Linux debugging

Check our new training course

Linux debugging, tracing, profiling & perf. analysis

Check our new training course
with Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
/*
 * Copyright (c) 2016 Linaro Limited.
 * Copyright (c) 2019 Song Qiang <songqiang1304521@gmail.com>
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @brief Common part of DMA drivers for stm32.
 * @note  Functions named with stm32_dma_* are SoCs related functions
 *        implemented in dma_stm32_v*.c
 */

#include "dma_stm32.h"

#include <init.h>
#include <drivers/clock_control.h>
#include <drivers/dma/dma_stm32.h>

#include <logging/log.h>
LOG_MODULE_REGISTER(dma_stm32, CONFIG_DMA_LOG_LEVEL);

#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_dma_v1)
#define DT_DRV_COMPAT st_stm32_dma_v1
#elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32_dma_v2)
#define DT_DRV_COMPAT st_stm32_dma_v2
#elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32_dma_v2bis)
#define DT_DRV_COMPAT st_stm32_dma_v2bis
#endif

#if DT_NODE_HAS_STATUS(DT_DRV_INST(0), okay)
#if DT_INST_IRQ_HAS_IDX(0, 7)
#define DMA_STM32_0_STREAM_COUNT 8
#elif DT_INST_IRQ_HAS_IDX(0, 6)
#define DMA_STM32_0_STREAM_COUNT 7
#elif DT_INST_IRQ_HAS_IDX(0, 5)
#define DMA_STM32_0_STREAM_COUNT 6
#else
#define DMA_STM32_0_STREAM_COUNT 5
#endif
#endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(0), okay) */

#if DT_NODE_HAS_STATUS(DT_DRV_INST(1), okay)
#if DT_INST_IRQ_HAS_IDX(1, 7)
#define DMA_STM32_1_STREAM_COUNT 8
#elif DT_INST_IRQ_HAS_IDX(1, 6)
#define DMA_STM32_1_STREAM_COUNT 7
#elif DT_INST_IRQ_HAS_IDX(1, 5)
#define DMA_STM32_1_STREAM_COUNT 6
#else
#define DMA_STM32_1_STREAM_COUNT 5
#endif
#endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(1), okay) */

static uint32_t table_m_size[] = {
	LL_DMA_MDATAALIGN_BYTE,
	LL_DMA_MDATAALIGN_HALFWORD,
	LL_DMA_MDATAALIGN_WORD,
};

static uint32_t table_p_size[] = {
	LL_DMA_PDATAALIGN_BYTE,
	LL_DMA_PDATAALIGN_HALFWORD,
	LL_DMA_PDATAALIGN_WORD,
};

static void dma_stm32_dump_stream_irq(const struct device *dev, uint32_t id)
{
	const struct dma_stm32_config *config = dev->config;
	DMA_TypeDef *dma = (DMA_TypeDef *)(config->base);

	stm32_dma_dump_stream_irq(dma, id);
}

static void dma_stm32_clear_stream_irq(const struct device *dev, uint32_t id)
{
	const struct dma_stm32_config *config = dev->config;
	DMA_TypeDef *dma = (DMA_TypeDef *)(config->base);

	dma_stm32_clear_tc(dma, id);
	dma_stm32_clear_ht(dma, id);
	stm32_dma_clear_stream_irq(dma, id);
}

static void dma_stm32_irq_handler(const struct device *dev, uint32_t id)
{
	const struct dma_stm32_config *config = dev->config;
	DMA_TypeDef *dma = (DMA_TypeDef *)(config->base);
	struct dma_stm32_stream *stream;
	uint32_t callback_arg;

	__ASSERT_NO_MSG(id < config->max_streams);

	stream = &config->streams[id];

#ifdef CONFIG_DMAMUX_STM32
	callback_arg = stream->mux_channel;
#else
	callback_arg = id + STREAM_OFFSET;
#endif /* CONFIG_DMAMUX_STM32 */

