Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
/*
 * Copyright (c) 2021 Espressif Systems (Shanghai) Co., Ltd.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT espressif_esp32_flash_controller
#define SOC_NV_FLASH_NODE DT_INST(0, soc_nv_flash)

#define FLASH_WRITE_BLK_SZ DT_PROP(SOC_NV_FLASH_NODE, write_block_size)
#define FLASH_ERASE_BLK_SZ DT_PROP(SOC_NV_FLASH_NODE, erase_block_size)

#include <kernel.h>
#include <device.h>
#include <stddef.h>
#include <string.h>
#include <errno.h>
#include <drivers/flash.h>
#include <soc.h>
#include <esp_spi_flash.h>
#include <hal/spi_ll.h>
#include <hal/spi_flash_ll.h>
#include <hal/spi_flash_hal.h>
#include <soc/spi_struct.h>
#include <spi_flash_defs.h>

#if CONFIG_SOC_ESP32
#include "soc/dport_reg.h"
#include "esp32/rom/cache.h"
#include "esp32/rom/spi_flash.h"
#include "esp32/spiram.h"
#include "soc/mmu.h"
#endif

#include <logging/log.h>
LOG_MODULE_REGISTER(flash_esp32, CONFIG_FLASH_LOG_LEVEL);

struct flash_esp32_dev_config {
	spi_dev_t *controller;
	esp_rom_spiflash_chip_t *chip;
};

struct flash_esp32_dev_data {
	struct k_sem sem;
};

static const struct flash_parameters flash_esp32_parameters = {
	.write_block_size = FLASH_WRITE_BLK_SZ,
	.erase_value = 0xff,
};

#define DEV_DATA(dev) ((struct flash_esp32_dev_data *const)(dev)->data)
#define DEV_CFG(dev) ((const struct flash_esp32_dev_config *const)(dev)->config)
#define SPI1_EXTRA_DUMMIES (g_rom_spiflash_dummy_len_plus[1])
#define MAX_BUFF_ALLOC_RETRIES 5
#define MAX_READ_CHUNK 16384
#define MAX_WRITE_CHUNK 8192
#define ADDRESS_MASK_24BIT 0xFFFFFF
#define SPI_TIMEOUT_MSEC 500

static inline void flash_esp32_sem_take(const struct device *dev)
{
	k_sem_take(&DEV_DATA(dev)->sem, K_FOREVER);
}

static inline void flash_esp32_sem_give(const struct device *dev)
{
	k_sem_give(&DEV_DATA(dev)->sem);
}

static inline int flash_esp32_wait_cmd_done(const spi_dev_t *hw)
{
	int64_t timeout = k_uptime_get() + SPI_TIMEOUT_MSEC;

	while (!spi_flash_ll_cmd_is_done(hw)) {
		if (k_uptime_get() > timeout) {
			LOG_ERR("controller has timed out");
			return -ETIMEDOUT;
		}
	}

	return 0;
}

static inline bool points_to_dram(const void *ptr)
{
	return ((intptr_t)ptr >= SOC_DRAM_LOW && (intptr_t)ptr < SOC_DRAM_HIGH);
}

int configure_read_mode(spi_dev_t *hw,
			uint32_t cmd,
			uint32_t addr_bitlen,
			int dummy_len,
			bool byte_cmd)
{
	if (dummy_len) {
		spi_flash_ll_set_dummy(hw, dummy_len);
	}

	spi_flash_ll_set_addr_bitlen(hw, addr_bitlen);

	if (!byte_cmd) {
		REG_SET_FIELD(PERIPHS_SPI_FLASH_USRREG2, SPI_USR_COMMAND_VALUE, cmd);
	} else {
		spi_flash_ll_set_command(hw, (uint8_t) cmd, 8);
	}

	return 0;
}

static bool IRAM_ATTR flash_esp32_mapped_in_cache(uint32_t phys_page)
{
	int start[2], end[2];

	/* SPI_FLASH_MMAP_DATA */
	start[0] = SOC_MMU_DROM0_PAGES_START;
	end[0] = SOC_MMU_DROM0_PAGES_END;

