Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
/*
 * Copyright (c) 2022 Telink Semiconductor
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT telink_b91_adc

/* Local driver headers */
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"

/* Zephyr Device Tree headers */
#include <zephyr/dt-bindings/adc/b91-adc.h>

/* Zephyr Logging headers */
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(adc_b91, CONFIG_ADC_LOG_LEVEL);

/* Telink HAL headers */
#include <adc.h>

/* ADC B91 defines */
#define SIGN_BIT_POSITION          (13)
#define AREG_ADC_DATA_STATUS       (0xf6)
#define ADC_DATA_READY             BIT(0)

/* B91 ADC driver data */
struct b91_adc_data {
	struct adc_context ctx;
	int16_t *buffer;
	int16_t *repeat_buffer;
	uint8_t differential;
	uint8_t resolution_divider;
	struct k_sem acq_sem;
	struct k_thread thread;

	K_THREAD_STACK_MEMBER(stack, CONFIG_ADC_B91_ACQUISITION_THREAD_STACK_SIZE);
};

struct b91_adc_cfg {
	uint32_t sample_freq;
	uint16_t vref_internal_mv;
};

/* Validate ADC data buffer size */
static int adc_b91_validate_buffer_size(const struct adc_sequence *sequence)
{
	size_t needed = sizeof(int16_t);

	if (sequence->options) {
		needed *= (1 + sequence->options->extra_samplings);
	}

	if (sequence->buffer_size < needed) {
		return -ENOMEM;
	}

	return 0;
}

/* Validate ADC read API input parameters */
static int adc_b91_validate_sequence(const struct adc_sequence *sequence)
{
	int status;

	if (sequence->channels != BIT(0)) {
		LOG_ERR("Only channel 0 is supported.");
		return -ENOTSUP;
	}

	if (sequence->oversampling) {
		LOG_ERR("Oversampling is not supported.");
		return -ENOTSUP;
	}

	status = adc_b91_validate_buffer_size(sequence);
	if (status) {
		LOG_ERR("Buffer size too small.");
		return status;
	}

	return 0;
}

/* Convert dts pin to B91 SDK pin */
static adc_input_pin_def_e adc_b91_get_pin(uint8_t dt_pin)
{
	adc_input_pin_def_e adc_pin;

	switch (dt_pin) {
	case DT_ADC_GPIO_PB0:
		adc_pin = ADC_GPIO_PB0;
		break;
	case DT_ADC_GPIO_PB1:
		adc_pin = ADC_GPIO_PB1;
		break;
	case DT_ADC_GPIO_PB2:
		adc_pin = ADC_GPIO_PB2;
		break;
	case DT_ADC_GPIO_PB3:
		adc_pin = ADC_GPIO_PB3;
		break;
	case DT_ADC_GPIO_PB4:
		adc_pin = ADC_GPIO_PB4;
		break;
	case DT_ADC_GPIO_PB5:
		adc_pin = ADC_GPIO_PB5;
		break;
	case DT_ADC_GPIO_PB6:
		adc_pin = ADC_GPIO_PB6;
		break;
	case DT_ADC_GPIO_PB7:
		adc_pin = ADC_GPIO_PB7;
		break;
	case DT_ADC_GPIO_PD0:
		adc_pin = ADC_GPIO_PD0;
		break;
	case DT_ADC_GPIO_PD1:
		adc_pin = ADC_GPIO_PD1;
		break;
	case DT_ADC_VBAT:
		adc_pin = ADC_VBAT;
		break;

	default:
		adc_pin = NOINPUTN;
		break;
	}

	return adc_pin;
}

/* Get ADC value */
static signed short adc_b91_get_code(void)
{
	signed short adc_code;

	analog_write_reg8(areg_adc_data_sample_control,
			  analog_read_reg8(areg_adc_data_sample_control) | FLD_NOT_SAMPLE_ADC_DATA);

	adc_code = analog_read_reg16(areg_adc_misc_l);

	analog_write_reg8(areg_adc_data_sample_control,
		analog_read_reg8(areg_adc_data_sample_control) & (~FLD_NOT_SAMPLE_ADC_DATA));

	return adc_code;
}

/* ADC Context API implementation: start sampling */
static void adc_context_start_sampling(struct adc_context *ctx)
{
	struct b91_adc_data *data =
		CONTAINER_OF(ctx, struct b91_adc_data, ctx);

	data->repeat_buffer = data->buffer;

	adc_power_on();

	k_sem_give(&data->acq_sem);
}

/* ADC Context API implementation: buffer pointer */
static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat_sampling)
{
	struct b91_adc_data *data =
		CONTAINER_OF(ctx, struct b91_adc_data, ctx);

	if (repeat_sampling) {
		data->buffer = data->repeat_buffer;
	}
}

/* Start ADC measurements */
static int adc_b91_adc_start_read(const struct device *dev, const struct adc_sequence *sequence)
{
	int status;
	struct b91_adc_data *data = dev->data;