	if (!IS_ENABLED(CONFIG_DMAMUX_STM32)) {
		stream->busy = false;
	}

	/* the dma stream id is in range from STREAM_OFFSET..<dma-requests> */
	if (stm32_dma_is_ht_irq_active(dma, id)) {
		/* Let HAL DMA handle flags on its own */
		if (!stream->hal_override) {
			dma_stm32_clear_ht(dma, id);
		}
		stream->dma_callback(dev, stream->user_data, callback_arg, 0);
	} else if (stm32_dma_is_tc_irq_active(dma, id)) {
#ifdef CONFIG_DMAMUX_STM32
		stream->busy = false;
#endif
		/* Let HAL DMA handle flags on its own */
		if (!stream->hal_override) {
			dma_stm32_clear_tc(dma, id);
		}
		stream->dma_callback(dev, stream->user_data, callback_arg, 0);
	} else if (stm32_dma_is_unexpected_irq_happened(dma, id)) {
		LOG_ERR("Unexpected irq happened.");
		stream->dma_callback(dev, stream->user_data,
				     callback_arg, -EIO);
	} else {
		LOG_ERR("Transfer Error.");
		dma_stm32_dump_stream_irq(dev, id);
		dma_stm32_clear_stream_irq(dev, id);
		stream->dma_callback(dev, stream->user_data,
				     callback_arg, -EIO);
	}
}

#ifdef CONFIG_DMA_STM32_SHARED_IRQS

#define HANDLE_IRQS(index)						       \
	static const struct device *dev_##index = DEVICE_DT_INST_GET(index);   \
	const struct dma_stm32_config *cfg_##index = dev_##index->config;      \
	DMA_TypeDef *dma_##index = (DMA_TypeDef *)(cfg_##index->base);	       \
									       \
	for (id = 0; id < cfg_##index->max_streams; ++id) {		       \
		if (stm32_dma_is_irq_active(dma_##index, id)) {		       \
			dma_stm32_irq_handler(dev_##index, id);		       \
		}							       \
	}

static void dma_stm32_shared_irq_handler(const struct device *dev)
{
	ARG_UNUSED(dev);
	uint32_t id = 0;

	DT_INST_FOREACH_STATUS_OKAY(HANDLE_IRQS)
}

#endif /* CONFIG_DMA_STM32_SHARED_IRQS */

static int dma_stm32_get_priority(uint8_t priority, uint32_t *ll_priority)
{
	switch (priority) {
	case 0x0:
		*ll_priority = LL_DMA_PRIORITY_LOW;
		break;
	case 0x1:
		*ll_priority = LL_DMA_PRIORITY_MEDIUM;
		break;
	case 0x2:
		*ll_priority = LL_DMA_PRIORITY_HIGH;
		break;
	case 0x3:
		*ll_priority = LL_DMA_PRIORITY_VERYHIGH;
		break;
	default:
		LOG_ERR("Priority error. %d", priority);
		return -EINVAL;
	}

	return 0;
}

static int dma_stm32_get_direction(enum dma_channel_direction direction,
				   uint32_t *ll_direction)
{
	switch (direction) {
	case MEMORY_TO_MEMORY:
		*ll_direction = LL_DMA_DIRECTION_MEMORY_TO_MEMORY;
		break;
	case MEMORY_TO_PERIPHERAL:
		*ll_direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
		break;
	case PERIPHERAL_TO_MEMORY:
		*ll_direction = LL_DMA_DIRECTION_PERIPH_TO_MEMORY;
		break;
	default:
		LOG_ERR("Direction error. %d", direction);
		return -EINVAL;
	}

	return 0;
}

static int dma_stm32_get_memory_increment(enum dma_addr_adj increment,
					  uint32_t *ll_increment)
{
	switch (increment) {
	case DMA_ADDR_ADJ_INCREMENT:
		*ll_increment = LL_DMA_MEMORY_INCREMENT;
		break;
	case DMA_ADDR_ADJ_NO_CHANGE:
		*ll_increment = LL_DMA_MEMORY_NOINCREMENT;
		break;
	case DMA_ADDR_ADJ_DECREMENT:
		return -ENOTSUP;
	default:
		LOG_ERR("Memory increment error. %d", increment);
		return -EINVAL;
	}

	return 0;
}

static int dma_stm32_get_periph_increment(enum dma_addr_adj increment,
					  uint32_t *ll_increment)
{
	switch (increment) {
	case DMA_ADDR_ADJ_INCREMENT:
		*ll_increment = LL_DMA_PERIPH_INCREMENT;
		break;
	case DMA_ADDR_ADJ_NO_CHANGE:
		*ll_increment = LL_DMA_PERIPH_NOINCREMENT;
		break;
	case DMA_ADDR_ADJ_DECREMENT:
		return -ENOTSUP;
	default:
		LOG_ERR("Periph increment error. %d", increment);
		return -EINVAL;
	}