	/* SPI_FLASH_MMAP_INST */
	start[1] = SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE;
	end[1] = SOC_MMU_IROM0_PAGES_END;

	DPORT_INTERRUPT_DISABLE();
	for (int j = 0; j < 2; j++) {
		for (int i = start[j]; i < end[j]; i++) {
			if (DPORT_SEQUENCE_REG_READ(
				     (uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i]) ==
				     SOC_MMU_PAGE_IN_FLASH(phys_page)) {
				DPORT_INTERRUPT_RESTORE();
				return true;
			}
		}
	}
	DPORT_INTERRUPT_RESTORE();

	return false;
}

/* Validates if flash address has corresponding cache mapping, if yes, flushes cache memories */
static void IRAM_ATTR flash_esp32_flush_cache(size_t start_addr, size_t length)
{
	/* align start_addr & length to full MMU pages */
	uint32_t page_start_addr = start_addr & ~(SPI_FLASH_MMU_PAGE_SIZE-1);

	length += (start_addr - page_start_addr);
	length = (length + SPI_FLASH_MMU_PAGE_SIZE - 1) & ~(SPI_FLASH_MMU_PAGE_SIZE-1);
	for (uint32_t addr = page_start_addr;
		addr < page_start_addr + length;
		addr += SPI_FLASH_MMU_PAGE_SIZE) {

		uint32_t page = addr / SPI_FLASH_MMU_PAGE_SIZE;

		if (page >= 256) {
			return;
		}

		if (flash_esp32_mapped_in_cache(page)) {

#if CONFIG_ESP_SPIRAM
			esp_spiram_writeback_cache();
#endif
			esp32_rom_Cache_Flush(0);
#ifdef CONFIG_SMP
			esp32_rom_Cache_Flush(1);
#endif
			return;
		}
	}
}

static int set_read_options(const struct device *dev)
{
	spi_dev_t *hw = DEV_CFG(dev)->controller;
	uint32_t dummy_len = 0;
	uint32_t addr_len;
	uint8_t read_cmd;
	bool byte_cmd = true;
	uint32_t read_mode = READ_PERI_REG(PERIPHS_SPI_FLASH_CTRL);

	if ((read_mode & SPI_FREAD_QIO) && (read_mode & SPI_FASTRD_MODE)) {
		spi_ll_enable_mosi(hw, 0);
		spi_ll_enable_miso(hw, 1);
		dummy_len = 1 + SPI1_R_QIO_DUMMY_CYCLELEN + SPI1_EXTRA_DUMMIES;
		addr_len = SPI1_R_QIO_ADDR_BITSLEN + 1;
		read_cmd = CMD_FASTRD_QIO;
	} else if (read_mode & SPI_FASTRD_MODE) {
		spi_ll_enable_mosi(hw, 0);
		spi_ll_enable_miso(hw, 1);
		if (read_mode & SPI_FREAD_DIO) {
			read_cmd = CMD_FASTRD_DIO;
			if (SPI1_EXTRA_DUMMIES == 0) {
				spi_flash_ll_set_dummy(hw, 0);
				addr_len = SPI1_R_DIO_ADDR_BITSLEN + 1;
			} else {
				byte_cmd = false;
				dummy_len = SPI1_EXTRA_DUMMIES;
				addr_len = SPI1_R_DIO_ADDR_BITSLEN + 1;
			}
		} else {
			if ((read_mode & SPI_FREAD_QUAD)) {
				read_cmd = CMD_FASTRD_QUAD;
			} else if ((read_mode & SPI_FREAD_DUAL)) {
				read_cmd = CMD_FASTRD_DUAL;
			} else {
				read_cmd = CMD_FASTRD;
			}
			dummy_len = 1 + SPI1_R_FAST_DUMMY_CYCLELEN + SPI1_EXTRA_DUMMIES;
			addr_len = SPI1_R_FAST_ADDR_BITSLEN + 1;
		}
	} else {
		spi_ll_enable_mosi(hw, 0);
		if (SPI1_EXTRA_DUMMIES == 0) {
			spi_flash_ll_set_dummy(hw, 0);
		} else {
			dummy_len = SPI1_EXTRA_DUMMIES;
		}
		spi_ll_enable_miso(hw, 1);
		addr_len = SPI1_R_SIO_ADDR_BITSLEN + 1;
		read_cmd = CMD_READ;
	}

