Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
/*
 * Copyright (c) 2019 Intel Corporation
 * Copyright (c) 2019 Microchip Technology Incorporated
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT microchip_xec_rtos_timer

#include <devicetree.h>
#include <soc.h>
#include <drivers/timer/system_timer.h>
#include <sys_clock.h>
#include <spinlock.h>
#include <arch/arm/aarch32/cortex_m/cmsis.h>

BUILD_ASSERT(!IS_ENABLED(CONFIG_SMP), "XEC RTOS timer doesn't support SMP");
BUILD_ASSERT(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC == 32768,
	     "XEC RTOS timer HW frequency is fixed at 32768");

#define DEBUG_RTOS_TIMER 0

#if DEBUG_RTOS_TIMER != 0
/* Enable feature to halt timer on JTAG/SWD CPU halt */
#define TIMER_START_VAL (MCHP_RTMR_CTRL_BLK_EN | MCHP_RTMR_CTRL_START \
			 | MCHP_RTMR_CTRL_HW_HALT_EN)
#else
#define TIMER_START_VAL (MCHP_RTMR_CTRL_BLK_EN | MCHP_RTMR_CTRL_START)
#endif

/*
 * Overview:
 *
 * This driver enables the Microchip XEC 32KHz based RTOS timer as the Zephyr
 * system timer. It supports both legacy ("tickful") mode as well as
 * TICKLESS_KERNEL. The XEC RTOS timer is a down counter with a fixed
 * frequency of 32768 Hz. The driver is based upon the Intel local APIC
 * timer driver.
 * Configuration:
 *
 * CONFIG_MCHP_XEC_RTOS_TIMER=y
 *
 * CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC=<hz> must be set to 32768.
 *
 * To reduce truncation errors from accumalating due to conversion
 * to/from time, ticks, and HW cycles set ticks per second equal to
 * the frequency. With tickless kernel mode enabled the kernel will not
 * program a periodic timer at this fast rate.
 * CONFIG_SYS_CLOCK_TICKS_PER_SEC=32768
 */

#define CYCLES_PER_TICK \
	(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / CONFIG_SYS_CLOCK_TICKS_PER_SEC)

#define TIMER_REGS	\
	((struct rtmr_regs *)DT_INST_REG_ADDR(0))

#define ECIA_XEC_REGS	\
	((struct ecia_regs *)DT_REG_ADDR(DT_NODELABEL(ecia)))

#ifdef CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT
#define PCR_XEC_REGS	\
	((struct pcr_regs *)DT_REG_ADDR(DT_NODELABEL(pcr)))

/*
 * pcrs property at index 0 is register index into array of 32-bit PCR SLP_EN,
 * CLK_REQ, or RST_EN registers. Property at index 1 is the bit position.
 */                              /*DT_PROP_BY_IDX(DT_NODELABEL(kbc0), girqs, 0)*/
#define BTMR32_0_PCR_REG_IDX	(DT_PROP_BY_IDX(DT_NODELABEL(timer4), pcrs, 0))
#define BTMR32_0_PCR_BITPOS	(DT_PROP_BY_IDX(DT_NODELABEL(timer4), pcrs, 1))

#define BTMR32_0_REGS	\
	((struct btmr_regs *)(DT_REG_ADDR(DT_NODELABEL(timer4))))
#endif

/* Mask off bits[31:28] of 32-bit count */
#define TIMER_MAX		0x0fffffffu
#define TIMER_COUNT_MASK	0x0fffffffu
#define TIMER_STOPPED		0xf0000000u

/* Adjust cycle count programmed into timer for HW restart latency */
#define TIMER_ADJUST_LIMIT	2
#define TIMER_ADJUST_CYCLES	1

/* max number of ticks we can load into the timer in one shot */
#define MAX_TICKS (TIMER_MAX / CYCLES_PER_TICK)