	return 0;
}

static int dma_stm32_disable_stream(DMA_TypeDef *dma, uint32_t id)
{
	int count = 0;

	for (;;) {
		if (stm32_dma_disable_stream(dma, id) == 0) {
			return 0;
		}
		/* After trying for 5 seconds, give up */
		if (count++ > (5 * 1000)) {
			return -EBUSY;
		}
		k_sleep(K_MSEC(1));
	}

	return 0;
}

DMA_STM32_EXPORT_API int dma_stm32_configure(const struct device *dev,
					     uint32_t id,
					     struct dma_config *config)
{
	const struct dma_stm32_config *dev_config = dev->config;
	struct dma_stm32_stream *stream =
				&dev_config->streams[id - STREAM_OFFSET];
	DMA_TypeDef *dma = (DMA_TypeDef *)dev_config->base;
	LL_DMA_InitTypeDef DMA_InitStruct = {0};
	int ret;

	/* give channel from index 0 */
	id = id - STREAM_OFFSET;

	/* Check potential DMA override */
	if (config->linked_channel == STM32_DMA_HAL_OVERRIDE) {
		/* DMA channel is overridden by HAL DMA
		 * Retain that the channel is busy and proceed to the minimal
		 * configuration to properly route the IRQ
		 */
		stream->busy = true;
		stream->hal_override = true;
		stream->dma_callback = config->dma_callback;
		stream->user_data = config->user_data;
		return 0;
	}

	if (id >= dev_config->max_streams) {
		LOG_ERR("cannot configure the dma stream %d.", id);
		return -EINVAL;
	}

	if (stream->busy) {
		LOG_ERR("dma stream %d is busy.", id);
		return -EBUSY;
	}

	if (dma_stm32_disable_stream(dma, id) != 0) {
		LOG_ERR("could not disable dma stream %d.", id);
		return -EBUSY;
	}

	dma_stm32_clear_stream_irq(dev, id);

	if (config->head_block->block_size > DMA_STM32_MAX_DATA_ITEMS) {
		LOG_ERR("Data size too big: %d\n",
		       config->head_block->block_size);
		return -EINVAL;
	}

#ifdef CONFIG_DMA_STM32_V1
	if ((config->channel_direction == MEMORY_TO_MEMORY) &&
		(!dev_config->support_m2m)) {
		LOG_ERR("Memcopy not supported for device %s",
			dev->name);
		return -ENOTSUP;
	}
#endif /* CONFIG_DMA_STM32_V1 */

	/* support only the same data width for source and dest */
	if ((config->dest_data_size != config->source_data_size)) {
		LOG_ERR("source and dest data size differ.");
		return -EINVAL;
	}

	if (config->source_data_size != 4U &&
	    config->source_data_size != 2U &&
	    config->source_data_size != 1U) {
		LOG_ERR("source and dest unit size error, %d",
			config->source_data_size);
		return -EINVAL;
	}

	/*
	 * STM32's circular mode will auto reset both source address
	 * counter and destination address counter.
	 */
	if (config->head_block->source_reload_en !=
		config->head_block->dest_reload_en) {
		LOG_ERR("source_reload_en and dest_reload_en must "
			"be the same.");
		return -EINVAL;
	}

	stream->busy		= true;
	stream->dma_callback	= config->dma_callback;
	stream->direction	= config->channel_direction;
	stream->user_data       = config->user_data;
	stream->src_size	= config->source_data_size;
	stream->dst_size	= config->dest_data_size;

	/* check dest or source memory address, warn if 0 */
	if ((config->head_block->source_address == 0)) {
		LOG_WRN("source_buffer address is null.");
	}

	if ((config->head_block->dest_address == 0)) {
		LOG_WRN("dest_buffer address is null.");
	}

	if (stream->direction == MEMORY_TO_PERIPHERAL) {
		DMA_InitStruct.MemoryOrM2MDstAddress =
					config->head_block->source_address;
		DMA_InitStruct.PeriphOrM2MSrcAddress =
					config->head_block->dest_address;
	} else {
		DMA_InitStruct.PeriphOrM2MSrcAddress =
					config->head_block->source_address;
		DMA_InitStruct.MemoryOrM2MDstAddress =
					config->head_block->dest_address;
	}

	uint16_t memory_addr_adj = 0, periph_addr_adj = 0;