	return configure_read_mode(hw, read_cmd, addr_len, dummy_len, byte_cmd);
}

static int read_once(const struct device *dev, void *buffer, uint32_t address, uint32_t read_len)
{
	spi_dev_t *hw = DEV_CFG(dev)->controller;
	int bitlen = spi_flash_ll_get_addr_bitlen(hw);

	spi_flash_ll_set_usr_address(hw, address << (bitlen - 24), bitlen);
	spi_flash_ll_set_miso_bitlen(hw, read_len * 8);
	spi_flash_ll_user_start(hw);

	int rc = flash_esp32_wait_cmd_done(hw);

	if (rc != 0) {
		return rc;
	}

	spi_flash_ll_get_buffer_data(hw, buffer, read_len);
	return 0;
}

static int read_data(const struct device *dev, uint8_t *buffer, uint32_t address, uint32_t length)
{
	int rc = 0;

	rc = set_read_options(dev);

	if (rc == -ENOTSUP) {
		LOG_ERR("configure host io mode failed - unsupported");
		return rc;
	}

	while (rc == 0 && length > 0) {
		uint32_t read_len = MIN(length, SPI_FLASH_HAL_MAX_READ_BYTES);

		rc = read_once(dev, buffer, address, read_len);

		address += read_len;
		length -= read_len;
		buffer += read_len;
	}

	return rc;
}

static int flash_esp32_read(const struct device *dev, off_t address, void *buffer, size_t length)
{
	const struct flash_esp32_dev_config *const cfg = DEV_CFG(dev);
	const spi_flash_guard_funcs_t *guard = spi_flash_guard_get();
	uint32_t chip_size = cfg->chip->chip_size;

	if (length == 0) {
		return 0;
	}

	if (buffer == NULL || address > chip_size || address + length > chip_size) {
		return -EINVAL;
	}

	bool direct_read = points_to_dram(buffer);
	uint8_t *temp_buff = NULL;
	size_t read_chunk = MIN(MAX_READ_CHUNK, length);
	size_t temp_chunk = MAX_READ_CHUNK;
	int rc = 0;

	flash_esp32_sem_take(dev);

	if (!direct_read) {

		unsigned int retries = MAX_BUFF_ALLOC_RETRIES;

		while (temp_buff == NULL && retries--) {
			read_chunk = MIN(read_chunk, temp_chunk);
			temp_chunk >>= 1;
			read_chunk = (read_chunk + 3) & ~3;
			temp_buff = k_malloc(read_chunk);
		}

		LOG_INF("allocate temp buffer: %p (%d)", temp_buff, read_chunk);

		if (temp_buff == NULL) {
			rc = -ENOMEM;
			goto out;
		}
	}

	uint8_t *buff = (uint8_t *)buffer;

	do {
		guard->start();

		uint8_t *read_buff = (temp_buff) ? temp_buff : buffer;
		size_t read_len = MIN(read_chunk, length);

		rc = read_data(dev, read_buff, address, read_len);

		if (rc) {
			guard->end();
			break;
		}

		guard->end();

		if (temp_buff) {
			memcpy(buffer, temp_buff, read_len);
		}

		address += read_len;
		length -= read_len;
		buff += read_len;
		buffer = (void *)buff;
	} while (rc == 0 && length > 0);

	k_free(temp_buff);

out:
	flash_esp32_sem_give(dev);

	return rc;
}

static inline void set_write_options(const struct device *dev)
{
	spi_dev_t *hw = DEV_CFG(dev)->controller;

	spi_flash_ll_set_dummy(hw, 0);
	/* only single line flash write is currently supported */
	spi_flash_ll_set_addr_bitlen(hw, (1 + ESP_ROM_SPIFLASH_W_SIO_ADDR_BITSLEN));
}

static int read_status(const struct device *dev, uint32_t *status)
{
	const struct flash_esp32_dev_config *const cfg = DEV_CFG(dev);
	uint32_t status_value = ESP_ROM_SPIFLASH_BUSY_FLAG;

