_count = 4, .pages_size = KB(16)},
	{.pages_count = 1, .pages_size = KB(64)},
	{.pages_count = 7, .pages_size = KB(128)},
	{.pages_count = 4, .pages_size = KB(16)},
	{.pages_count = 1, .pages_size = KB(64)},
	{.pages_count = 7, .pages_size = KB(128)},
};
#else
#error "Unknown flash layout"
#endif /* FLASH_SECTOR_TOTAL == 5 */
#endif/* !defined(FLASH_SECTOR_TOTAL) */

void flash_stm32_page_layout(const struct device *dev,
			     const struct flash_pages_layout **layout,
			     size_t *layout_size)
{
	ARG_UNUSED(dev);

	*layout = stm32f4_flash_layout;
	*layout_size = ARRAY_SIZE(stm32f4_flash_layout);
}