	ret = dma_stm32_get_priority(config->channel_priority,
				     &DMA_InitStruct.Priority);
	if (ret < 0) {
		return ret;
	}

	ret = dma_stm32_get_direction(config->channel_direction,
				      &DMA_InitStruct.Direction);
	if (ret < 0) {
		return ret;
	}

	switch (config->channel_direction) {
	case MEMORY_TO_MEMORY:
	case PERIPHERAL_TO_MEMORY:
		memory_addr_adj = config->head_block->dest_addr_adj;
		periph_addr_adj = config->head_block->source_addr_adj;
		break;
	case MEMORY_TO_PERIPHERAL:
		memory_addr_adj = config->head_block->source_addr_adj;
		periph_addr_adj = config->head_block->dest_addr_adj;
		break;
	/* Direction has been asserted in dma_stm32_get_direction. */
	default:
		LOG_ERR("Channel direction error (%d).",
				config->channel_direction);
		return -EINVAL;
	}

	ret = dma_stm32_get_memory_increment(memory_addr_adj,
					&DMA_InitStruct.MemoryOrM2MDstIncMode);
	if (ret < 0) {
		return ret;
	}
	ret = dma_stm32_get_periph_increment(periph_addr_adj,
					&DMA_InitStruct.PeriphOrM2MSrcIncMode);
	if (ret < 0) {
		return ret;
	}

	if (config->head_block->source_reload_en) {
		DMA_InitStruct.Mode = LL_DMA_MODE_CIRCULAR;
	} else {
		DMA_InitStruct.Mode = LL_DMA_MODE_NORMAL;
	}

	stream->source_periph = (stream->direction == PERIPHERAL_TO_MEMORY);

	/* set the data width, when source_data_size equals dest_data_size */
	int index = find_lsb_set(config->source_data_size) - 1;
	DMA_InitStruct.PeriphOrM2MSrcDataSize = table_p_size[index];
	index = find_lsb_set(config->dest_data_size) - 1;
	DMA_InitStruct.MemoryOrM2MDstDataSize = table_m_size[index];

#if defined(CONFIG_DMA_STM32_V1)
	DMA_InitStruct.MemBurst = stm32_dma_get_mburst(config,
						       stream->source_periph);
	DMA_InitStruct.PeriphBurst = stm32_dma_get_pburst(config,
							stream->source_periph);

#if !defined(CONFIG_SOC_SERIES_STM32H7X)
	if (config->channel_direction != MEMORY_TO_MEMORY) {
		if (config->dma_slot >= 8) {
			LOG_ERR("dma slot error.");
			return -EINVAL;
		}
	} else {
		if (config->dma_slot >= 8) {
			LOG_ERR("dma slot is too big, using 0 as default.");
			config->dma_slot = 0;
		}
	}

	DMA_InitStruct.Channel = dma_stm32_slot_to_channel(config->dma_slot);
#endif

	DMA_InitStruct.FIFOThreshold = stm32_dma_get_fifo_threshold(
					config->head_block->fifo_mode_control);

	if (stm32_dma_check_fifo_mburst(&DMA_InitStruct)) {
		DMA_InitStruct.FIFOMode = LL_DMA_FIFOMODE_ENABLE;
	} else {
		DMA_InitStruct.FIFOMode = LL_DMA_FIFOMODE_DISABLE;
	}
#endif
	if (stream->source_periph) {
		DMA_InitStruct.NbData = config->head_block->block_size /
					config->source_data_size;
	} else {
		DMA_InitStruct.NbData = config->head_block->block_size /
					config->dest_data_size;
	}

#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_dma_v2) || DT_HAS_COMPAT_STATUS_OKAY(st_stm32_dmamux)
	/*
	 * the with dma V2 and dma mux,
	 * the request ID is stored in the dma_slot
	 */
	DMA_InitStruct.PeriphRequest = config->dma_slot;
#endif
	LL_DMA_Init(dma, dma_stm32_id_to_stream(id), &DMA_InitStruct);

	LL_DMA_EnableIT_TC(dma, dma_stm32_id_to_stream(id));

	/* Enable Half-Transfer irq if circular mode is enabled */
	if (config->head_block->source_reload_en) {
		LL_DMA_EnableIT_HT(dma, dma_stm32_id_to_stream(id));
	}