	if (SPI1_EXTRA_DUMMIES == 0) {
		while (ESP_ROM_SPIFLASH_BUSY_FLAG ==
		       (status_value & ESP_ROM_SPIFLASH_BUSY_FLAG)) {
			WRITE_PERI_REG(PERIPHS_SPI_FLASH_STATUS, 0);
			WRITE_PERI_REG(PERIPHS_SPI_FLASH_CMD, SPI_FLASH_RDSR);

			int rc = flash_esp32_wait_cmd_done(cfg->controller);

			if (rc != 0) {
				return rc;
			}

			status_value = READ_PERI_REG(PERIPHS_SPI_FLASH_STATUS);
			status_value &= cfg->chip->status_mask;
		}
	} else {
		while (ESP_ROM_SPIFLASH_BUSY_FLAG == (status_value & ESP_ROM_SPIFLASH_BUSY_FLAG)) {
			esp_rom_spiflash_read_user_cmd(&status_value, CMD_RDSR);
		}
	}
	*status = status_value;

	return 0;
}

static inline bool host_idle(spi_dev_t *hw)
{
	bool idle = spi_flash_ll_host_idle(hw);

	idle &= spi_flash_ll_host_idle(&SPI0);

	return idle;
}

static int wait_idle(const struct device *dev)
{
	const struct flash_esp32_dev_config *const cfg = DEV_CFG(dev);
	uint32_t status;
	int64_t timeout = k_uptime_get() + SPI_TIMEOUT_MSEC;

	/* wait for spi control ready */
	while (!host_idle(cfg->controller)) {
		if (k_uptime_get() > timeout) {
			return -ETIMEDOUT;
		}
	}

	/* wait for flash status ready */
	if (read_status(dev, &status) != 0) {
		return -EINVAL;
	}
	return 0;
}

static int write_protect(const struct device *dev, bool write_protect)
{
	const struct flash_esp32_dev_config *const cfg = DEV_CFG(dev);
	uint32_t flash_status = 0;

	wait_idle(dev);

	/* enable writing */
	spi_flash_ll_set_write_protect(cfg->controller, write_protect);

	int rc = flash_esp32_wait_cmd_done(cfg->controller);

	if (rc != 0) {
		return rc;
	}

	/* make sure the flash is ready for writing */
	while (ESP_ROM_SPIFLASH_WRENABLE_FLAG != (flash_status & ESP_ROM_SPIFLASH_WRENABLE_FLAG)) {
		read_status(dev, &flash_status);
	}

	return 0;
}

static int program_page(const struct device *dev, uint32_t spi_addr,
			uint32_t *addr_source, int32_t byte_length)
{
	const uint32_t page_size =  DEV_CFG(dev)->chip->page_size;
	spi_dev_t *hw = DEV_CFG(dev)->controller;

	/* check 4byte alignment */
	if ((byte_length & 0x3) != 0) {
		return -EINVAL;
	}

	/* check if write in one page */
	if (page_size < ((spi_addr % page_size) + byte_length)) {
		return -EINVAL;
	}

	wait_idle(dev);

	uint32_t addr;
	uint32_t prog_len;

	while (byte_length > 0) {
		if (write_protect(dev, false) != 0) {
			return -EINVAL;
		}

		addr = spi_addr & ADDRESS_MASK_24BIT;

		if (byte_length >= ESP_ROM_SPIFLASH_BUFF_BYTE_WRITE_NUM) {
			addr |= ESP_ROM_SPIFLASH_BUFF_BYTE_WRITE_NUM << ESP_ROM_SPIFLASH_BYTES_LEN;
			prog_len = (uint32_t)ESP_ROM_SPIFLASH_BUFF_BYTE_WRITE_NUM;
			spi_flash_ll_set_address(hw, addr);
			spi_flash_ll_program_page(hw, addr_source, prog_len);
			byte_length -= ESP_ROM_SPIFLASH_BUFF_BYTE_WRITE_NUM;
			spi_addr += ESP_ROM_SPIFLASH_BUFF_BYTE_WRITE_NUM;
		} else {
			addr |= byte_length << ESP_ROM_SPIFLASH_BYTES_LEN;
			prog_len = (uint32_t)byte_length;
			spi_flash_ll_set_address(hw, addr);
			spi_flash_ll_program_page(hw, addr_source, prog_len);
			byte_length = 0;
		}