#define TIMER_GIRQ		DT_INST_PROP_BY_IDX(0, girqs, 0)
#define TIMER_GIRQ_POS		DT_INST_PROP_BY_IDX(0, girqs, 1)
#define TIMER_NVIC_NO		DT_INST_IRQN(0)
#define TIMER_NVIC_PRIO		DT_INST_IRQ(0, priority)

/*
 * The spinlock protects all access to the RTMR registers, as well as
 * 'total_cycles', 'last_announcement', and 'cached_icr'.
 *
 * One important invariant that must be observed: `total_cycles` + `cached_icr`
 * is always an integral multiple of CYCLE_PER_TICK; this is, timer interrupts
 * are only ever scheduled to occur at tick boundaries.
 */

static struct k_spinlock lock;
static uint32_t total_cycles;
static uint32_t cached_icr = CYCLES_PER_TICK;

/*
 * NOTE: using inline for speed instead of call to external SoC function.
 * MEC GIRQ numbers are documented as 8 to 26, check and convert to zero
 * based index.
 */
static inline void girq_src_clr(int girq, int bitpos)
{
	if ((girq < 8) || (girq > 26)) {
		return;
	}

	ECIA_XEC_REGS->GIRQ[girq - 8].SRC = BIT(bitpos);
}

static inline void girq_src_en(int girq, int bitpos)
{
	if ((girq < 8) || (girq > 26)) {
		return;
	}

	ECIA_XEC_REGS->GIRQ[girq - 8].EN_SET = BIT(bitpos);
}

static inline void girq_src_dis(int girq, int bitpos)
{
	if ((girq < 8) || (girq > 26)) {
		return;
	}

	ECIA_XEC_REGS->GIRQ[girq - 8].EN_CLR = BIT(bitpos);
}

static void timer_restart(uint32_t countdown)
{
	TIMER_REGS->CTRL = 0U;
	TIMER_REGS->CTRL = MCHP_RTMR_CTRL_BLK_EN;
	TIMER_REGS->PRLD = countdown;
	TIMER_REGS->CTRL = TIMER_START_VAL;
}

/*
 * Read the RTOS timer counter handling the case where the timer
 * has been reloaded within 1 32KHz clock of reading its count register.
 * The RTOS timer hardware must synchronize the write to its control register
 * on the AHB clock domain with the 32KHz clock domain of its internal logic.
 * This synchronization can take from nearly 0 time up to 1 32KHz clock as it
 * depends upon which 48MHz AHB clock with a 32KHz period the register write
 * was on. We detect the timer is in the load state by checking the read-only
 * count register and the START bit in the control register. If count register
 * is 0 and the START bit is set then the timer has been started and is in the
 * process of moving the preload register value into the count register.
 */
static inline uint32_t timer_count(void)
{
	uint32_t ccr = TIMER_REGS->CNT;

	if ((ccr == 0) && (TIMER_REGS->CTRL & MCHP_RTMR_CTRL_START)) {
		ccr = cached_icr;
	}

	return ccr;
}

#ifdef CONFIG_TICKLESS_KERNEL

static uint32_t last_announcement;	/* last time we called sys_clock_announce() */

/*
 * Request a timeout n Zephyr ticks in the future from now.
 * Requested number of ticks in the future of n <= 1 means the kernel wants
 * the tick announced as soon as possible, ideally no more than one tick
 * in the future.
 *
 * Per comment below we don't clear RTMR pending interrupt.
 * RTMR counter register is read-only and is loaded from the preload
 * register by a 0->1 transition of the control register start bit.
 * Writing a new value to preload only takes effect once the count
 * register reaches 0.
 */
void sys_clock_set_timeout(int32_t n, bool idle)
{
	ARG_UNUSED(idle);

	uint32_t ccr, temp;
	int   full_ticks;	/* number of complete ticks we'll wait */
	uint32_t full_cycles;	/* full_ticks represented as cycles */
	uint32_t partial_cycles;	/* number of cycles to first tick boundary */

	if (idle && (n == K_TICKS_FOREVER)) {
		/*
		 * We are not in a locked section. Are writes to two
		 * global objects safe from pre-emption?
		 */
		TIMER_REGS->CTRL = 0U; /* stop timer */
		cached_icr = TIMER_STOPPED;
		return;
	}

	if (n < 1) {
		full_ticks = 0;
	} else if ((n == K_TICKS_FOREVER) || (n > MAX_TICKS)) {
		full_ticks = MAX_TICKS - 1;
	} else {
		full_ticks = n - 1;
	}

	full_cycles = full_ticks * CYCLES_PER_TICK;

	k_spinlock_key_t key = k_spin_lock(&lock);

	ccr = timer_count();