#if defined(CONFIG_DMA_STM32_V1)
	if (DMA_InitStruct.FIFOMode == LL_DMA_FIFOMODE_ENABLE) {
		LL_DMA_EnableFifoMode(dma, dma_stm32_id_to_stream(id));
		LL_DMA_EnableIT_FE(dma, dma_stm32_id_to_stream(id));
	} else {
		LL_DMA_DisableFifoMode(dma, dma_stm32_id_to_stream(id));
		LL_DMA_DisableIT_FE(dma, dma_stm32_id_to_stream(id));
	}
#endif
	return ret;
}

DMA_STM32_EXPORT_API int dma_stm32_reload(const struct device *dev, uint32_t id,
					  uint32_t src, uint32_t dst,
					  size_t size)
{
	const struct dma_stm32_config *config = dev->config;
	DMA_TypeDef *dma = (DMA_TypeDef *)(config->base);
	struct dma_stm32_stream *stream;

	/* give channel from index 0 */
	id = id - STREAM_OFFSET;

	if (id >= config->max_streams) {
		return -EINVAL;
	}

	stream = &config->streams[id];

	if (dma_stm32_disable_stream(dma, id) != 0) {
		return -EBUSY;
	}

	switch (stream->direction) {
	case MEMORY_TO_PERIPHERAL:
		LL_DMA_SetMemoryAddress(dma, dma_stm32_id_to_stream(id), src);
		LL_DMA_SetPeriphAddress(dma, dma_stm32_id_to_stream(id), dst);
		break;
	case MEMORY_TO_MEMORY:
	case PERIPHERAL_TO_MEMORY:
		LL_DMA_SetPeriphAddress(dma, dma_stm32_id_to_stream(id), src);
		LL_DMA_SetMemoryAddress(dma, dma_stm32_id_to_stream(id), dst);
		break;
	default:
		return -EINVAL;
	}

	if (stream->source_periph) {
		LL_DMA_SetDataLength(dma, dma_stm32_id_to_stream(id),
				     size / stream->src_size);
	} else {
		LL_DMA_SetDataLength(dma, dma_stm32_id_to_stream(id),
				     size / stream->dst_size);
	}

	stm32_dma_enable_stream(dma, id);

	return 0;
}

DMA_STM32_EXPORT_API int dma_stm32_start(const struct device *dev, uint32_t id)
{
	const struct dma_stm32_config *config = dev->config;
	DMA_TypeDef *dma = (DMA_TypeDef *)(config->base);

	/* give channel from index 0 */
	id = id - STREAM_OFFSET;

	/* Only M2P or M2M mode can be started manually. */
	if (id >= config->max_streams) {
		return -EINVAL;
	}

	dma_stm32_clear_stream_irq(dev, id);

	stm32_dma_enable_stream(dma, id);

	return 0;
}

DMA_STM32_EXPORT_API int dma_stm32_stop(const struct device *dev, uint32_t id)
{
	const struct dma_stm32_config *config = dev->config;
	struct dma_stm32_stream *stream = &config->streams[id - STREAM_OFFSET];
	DMA_TypeDef *dma = (DMA_TypeDef *)(config->base);

	/* give channel from index 0 */
	id = id - STREAM_OFFSET;

	if (id >= config->max_streams) {
		return -EINVAL;
	}

#if !defined(CONFIG_DMAMUX_STM32) || defined(CONFIG_SOC_SERIES_STM32H7X)
	LL_DMA_DisableIT_TC(dma, dma_stm32_id_to_stream(id));
#endif /* CONFIG_DMAMUX_STM32 */

#if defined(CONFIG_DMA_STM32_V1)
	stm32_dma_disable_fifo_irq(dma, id);
#endif
	dma_stm32_disable_stream(dma, id);
	dma_stm32_clear_stream_irq(dev, id);

	/* Finally, flag stream as free */
	stream->busy = false;

	return 0;
}

static int dma_stm32_init(const struct device *dev)
{
	const struct dma_stm32_config *config = dev->config;
	const struct device *clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);

	if (clock_control_on(clk,
		(clock_control_subsys_t *) &config->pclken) != 0) {
		LOG_ERR("clock op failed\n");
		return -EIO;
	}

	config->config_irq(dev);

	for (uint32_t i = 0; i < config->max_streams; i++) {
		config->streams[i].busy = false;
#ifdef CONFIG_DMAMUX_STM32
		/* each further stream->mux_channel is fixed here */
		config->streams[i].mux_channel = i + config->offset;
#endif /* CONFIG_DMAMUX_STM32 */
	}