	/* Validate input parameters */
	status = adc_b91_validate_sequence(sequence);
	if (status != 0) {
		return status;
	}

	/* Set resolution */
	switch (sequence->resolution) {
	case 14:
		adc_set_resolution(ADC_RES14);
		data->resolution_divider = 1;
		break;
	case 12:
		adc_set_resolution(ADC_RES12);
		data->resolution_divider = 4;
		break;
	case 10:
		adc_set_resolution(ADC_RES10);
		data->resolution_divider = 16;
		break;
	case 8:
		adc_set_resolution(ADC_RES8);
		data->resolution_divider = 64;
		break;
	default:
		LOG_ERR("Selected ADC resolution is not supported.");
		return -EINVAL;
	}

	/* Save buffer */
	data->buffer = sequence->buffer;

	/* Start ADC conversion */
	adc_context_start_read(&data->ctx, sequence);

	return adc_context_wait_for_completion(&data->ctx);
}

/* Main ADC Acquisition thread */
static void adc_b91_acquisition_thread(const struct device *dev)
{
	int16_t adc_code;
	struct b91_adc_data *data = dev->data;

	while (true) {
		/* Wait for Acquisition semaphore */
		k_sem_take(&data->acq_sem, K_FOREVER);

		/* Wait for ADC data ready */
		while ((analog_read_reg8(AREG_ADC_DATA_STATUS) & ADC_DATA_READY)
				!= ADC_DATA_READY) {
		}

		/* Perform read */
		adc_code = (adc_b91_get_code() / data->resolution_divider);
		if (!data->differential) {
			/* Sign bit is not used in case of single-ended configuration */
			adc_code = adc_code * 2;

			/* Do not return negative value for single-ended configuration */
			if (adc_code < 0) {
				adc_code = 0;
			}
		}
		*data->buffer++ = adc_code;

		/* Power off ADC */
		adc_power_off();

		/* Release ADC context */
		adc_context_on_sampling_done(&data->ctx, dev);
	}
}

/* ADC Driver initialization */
static int adc_b91_init(const struct device *dev)
{
	struct b91_adc_data *data = dev->data;

	k_sem_init(&data->acq_sem, 0, 1);

	k_thread_create(&data->thread, data->stack,
			CONFIG_ADC_B91_ACQUISITION_THREAD_STACK_SIZE,
			(k_thread_entry_t)adc_b91_acquisition_thread,
			(void *)dev, NULL, NULL,
			CONFIG_ADC_B91_ACQUISITION_THREAD_PRIO,
			0, K_NO_WAIT);

	adc_context_unlock_unconditionally(&data->ctx);

	return 0;
}

/* API implementation: channel_setup */
static int adc_b91_channel_setup(const struct device *dev,
				 const struct adc_channel_cfg *channel_cfg)
{
	adc_ref_vol_e vref_internal_mv;
	adc_sample_freq_e sample_freq;
	adc_pre_scale_e pre_scale;
	adc_sample_cycle_e sample_cycl;
	adc_input_pin_def_e input_positive;
	adc_input_pin_def_e input_negative;
	struct b91_adc_data *data = dev->data;
	const struct b91_adc_cfg *config = dev->config;

	/* Check channel ID */
	if (channel_cfg->channel_id > 0) {
		LOG_ERR("Only channel 0 is supported.");
		return -EINVAL;
	}

	/* Check reference */
	if (channel_cfg->reference != ADC_REF_INTERNAL) {
		LOG_ERR("Selected ADC reference is not supported.");
		return -EINVAL;
	}

	/* Check internal reference */
	switch (config->vref_internal_mv) {
	case 900:
		vref_internal_mv = ADC_VREF_0P9V;
		break;
	case 1200:
		vref_internal_mv = ADC_VREF_1P2V;
		break;
	default:
		LOG_ERR("Selected reference voltage is not supported.");
		return -EINVAL;
	}

	/* Check sample frequency */
	switch (config->sample_freq) {
	case 23000:
		sample_freq = ADC_SAMPLE_FREQ_23K;
		break;
	case 48000:
		sample_freq = ADC_SAMPLE_FREQ_48K;
		break;
	case 96000:
		sample_freq = ADC_SAMPLE_FREQ_96K;
		break;
	default:
		LOG_ERR("Selected sample frequency is not supported.");
		return -EINVAL;
	}

	/* Check gain */
	switch (channel_cfg->gain) {
	case ADC_GAIN_1:
		pre_scale = ADC_PRESCALE_1;
		break;
	case ADC_GAIN_1_4:
		pre_scale = ADC_PRESCALE_1F4;
		break;
	default:
		LOG_ERR("Selected ADC gain is not supported.");
		return -EINVAL;
	}