	/* turn off to clear any pending interrupt status */
	TIMER_REGS->CTRL = 0u;
	girq_src_clr(TIMER_GIRQ, TIMER_GIRQ_POS);
	NVIC_ClearPendingIRQ(TIMER_NVIC_NO);

	temp = total_cycles;
	temp += (cached_icr - ccr);
	temp &= TIMER_COUNT_MASK;
	total_cycles = temp;

	partial_cycles = CYCLES_PER_TICK - (total_cycles % CYCLES_PER_TICK);
	cached_icr = full_cycles + partial_cycles;
	/* adjust for up to one 32KHz cycle startup time */
	temp = cached_icr;
	if (temp > TIMER_ADJUST_LIMIT) {
		temp -= TIMER_ADJUST_CYCLES;
	}

	timer_restart(temp);

	k_spin_unlock(&lock, key);
}

/*
 * Return the number of Zephyr ticks elapsed from last call to
 * sys_clock_announce in the ISR. The caller casts uint32_t to int32_t.
 * We must make sure bit[31] is 0 in the return value.
 */
uint32_t sys_clock_elapsed(void)
{
	uint32_t ccr;
	uint32_t ticks;
	int32_t elapsed;

	k_spinlock_key_t key = k_spin_lock(&lock);

	ccr = timer_count();

	/* It may not look efficient but the compiler does a good job */
	elapsed = (int32_t)total_cycles - (int32_t)last_announcement;
	if (elapsed < 0) {
		elapsed = -1 * elapsed;
	}
	ticks = (uint32_t)elapsed;
	ticks += cached_icr - ccr;
	ticks /= CYCLES_PER_TICK;
	ticks &= TIMER_COUNT_MASK;

	k_spin_unlock(&lock, key);

	return ticks;
}

static void xec_rtos_timer_isr(const void *arg)
{
	ARG_UNUSED(arg);

	uint32_t cycles;
	int32_t ticks;

	k_spinlock_key_t key = k_spin_lock(&lock);

	girq_src_clr(TIMER_GIRQ, TIMER_GIRQ_POS);

	/* Restart the timer as early as possible to minimize drift... */
	timer_restart(MAX_TICKS * CYCLES_PER_TICK);

	cycles = cached_icr;
	cached_icr = MAX_TICKS * CYCLES_PER_TICK;

	total_cycles += cycles;
	total_cycles &= TIMER_COUNT_MASK;

	/* handle wrap by using (power of 2) - 1 mask */
	ticks = total_cycles - last_announcement;
	ticks &= TIMER_COUNT_MASK;
	ticks /= CYCLES_PER_TICK;

	last_announcement = total_cycles;

	k_spin_unlock(&lock, key);
	sys_clock_announce(ticks);
}

#else

/* Non-tickless kernel build. */

static void xec_rtos_timer_isr(const void *arg)
{
	ARG_UNUSED(arg);

	k_spinlock_key_t key = k_spin_lock(&lock);

	girq_src_clr(TIMER_GIRQ, TIMER_GIRQ_POS);