	((struct dma_stm32_data *)dev->data)->dma_ctx.magic = 0;
	((struct dma_stm32_data *)dev->data)->dma_ctx.dma_channels = 0;
	((struct dma_stm32_data *)dev->data)->dma_ctx.atomic = 0;

	return 0;
}

DMA_STM32_EXPORT_API int dma_stm32_get_status(const struct device *dev,
				uint32_t id, struct dma_status *stat)
{
	const struct dma_stm32_config *config = dev->config;
	DMA_TypeDef *dma = (DMA_TypeDef *)(config->base);
	struct dma_stm32_stream *stream;

	/* give channel from index 0 */
	id = id - STREAM_OFFSET;
	if (id >= config->max_streams) {
		return -EINVAL;
	}

	stream = &config->streams[id];
	stat->pending_length = LL_DMA_GetDataLength(dma, dma_stm32_id_to_stream(id));
	stat->dir = stream->direction;
	stat->busy = stream->busy;

	return 0;
}

static const struct dma_driver_api dma_funcs = {
	.reload		 = dma_stm32_reload,
	.config		 = dma_stm32_configure,
	.start		 = dma_stm32_start,
	.stop		 = dma_stm32_stop,
	.get_status	 = dma_stm32_get_status,
};

#ifdef CONFIG_DMAMUX_STM32
#define DMA_STM32_OFFSET_INIT(index)			\
	.offset = DT_INST_PROP(index, dma_offset),
#else
#define DMA_STM32_OFFSET_INIT(index)
#endif /* CONFIG_DMAMUX_STM32 */

#ifdef CONFIG_DMA_STM32_V1
#define DMA_STM32_MEM2MEM_INIT(index)					\
	.support_m2m = DT_INST_PROP(index, st_mem2mem),
#else
#define DMA_STM32_MEM2MEM_INIT(index)
#endif /* CONFIG_DMA_STM32_V1 */					\

#define DMA_STM32_INIT_DEV(index)					\
static struct dma_stm32_stream						\
	dma_stm32_streams_##index[DMA_STM32_##index##_STREAM_COUNT];	\
									\
const struct dma_stm32_config dma_stm32_config_##index = {		\
	.pclken = { .bus = DT_INST_CLOCKS_CELL(index, bus),		\
		    .enr = DT_INST_CLOCKS_CELL(index, bits) },		\
	.config_irq = dma_stm32_config_irq_##index,			\
	.base = DT_INST_REG_ADDR(index),				\
	DMA_STM32_MEM2MEM_INIT(index)					\
	.max_streams = DMA_STM32_##index##_STREAM_COUNT,		\
	.streams = dma_stm32_streams_##index,				\
	DMA_STM32_OFFSET_INIT(index)					\
};									\
									\
static struct dma_stm32_data dma_stm32_data_##index = {			\
};									\
									\
DEVICE_DT_INST_DEFINE(index,						\
		    &dma_stm32_init,					\
		    NULL,						\
		    &dma_stm32_data_##index, &dma_stm32_config_##index,	\
		    PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT,	\
		    &dma_funcs)

#ifdef CONFIG_DMA_STM32_SHARED_IRQS

#define DMA_STM32_DEFINE_IRQ_HANDLER(dma, chan) /* nothing */

#define DMA_STM32_IRQ_CONNECT(dma, chan)				\
	do {								\
		IRQ_CONNECT(DT_INST_IRQ_BY_IDX(dma, chan, irq),		\
			    DT_INST_IRQ_BY_IDX(dma, chan, priority),	\
			    dma_stm32_shared_irq_handler,		\
			    DEVICE_DT_INST_GET(dma), 0);		\
		irq_enable(DT_INST_IRQ_BY_IDX(dma, chan, irq));		\
	} while (0)


#else /* CONFIG_DMA_STM32_SHARED_IRQS */

#define DMA_STM32_DEFINE_IRQ_HANDLER(dma, chan)				\
static void dma_stm32_irq_##dma##_##chan(const struct device *dev)	\
{									\
	dma_stm32_irq_handler(dev, chan);				\
}


#define DMA_STM32_IRQ_CONNECT(dma, chan)				\
	do {								\
		IRQ_CONNECT(DT_INST_IRQ_BY_IDX(dma, chan, irq),		\
			    DT_INST_IRQ_BY_IDX(dma, chan, priority),	\
			    dma_stm32_irq_##dma##_##chan,		\
			    DEVICE_DT_INST_GET(dma), 0);		\
		irq_enable(DT_INST_IRQ_BY_IDX(dma, chan, irq));		\
	} while (0)

