Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
/*
 * Copyright (c) 2016-2021 Nordic Semiconductor ASA
 * Copyright (c) 2018 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <zephyr/device.h>
#include <soc.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/nrf_clock_control.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/drivers/timer/nrf_rtc_timer.h>
#include <zephyr/sys_clock.h>
#include <hal/nrf_rtc.h>

#define EXT_CHAN_COUNT CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT
#define CHAN_COUNT (EXT_CHAN_COUNT + 1)

#define RTC NRF_RTC1
#define RTC_IRQn NRFX_IRQ_NUMBER_GET(RTC)
#define RTC_LABEL rtc1
#define RTC_CH_COUNT RTC1_CC_NUM

BUILD_ASSERT(CHAN_COUNT <= RTC_CH_COUNT, "Not enough compare channels");

#define COUNTER_BIT_WIDTH 24U
#define COUNTER_SPAN BIT(COUNTER_BIT_WIDTH)
#define COUNTER_MAX (COUNTER_SPAN - 1U)
#define COUNTER_HALF_SPAN (COUNTER_SPAN / 2U)
#define CYC_PER_TICK (sys_clock_hw_cycles_per_sec()	\
		      / CONFIG_SYS_CLOCK_TICKS_PER_SEC)
#define MAX_TICKS ((COUNTER_HALF_SPAN - CYC_PER_TICK) / CYC_PER_TICK)
#define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK)

#define OVERFLOW_RISK_RANGE_END (COUNTER_SPAN / 16)
#define ANCHOR_RANGE_START (COUNTER_SPAN / 8)
#define ANCHOR_RANGE_END (7 * COUNTER_SPAN / 8)
#define TARGET_TIME_INVALID (UINT64_MAX)

static volatile uint32_t overflow_cnt;
static volatile uint64_t anchor;
static uint64_t last_count;

struct z_nrf_rtc_timer_chan_data {
	z_nrf_rtc_timer_compare_handler_t callback;
	void *user_context;
	volatile uint64_t target_time;
};

static struct z_nrf_rtc_timer_chan_data cc_data[CHAN_COUNT];
static atomic_t int_mask;
static atomic_t alloc_mask;
static atomic_t force_isr_mask;

static uint32_t counter_sub(uint32_t a, uint32_t b)
{
	return (a - b) & COUNTER_MAX;
}

static void set_comparator(int32_t chan, uint32_t cyc)
{
	nrf_rtc_cc_set(RTC, chan, cyc & COUNTER_MAX);
}

static uint32_t get_comparator(int32_t chan)
{
	return nrf_rtc_cc_get(RTC, chan);
}

static void event_clear(int32_t chan)
{
	nrf_rtc_event_clear(RTC, RTC_CHANNEL_EVENT_ADDR(chan));
}

static void event_enable(int32_t chan)
{
	nrf_rtc_event_enable(RTC, RTC_CHANNEL_INT_MASK(chan));
}

static void event_disable(int32_t chan)
{
	nrf_rtc_event_disable(RTC, RTC_CHANNEL_INT_MASK(chan));
}

static uint32_t counter(void)
{
	return nrf_rtc_counter_get(RTC);
}

static uint32_t absolute_time_to_cc(uint64_t absolute_time)
{
	/* 24 least significant bits represent target CC value */
	return absolute_time & COUNTER_MAX;
}

static uint32_t full_int_lock(void)
{
	uint32_t mcu_critical_state;

	if (IS_ENABLED(CONFIG_NRF_RTC_TIMER_LOCK_ZERO_LATENCY_IRQS)) {
		mcu_critical_state = __get_PRIMASK();
		__disable_irq();
	} else {
		mcu_critical_state = irq_lock();
	}

	return mcu_critical_state;
}

static void full_int_unlock(uint32_t mcu_critical_state)
{
	if (IS_ENABLED(CONFIG_NRF_RTC_TIMER_LOCK_ZERO_LATENCY_IRQS)) {
		__set_PRIMASK(mcu_critical_state);
	} else {
		irq_unlock(mcu_critical_state);
	}
}

uint32_t z_nrf_rtc_timer_compare_evt_address_get(int32_t chan)
{
	__ASSERT_NO_MSG(chan < CHAN_COUNT);
	return nrf_rtc_event_address_get(RTC, nrf_rtc_compare_event_get(chan));
}