		addr_source += (ESP_ROM_SPIFLASH_BUFF_BYTE_WRITE_NUM/4);

		int rc = flash_esp32_wait_cmd_done(hw);

		if (rc != 0) {
			return rc;
		}

		wait_idle(dev);
	}

	return 0;
}

static int flash_esp32_write_inner(const struct device *dev,
			     uint32_t address,
			     const uint32_t *buffer,
			     size_t length)
{

	const uint32_t page_size =  DEV_CFG(dev)->chip->page_size;
	const uint32_t chip_size =  DEV_CFG(dev)->chip->chip_size;
	uint32_t prog_len, prog_num;

	set_write_options(dev);

	/* check program size */
	if ((address + length) > chip_size) {
		return -EINVAL;
	}

	prog_len = page_size - (address % page_size);
	if (length < prog_len) {
		if (program_page(dev, address, (uint32_t *)buffer, length) != 0) {
			return -EINVAL;
		}
	} else {
		if (program_page(dev, address, (uint32_t *)buffer, prog_len) != 0) {
			return -EINVAL;
		}

		/* whole page program */
		prog_num = (length - prog_len) / page_size;
		for (uint8_t i = 0; i < prog_num; ++i) {
			if (program_page(dev, address + prog_len,
					(uint32_t *)buffer + (prog_len >> 2),
					page_size) != 0) {
				return -EINVAL;
			}

			prog_len += page_size;
		}

		/* remain parts to program */
		if (program_page(dev, address + prog_len,
				(uint32_t *)buffer + (prog_len >> 2),
				length - prog_len) != 0) {
			return -EINVAL;
		}
	}

	return 0;
}

static int flash_esp32_write(const struct device *dev,
			     off_t address,
			     const void *buffer,
			     size_t length)
{
	const uint32_t chip_size =  DEV_CFG(dev)->chip->chip_size;
	const spi_flash_guard_funcs_t *guard = spi_flash_guard_get();
	int rc = 0;

	if (address + length > chip_size) {
		return -EINVAL;
	}

	if (length == 0) {
		return 0;
	}

	const uint8_t *srcc = (const uint8_t *) buffer;
	/*
	 * Large operations are split into (up to) 3 parts:
	 * - Left padding: 4 bytes up to the first 4-byte aligned destination offset.
	 * - Middle part
	 * - Right padding: 4 bytes from the last 4-byte aligned offset covered.
	 */
	size_t left_off = address & ~3U;
	size_t left_size = MIN(((address + 3) & ~3U) - address, length);
	size_t mid_off = left_size;
	size_t mid_size = (length - left_size) & ~3U;
	size_t right_off = left_size + mid_size;
	size_t right_size = length - mid_size - left_size;

	flash_esp32_sem_take(dev);

	if (left_size > 0) {
		uint32_t t = 0xffffffff;

		memcpy(((uint8_t *) &t) + (address - left_off), srcc, left_size);
		guard->start();
		rc = flash_esp32_write_inner(dev, left_off, &t, 4);
		guard->end();
		if (rc != 0) {
			goto out;
		}
	}
	if (mid_size > 0) {
		bool direct_write = esp_ptr_internal(srcc)
				&& esp_ptr_byte_accessible(srcc)
				&& ((uintptr_t) srcc + mid_off) % 4 == 0;

		while (mid_size > 0 && rc == 0) {
			uint32_t write_buf[8];
			uint32_t write_size = MIN(mid_size, MAX_WRITE_CHUNK);
			const uint8_t *write_src = srcc + mid_off;

			if (!direct_write) {
				write_size = MIN(write_size, sizeof(write_buf));
				memcpy(write_buf, write_src, write_size);
				write_src = (const uint8_t *)write_buf;
			}
			guard->start();
			rc = flash_esp32_write_inner(dev, address + mid_off,
					(const uint32_t *) write_src, write_size);
			guard->end();
			mid_size -= write_size;
			mid_off += write_size;
		}
		if (rc != 0) {
			goto out;
		}
	}