	/* Restart the timer as early as possible to minimize drift... */
	timer_restart(cached_icr);

	uint32_t temp = total_cycles + CYCLES_PER_TICK;

	total_cycles = temp & TIMER_COUNT_MASK;
	k_spin_unlock(&lock, key);

	sys_clock_announce(1);
}

uint32_t sys_clock_elapsed(void)
{
	return 0U;
}

#endif /* CONFIG_TICKLESS_KERNEL */

/*
 * Warning RTOS timer resolution is 30.5 us.
 * This is called by two code paths:
 * 1. Kernel call to k_cycle_get_32() -> arch_k_cycle_get_32() -> here.
 *    The kernel is casting return to (int) and using it uncasted in math
 *    expressions with int types. Expression result is stored in an int.
 * 2. If CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT is not defined then
 *    z_impl_k_busy_wait calls here. This code path uses the value as uint32_t.
 *
 */
uint32_t sys_clock_cycle_get_32(void)
{
	uint32_t ret;
	uint32_t ccr;

	k_spinlock_key_t key = k_spin_lock(&lock);

	ccr = timer_count();
	ret = (total_cycles + (cached_icr - ccr)) & TIMER_COUNT_MASK;

	k_spin_unlock(&lock, key);

	return ret;
}

void sys_clock_idle_exit(void)
{
	if (cached_icr == TIMER_STOPPED) {
		cached_icr = CYCLES_PER_TICK;
		timer_restart(cached_icr);
	}
}

void sys_clock_disable(void)
{
	TIMER_REGS->CTRL = 0U;
}

int sys_clock_driver_init(const struct device *dev)
{
	ARG_UNUSED(dev);

#ifdef CONFIG_TICKLESS_KERNEL
	cached_icr = MAX_TICKS;
#endif

	TIMER_REGS->CTRL = 0u;
	girq_src_clr(TIMER_GIRQ, TIMER_GIRQ_POS);
	girq_src_dis(TIMER_GIRQ, TIMER_GIRQ_POS);
	NVIC_ClearPendingIRQ(TIMER_NVIC_NO);

	IRQ_CONNECT(TIMER_NVIC_NO, TIMER_NVIC_PRIO, xec_rtos_timer_isr, 0, 0);
	irq_enable(TIMER_NVIC_NO);
	girq_src_en(TIMER_GIRQ, TIMER_GIRQ_POS);

#ifdef CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT
	uint32_t btmr_ctrl = (MCHP_BTMR_CTRL_ENABLE
			      | MCHP_BTMR_CTRL_AUTO_RESTART
			      | MCHP_BTMR_CTRL_COUNT_UP
			      | (47UL << MCHP_BTMR_CTRL_PRESCALE_POS));

#if CONFIG_SOC_SERIES_MEC1501X
	mchp_pcr_periph_slp_ctrl(PCR_B32TMR0, 0);
#else
	PCR_XEC_REGS->SLP_EN[BTMR32_0_PCR_REG_IDX] &= ~BIT(BTMR32_0_PCR_BITPOS);
#endif
	BTMR32_0_REGS->CTRL = MCHP_BTMR_CTRL_SOFT_RESET;
	BTMR32_0_REGS->CTRL = btmr_ctrl;
	BTMR32_0_REGS->PRLD = UINT32_MAX;
	btmr_ctrl |= MCHP_BTMR_CTRL_START;

	timer_restart(cached_icr);
	/* wait for RTOS timer to load count register from preload */
	while (TIMER_REGS->CNT == 0) {
		;
	}

	BTMR32_0_REGS->CTRL = btmr_ctrl;
#else
	timer_restart(cached_icr);
#endif

	return 0;
}

#ifdef CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT

/*
 * We implement custom busy wait using a MEC1501 basic timer running on
 * the 48MHz clock domain. This code is here for future power management
 * save/restore of the timer context.
 */

/*
 * 32-bit basic timer 0 configured for 1MHz count up, auto-reload,
 * and no interrupt generation.
 */
void arch_busy_wait(uint32_t usec_to_wait)
{
	if (usec_to_wait == 0) {
		return;
	}

	uint32_t start = BTMR32_0_REGS->CNT;

	for (;;) {
		uint32_t curr = BTMR32_0_REGS->CNT;

		if ((curr - start) >= usec_to_wait) {
			break;
		}
	}
}
#endif