uint32_t z_nrf_rtc_timer_capture_task_address_get(int32_t chan)
{
#if defined(RTC_TASKS_CAPTURE_TASKS_CAPTURE_Msk)
	__ASSERT_NO_MSG(chan < CHAN_COUNT);
	if (chan == 0) {
		return 0;
	}

	nrf_rtc_task_t task = offsetof(NRF_RTC_Type, TASKS_CAPTURE[chan]);

	return nrf_rtc_task_address_get(RTC, task);
#else
	ARG_UNUSED(chan);
	return 0;
#endif
}

static bool compare_int_lock(int32_t chan)
{
	atomic_val_t prev = atomic_and(&int_mask, ~BIT(chan));

	nrf_rtc_int_disable(RTC, RTC_CHANNEL_INT_MASK(chan));

	__DMB();
	__ISB();

	return prev & BIT(chan);
}


bool z_nrf_rtc_timer_compare_int_lock(int32_t chan)
{
	__ASSERT_NO_MSG(chan && chan < CHAN_COUNT);

	return compare_int_lock(chan);
}

static void compare_int_unlock(int32_t chan, bool key)
{
	if (key) {
		atomic_or(&int_mask, BIT(chan));
		nrf_rtc_int_enable(RTC, RTC_CHANNEL_INT_MASK(chan));
		if (atomic_get(&force_isr_mask) & BIT(chan)) {
			NVIC_SetPendingIRQ(RTC_IRQn);
		}
	}
}

void z_nrf_rtc_timer_compare_int_unlock(int32_t chan, bool key)
{
	__ASSERT_NO_MSG(chan && chan < CHAN_COUNT);

	compare_int_unlock(chan, key);
}

uint32_t z_nrf_rtc_timer_compare_read(int32_t chan)
{
	__ASSERT_NO_MSG(chan < CHAN_COUNT);

	return nrf_rtc_cc_get(RTC, chan);
}

uint64_t z_nrf_rtc_timer_get_ticks(k_timeout_t t)
{
	uint64_t curr_time;
	int64_t curr_tick;
	int64_t result;
	int64_t abs_ticks;

	do {
		curr_time = z_nrf_rtc_timer_read();
		curr_tick = sys_clock_tick_get();
	} while (curr_time != z_nrf_rtc_timer_read());

	abs_ticks = Z_TICK_ABS(t.ticks);
	if (abs_ticks < 0) {
		/* relative timeout */
		return (t.ticks > COUNTER_SPAN) ?
			-EINVAL : (curr_time + t.ticks);
	}

	/* absolute timeout */
	result = abs_ticks - curr_tick;

	if (result > COUNTER_SPAN) {
		return -EINVAL;
	}

	return curr_time + result;
}

/** @brief Function safely sets absolute alarm.
 *
 * It assumes that provided value is less than COUNTER_HALF_SPAN from now.
 * It detects late setting and also handle +1 cycle case.
 *
 * @param[in] chan A channel for which a new CC value is to be set.
 *
 * @param[in] abs_val An absolute value of CC register to be set.
 *
 * @returns CC value that was actually set. It is equal to @p abs_val or
 *  shifted ahead if @p abs_val was too near in the future (+1 case).
 */
static uint32_t set_absolute_alarm(int32_t chan, uint32_t abs_val)
{
	uint32_t now;
	uint32_t now2;
	uint32_t cc_val = abs_val & COUNTER_MAX;
	uint32_t prev_cc = get_comparator(chan);

	do {
		now = counter();

		/* Handle case when previous event may generate an event.
		 * It is handled by setting CC to now (far in the future),
		 * in case previous event was set for next tick wait for half
		 * LF tick and clear event that may have been generated.
		 */
		set_comparator(chan, now);
		if (counter_sub(prev_cc, now) == 1) {
			/* It should wait for half of RTC tick 15.26us. As
			 * busy wait runs from different clock source thus
			 * wait longer to cover for discrepancy.
			 */
			k_busy_wait(19);
		}