	/* Check acquisition time */
	switch (channel_cfg->acquisition_time) {
	case ADC_ACQ_TIME(ADC_ACQ_TIME_TICKS, 3):
		sample_cycl = ADC_SAMPLE_CYC_3;
		break;
	case ADC_ACQ_TIME_DEFAULT:
	case ADC_ACQ_TIME(ADC_ACQ_TIME_TICKS, 6):
		sample_cycl = ADC_SAMPLE_CYC_6;
		break;
	case ADC_ACQ_TIME(ADC_ACQ_TIME_TICKS, 9):
		sample_cycl = ADC_SAMPLE_CYC_9;
		break;
	case ADC_ACQ_TIME(ADC_ACQ_TIME_TICKS, 12):
		sample_cycl = ADC_SAMPLE_CYC_12;
		break;
	case ADC_ACQ_TIME(ADC_ACQ_TIME_TICKS, 18):
		sample_cycl = ADC_SAMPLE_CYC_18;
		break;
	case ADC_ACQ_TIME(ADC_ACQ_TIME_TICKS, 24):
		sample_cycl = ADC_SAMPLE_CYC_24;
		break;
	case ADC_ACQ_TIME(ADC_ACQ_TIME_TICKS, 36):
		sample_cycl = ADC_SAMPLE_CYC_36;
		break;
	case ADC_ACQ_TIME(ADC_ACQ_TIME_TICKS, 48):
		sample_cycl = ADC_SAMPLE_CYC_48;
		break;

	default:
		LOG_ERR("Selected ADC acquisition time is not supported.");
		return -EINVAL;
	}

	/* Check for valid pins configuration */
	input_positive = adc_b91_get_pin(channel_cfg->input_positive);
	input_negative = adc_b91_get_pin(channel_cfg->input_negative);
	if ((input_positive == (uint8_t)ADC_VBAT || input_negative == (uint8_t)ADC_VBAT) &&
		channel_cfg->differential) {
		LOG_ERR("VBAT pin is not available for differential mode.");
		return -EINVAL;
	} else if (channel_cfg->differential && (input_negative == (uint8_t)NOINPUTN)) {
		LOG_ERR("Negative input is not selected.");
		return -EINVAL;
	}

	/* Init ADC */
	data->differential = channel_cfg->differential;
	adc_init(vref_internal_mv, pre_scale, sample_freq);
	adc_set_vbat_divider(ADC_VBAT_DIV_OFF);
	adc_set_tsample_cycle(sample_cycl);

	/* Init ADC Pins */
	if (channel_cfg->differential) {
		/* Differential pins configuration */
		adc_pin_config(ADC_GPIO_MODE, input_positive);
		adc_pin_config(ADC_GPIO_MODE, input_negative);
		adc_set_diff_input(channel_cfg->input_positive, channel_cfg->input_negative);
	} else if (input_positive == (uint8_t)ADC_VBAT) {
		/* Single-ended Vbat pin configuration */
		adc_set_diff_input(ADC_VBAT, GND);
	} else {
		/* Single-ended GPIO pin configuration */
		adc_pin_config(ADC_GPIO_MODE, input_positive);
		adc_set_diff_input(channel_cfg->input_positive, GND);
	}

	return 0;
}

/* API implementation: read */
static int adc_b91_read(const struct device *dev,
			const struct adc_sequence *sequence)
{
	int status;
	struct b91_adc_data *data = dev->data;

	adc_context_lock(&data->ctx, false, NULL);
	status = adc_b91_adc_start_read(dev, sequence);
	adc_context_release(&data->ctx, status);

	return status;
}

#ifdef CONFIG_ADC_ASYNC
/* API implementation: read_async */
static int adc_b91_read_async(const struct device *dev,
			      const struct adc_sequence *sequence,
			      struct k_poll_signal *async)
{
	int status;
	struct b91_adc_data *data = dev->data;

	adc_context_lock(&data->ctx, true, async);
	status = adc_b91_adc_start_read(dev, sequence);
	adc_context_release(&data->ctx, status);

	return status;
}
#endif /* CONFIG_ADC_ASYNC */

static struct b91_adc_data data_0 = {
	ADC_CONTEXT_INIT_TIMER(data_0, ctx),
	ADC_CONTEXT_INIT_LOCK(data_0, ctx),
	ADC_CONTEXT_INIT_SYNC(data_0, ctx),
};

static const struct b91_adc_cfg cfg_0 = {
	.sample_freq = DT_INST_PROP(0, sample_freq),
	.vref_internal_mv = DT_INST_PROP(0, vref_internal_mv),
};

static const struct adc_driver_api adc_b91_driver_api = {
	.channel_setup = adc_b91_channel_setup,
	.read = adc_b91_read,
#ifdef CONFIG_ADC_ASYNC
	.read_async = adc_b91_read_async,
#endif
	.ref_internal = cfg_0.vref_internal_mv,
};

DEVICE_DT_INST_DEFINE(0, adc_b91_init, NULL,
		      &data_0,  &cfg_0,
		      POST_KERNEL,
		      CONFIG_ADC_INIT_PRIORITY,
		      &adc_b91_driver_api);