	if (right_size > 0) {
		uint32_t t = 0xffffffff;

		memcpy(&t, srcc + right_off, right_size);
		guard->start();
		rc = flash_esp32_write_inner(dev, address + right_off, &t, 4);
		guard->end();
	}

out:
	guard->start();
	flash_esp32_flush_cache(address, length);
	guard->end();

	flash_esp32_sem_give(dev);

	return rc;
}

static int erase_sector(const struct device *dev, uint32_t start_addr)
{
	spi_dev_t *hw = DEV_CFG(dev)->controller;
	int rc = write_protect(dev, false);

	if (rc == 0) {
		rc = wait_idle(dev);
	}

	if (rc == 0) {
		spi_flash_ll_set_addr_bitlen(hw, 24);
		spi_flash_ll_set_address(hw, start_addr & ADDRESS_MASK_24BIT);
		spi_flash_ll_erase_sector(hw);

		rc = flash_esp32_wait_cmd_done(hw);
		if (rc) {
			return rc;
		}

		rc = wait_idle(dev);
		if (rc) {
			LOG_ERR("waiting for host device idle state has failed");
		}
	}

	return rc;
}

static int flash_esp32_erase(const struct device *dev, off_t start, size_t len)
{
	uint32_t sector_size = DEV_CFG(dev)->chip->sector_size;
	uint32_t chip_size = DEV_CFG(dev)->chip->chip_size;
	const spi_flash_guard_funcs_t *guard = spi_flash_guard_get();
	int rc = 0;

	if (start % sector_size != 0) {
		return -EINVAL;
	}
	if (len % sector_size != 0) {
		return -EINVAL;
	}
	if (len + start > chip_size) {
		return -EINVAL;
	}

	flash_esp32_sem_take(dev);

	set_write_options(dev);

	while (len >= sector_size) {
		guard->start();

		rc = erase_sector(dev, start);
		if (rc) {
			guard->end();
			goto out;
		}

		start += sector_size;
		len -= sector_size;

		guard->end();
	}

out:
	guard->start();
	flash_esp32_flush_cache(start, len);
	guard->end();

	flash_esp32_sem_give(dev);

	return rc;
}

#if CONFIG_FLASH_PAGE_LAYOUT
static const struct flash_pages_layout flash_esp32_pages_layout = {
	.pages_count = DT_REG_SIZE(SOC_NV_FLASH_NODE) / FLASH_ERASE_BLK_SZ,
	.pages_size = DT_PROP(SOC_NV_FLASH_NODE, erase_block_size),
};

void flash_esp32_page_layout(const struct device *dev,
			     const struct flash_pages_layout **layout,
			     size_t *layout_size)
{
	*layout = &flash_esp32_pages_layout;
	*layout_size = 1;
}
#endif /* CONFIG_FLASH_PAGE_LAYOUT */

static const struct flash_parameters *
flash_esp32_get_parameters(const struct device *dev)
{
	ARG_UNUSED(dev);

	return &flash_esp32_parameters;
}

static int flash_esp32_init(const struct device *dev)
{
	struct flash_esp32_dev_data *const dev_data = DEV_DATA(dev);

	k_sem_init(&dev_data->sem, 1, 1);

	return 0;
}

static const struct flash_driver_api flash_esp32_driver_api = {
	.read = flash_esp32_read,
	.write = flash_esp32_write,
	.erase = flash_esp32_erase,
	.get_parameters = flash_esp32_get_parameters,
#ifdef CONFIG_FLASH_PAGE_LAYOUT
	.page_layout = flash_esp32_page_layout,
#endif
};

static struct flash_esp32_dev_data flash_esp32_data;

static const struct flash_esp32_dev_config flash_esp32_config = {
	.controller = (spi_dev_t *) DT_INST_REG_ADDR(0),
	.chip = &g_rom_flashchip
};

DEVICE_DT_INST_DEFINE(0, flash_esp32_init,
		      NULL,
		      &flash_esp32_data, &flash_esp32_config,
		      POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
		      &flash_esp32_driver_api);