		/* If requested cc_val is in the past or next tick, set to 2
		 * ticks from now. RTC may not generate event if CC is set for
		 * 1 tick from now.
		 */
		if (counter_sub(cc_val, now + 2) > COUNTER_HALF_SPAN) {
			cc_val = now + 2;
		}

		event_clear(chan);
		event_enable(chan);
		set_comparator(chan, cc_val);
		now2 = counter();
		prev_cc = cc_val;
		/* Rerun the algorithm if counter progressed during execution
		 * and cc_val is in the past or one tick from now. In such
		 * scenario, it is possible that event will not be generated.
		 * Rerunning the algorithm will delay the alarm but ensure that
		 * event will be generated at the moment indicated by value in
		 * CC register.
		 */
	} while ((now2 != now) &&
		 (counter_sub(cc_val, now2 + 2) > COUNTER_HALF_SPAN));

	return cc_val;
}

static int compare_set_nolocks(int32_t chan, uint64_t target_time,
			z_nrf_rtc_timer_compare_handler_t handler,
			void *user_data)
{
	int ret = 0;
	uint32_t cc_value = absolute_time_to_cc(target_time);
	uint64_t curr_time = z_nrf_rtc_timer_read();

	if (curr_time < target_time) {
		if (target_time - curr_time > COUNTER_SPAN) {
			/* Target time is too distant. */
			return -EINVAL;
		}

		if (target_time != cc_data[chan].target_time) {
			/* Target time is valid and is different than currently set.
			 * Set CC value.
			 */
			uint32_t cc_set = set_absolute_alarm(chan, cc_value);

			target_time += counter_sub(cc_set, cc_value);
		}
	} else {
		/* Force ISR handling when exiting from critical section. */
		atomic_or(&force_isr_mask, BIT(chan));
	}

	cc_data[chan].target_time = target_time;
	cc_data[chan].callback = handler;
	cc_data[chan].user_context = user_data;

	return ret;
}

static int compare_set(int32_t chan, uint64_t target_time,
			z_nrf_rtc_timer_compare_handler_t handler,
			void *user_data)
{
	bool key;

	key = compare_int_lock(chan);

	int ret = compare_set_nolocks(chan, target_time, handler, user_data);

	compare_int_unlock(chan, key);

	return ret;
}

int z_nrf_rtc_timer_set(int32_t chan, uint64_t target_time,
			 z_nrf_rtc_timer_compare_handler_t handler,
			 void *user_data)
{
	__ASSERT_NO_MSG(chan && chan < CHAN_COUNT);

	return compare_set(chan, target_time, handler, user_data);
}

void z_nrf_rtc_timer_abort(int32_t chan)
{
	__ASSERT_NO_MSG(chan && chan < CHAN_COUNT);

	bool key = compare_int_lock(chan);

	cc_data[chan].target_time = TARGET_TIME_INVALID;
	event_clear(chan);
	event_disable(chan);
	(void)atomic_and(&force_isr_mask, ~BIT(chan));

	compare_int_unlock(chan, key);
}

uint64_t z_nrf_rtc_timer_read(void)
{
	uint64_t val = ((uint64_t)overflow_cnt) << COUNTER_BIT_WIDTH;

	__DMB();

	uint32_t cntr = counter();

	val += cntr;

	if (cntr < OVERFLOW_RISK_RANGE_END) {
		/* `overflow_cnt` can have incorrect value due to still unhandled overflow or
		 * due to possibility that this code preempted overflow interrupt before final write
		 * of `overflow_cnt`. Update of `anchor` occurs far in time from this moment, so
		 * `anchor` is considered valid and stable. Because of this timing there is no risk
		 * of incorrect `anchor` value caused by non-atomic read of 64-bit `anchor`.
		 */
		if (val < anchor) {
			/* Unhandled overflow, detected, let's add correction */
			val += COUNTER_SPAN;
		}
	} else {
		/* `overflow_cnt` is considered valid and stable in this range, no need to
		 * check validity using `anchor`
		 */
	}

	return val;
}

static inline bool in_anchor_range(uint32_t cc_value)
{
	return (cc_value >= ANCHOR_RANGE_START) && (cc_value < ANCHOR_RANGE_END);
}

static inline bool anchor_update(uint32_t cc_value)
{
	/* Update anchor when far from overflow */
	if (in_anchor_range(cc_value)) {
		/* In this range `overflow_cnt` is considered valid and stable.
		 * Write of 64-bit `anchor` is non atomic. However it happens
		 * far in time from the moment the `anchor` is read in
		 * `z_nrf_rtc_timer_read`.
		 */
		anchor = (((uint64_t)overflow_cnt) << COUNTER_BIT_WIDTH) + cc_value;
		return true;
	}

	return false;
}

static void sys_clock_timeout_handler(int32_t chan,
				      uint64_t expire_time,
				      void *user_data)
{
	uint32_t cc_value = absolute_time_to_cc(expire_time);
	uint64_t dticks = (expire_time - last_count) / CYC_PER_TICK;

	last_count += dticks * CYC_PER_TICK;

	bool anchor_updated = anchor_update(cc_value);

	if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
		/* protection is not needed because we are in the RTC interrupt
		 * so it won't get preempted by the interrupt.
		 */
		compare_set(chan, last_count + CYC_PER_TICK,
					  sys_clock_timeout_handler, NULL);
	}

	sys_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL) ?
			   (int32_t)dticks : (dticks > 0));

	if (cc_value == get_comparator(chan)) {
		/* New value was not set. Set something that can update anchor.
		 * If anchor was updated we can enable same CC value to trigger
		 * interrupt after full cycle. Else set event in anchor update
		 * range. Since anchor was not updated we know that it's very
		 * far from mid point so setting is done without any protection.
		 */
		if (!anchor_updated) {
			set_comparator(chan, COUNTER_HALF_SPAN);
		}
		event_enable(chan);
	}
}

static bool channel_processing_check_and_clear(int32_t chan)
{
	bool result = false;

	uint32_t mcu_critical_state = full_int_lock();

	if (nrf_rtc_int_enable_check(RTC, RTC_CHANNEL_INT_MASK(chan))) {
		/* The processing of channel can be caused by CC match
		 * or be forced.
		 */
		result = atomic_and(&force_isr_mask, ~BIT(chan)) ||
			 nrf_rtc_event_check(RTC, RTC_CHANNEL_EVENT_ADDR(chan));

		if (result) {
			event_clear(chan);
		}
	}

	full_int_unlock(mcu_critical_state);

	return result;
}

static void process_channel(int32_t chan)
{
	if (channel_processing_check_and_clear(chan)) {
		void *user_context;
		uint32_t mcu_critical_state;
		uint64_t curr_time;
		uint64_t expire_time;
		z_nrf_rtc_timer_compare_handler_t handler = NULL;

		curr_time = z_nrf_rtc_timer_read();

		/* This critical section is used to provide atomic access to
		 * cc_data structure and prevent higher priority contexts
		 * (including ZLIs) from overwriting it.
		 */
		mcu_critical_state = full_int_lock();

		/* If target_time is in the past or is equal to current time
		 * value, execute the handler.
		 */
		expire_time = cc_data[chan].target_time;
		if (curr_time >= expire_time) {
			handler = cc_data[chan].callback;
			user_context = cc_data[chan].user_context;
			cc_data[chan].callback = NULL;
			cc_data[chan].target_time = TARGET_TIME_INVALID;
			event_disable(chan);
		}

		full_int_unlock(mcu_critical_state);

		if (handler) {
			handler(chan, expire_time, user_context);
		}
	}
}

/* Note: this function has public linkage, and MUST have this
 * particular name.  The platform architecture itself doesn't care,
 * but there is a test (tests/arch/arm_irq_vector_table) that needs
 * to find it to it can set it in a custom vector table.  Should
 * probably better abstract that at some point (e.g. query and reset
 * it by pointer at runtime, maybe?) so we don't have this leaky
 * symbol.
 */
void rtc_nrf_isr(const void *arg)
{
	ARG_UNUSED(arg);

	if (nrf_rtc_int_enable_check(RTC, NRF_RTC_INT_OVERFLOW_MASK) &&
	    nrf_rtc_event_check(RTC, NRF_RTC_EVENT_OVERFLOW)) {
		nrf_rtc_event_clear(RTC, NRF_RTC_EVENT_OVERFLOW);
		overflow_cnt++;
	}

	for (int32_t chan = 0; chan < CHAN_COUNT; chan++) {
		process_channel(chan);
	}
}

int32_t z_nrf_rtc_timer_chan_alloc(void)
{
	int32_t chan;
	atomic_val_t prev;
	do {
		chan = alloc_mask ? 31 - __builtin_clz(alloc_mask) : -1;
		if (chan < 0) {
			return -ENOMEM;
		}
		prev = atomic_and(&alloc_mask, ~BIT(chan));
	} while (!(prev & BIT(chan)));

	return chan;
}

void z_nrf_rtc_timer_chan_free(int32_t chan)
{
	__ASSERT_NO_MSG(chan && chan < CHAN_COUNT);

	atomic_or(&alloc_mask, BIT(chan));
}


void sys_clock_set_timeout(int32_t ticks, bool idle)
{
	ARG_UNUSED(idle);
	uint32_t cyc;

	if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
		return;
	}

	ticks = (ticks == K_TICKS_FOREVER) ? MAX_TICKS : ticks;
	ticks = CLAMP(ticks - 1, 0, (int32_t)MAX_TICKS);

	uint32_t unannounced = z_nrf_rtc_timer_read() - last_count;

	/* If we haven't announced for more than half the 24-bit wrap
	 * duration, then force an announce to avoid loss of a wrap
	 * event.  This can happen if new timeouts keep being set
	 * before the existing one triggers the interrupt.
	 */
	if (unannounced >= COUNTER_HALF_SPAN) {
		ticks = 0;
	}

	/* Get the cycles from last_count to the tick boundary after
	 * the requested ticks have passed starting now.
	 */
	cyc = ticks * CYC_PER_TICK + 1 + unannounced;
	cyc += (CYC_PER_TICK - 1);
	cyc = (cyc / CYC_PER_TICK) * CYC_PER_TICK;

	/* Due to elapsed time the calculation above might produce a
	 * duration that laps the counter.  Don't let it.
	 */
	if (cyc > MAX_CYCLES) {
		cyc = MAX_CYCLES;
	}

	uint64_t target_time = cyc + last_count;

	compare_set(0, target_time, sys_clock_timeout_handler, NULL);
}

uint32_t sys_clock_elapsed(void)
{
	if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
		return 0;
	}

	return (z_nrf_rtc_timer_read() - last_count) / CYC_PER_TICK;
}

uint32_t sys_clock_cycle_get_32(void)
{
	return (uint32_t)z_nrf_rtc_timer_read();
}

static int sys_clock_driver_init(const struct device *dev)
{
	ARG_UNUSED(dev);
	static const enum nrf_lfclk_start_mode mode =
		IS_ENABLED(CONFIG_SYSTEM_CLOCK_NO_WAIT) ?
			CLOCK_CONTROL_NRF_LF_START_NOWAIT :
			(IS_ENABLED(CONFIG_SYSTEM_CLOCK_WAIT_FOR_AVAILABILITY) ?
			CLOCK_CONTROL_NRF_LF_START_AVAILABLE :
			CLOCK_CONTROL_NRF_LF_START_STABLE);

	/* TODO: replace with counter driver to access RTC */
	nrf_rtc_prescaler_set(RTC, 0);
	for (int32_t chan = 0; chan < CHAN_COUNT; chan++) {
		cc_data[chan].target_time = TARGET_TIME_INVALID;
		nrf_rtc_int_enable(RTC, RTC_CHANNEL_INT_MASK(chan));
	}

	nrf_rtc_int_enable(RTC, NRF_RTC_INT_OVERFLOW_MASK);

	NVIC_ClearPendingIRQ(RTC_IRQn);

	IRQ_CONNECT(RTC_IRQn, DT_IRQ(DT_NODELABEL(RTC_LABEL), priority),
		    rtc_nrf_isr, 0, 0);
	irq_enable(RTC_IRQn);

	nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_CLEAR);
	nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_START);

	int_mask = BIT_MASK(CHAN_COUNT);
	if (CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT) {
		alloc_mask = BIT_MASK(EXT_CHAN_COUNT) << 1;
	}

	uint32_t initial_timeout = IS_ENABLED(CONFIG_TICKLESS_KERNEL) ?
		(COUNTER_HALF_SPAN - 1) :
		(counter() + CYC_PER_TICK);

	compare_set(0, initial_timeout, sys_clock_timeout_handler, NULL);

	z_nrf_clock_control_lf_on(mode);

	return 0;
}

SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
	 CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);