#endif /* CONFIG_DMA_STM32_SHARED_IRQS */


#if DT_NODE_HAS_STATUS(DT_DRV_INST(0), okay)

DMA_STM32_DEFINE_IRQ_HANDLER(0, 0);
DMA_STM32_DEFINE_IRQ_HANDLER(0, 1);
DMA_STM32_DEFINE_IRQ_HANDLER(0, 2);
DMA_STM32_DEFINE_IRQ_HANDLER(0, 3);
DMA_STM32_DEFINE_IRQ_HANDLER(0, 4);
#if DT_INST_IRQ_HAS_IDX(0, 5)
DMA_STM32_DEFINE_IRQ_HANDLER(0, 5);
#if DT_INST_IRQ_HAS_IDX(0, 6)
DMA_STM32_DEFINE_IRQ_HANDLER(0, 6);
#if DT_INST_IRQ_HAS_IDX(0, 7)
DMA_STM32_DEFINE_IRQ_HANDLER(0, 7);
#endif /* DT_INST_IRQ_HAS_IDX(0, 5) */
#endif /* DT_INST_IRQ_HAS_IDX(0, 6) */
#endif /* DT_INST_IRQ_HAS_IDX(0, 7) */

static void dma_stm32_config_irq_0(const struct device *dev)
{
	ARG_UNUSED(dev);

	DMA_STM32_IRQ_CONNECT(0, 0);
	DMA_STM32_IRQ_CONNECT(0, 1);
#ifndef CONFIG_DMA_STM32_SHARED_IRQS
	DMA_STM32_IRQ_CONNECT(0, 2);
#endif /* CONFIG_DMA_STM32_SHARED_IRQS */
	DMA_STM32_IRQ_CONNECT(0, 3);
#ifndef CONFIG_DMA_STM32_SHARED_IRQS
	DMA_STM32_IRQ_CONNECT(0, 4);
#if DT_INST_IRQ_HAS_IDX(0, 5)
	DMA_STM32_IRQ_CONNECT(0, 5);
#if DT_INST_IRQ_HAS_IDX(0, 6)
	DMA_STM32_IRQ_CONNECT(0, 6);
#if DT_INST_IRQ_HAS_IDX(0, 7)
	DMA_STM32_IRQ_CONNECT(0, 7);
#endif /* DT_INST_IRQ_HAS_IDX(0, 5) */
#endif /* DT_INST_IRQ_HAS_IDX(0, 6) */
#endif /* DT_INST_IRQ_HAS_IDX(0, 7) */
#endif /* CONFIG_DMA_STM32_SHARED_IRQS */
/* Either 5 or 6 or 7 or 8 channels for DMA across all stm32 series. */
}

DMA_STM32_INIT_DEV(0);

#endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(0), okay) */


#if DT_NODE_HAS_STATUS(DT_DRV_INST(1), okay)

DMA_STM32_DEFINE_IRQ_HANDLER(1, 0);
DMA_STM32_DEFINE_IRQ_HANDLER(1, 1);
DMA_STM32_DEFINE_IRQ_HANDLER(1, 2);
DMA_STM32_DEFINE_IRQ_HANDLER(1, 3);
DMA_STM32_DEFINE_IRQ_HANDLER(1, 4);
#if DT_INST_IRQ_HAS_IDX(1, 5)
DMA_STM32_DEFINE_IRQ_HANDLER(1, 5);
#if DT_INST_IRQ_HAS_IDX(1, 6)
DMA_STM32_DEFINE_IRQ_HANDLER(1, 6);
#if DT_INST_IRQ_HAS_IDX(1, 7)
DMA_STM32_DEFINE_IRQ_HANDLER(1, 7);
#endif /* DT_INST_IRQ_HAS_IDX(1, 5) */
#endif /* DT_INST_IRQ_HAS_IDX(1, 6) */
#endif /* DT_INST_IRQ_HAS_IDX(1, 7) */

static void dma_stm32_config_irq_1(const struct device *dev)
{
	ARG_UNUSED(dev);

#ifndef CONFIG_DMA_STM32_SHARED_IRQS
	DMA_STM32_IRQ_CONNECT(1, 0);
	DMA_STM32_IRQ_CONNECT(1, 1);
	DMA_STM32_IRQ_CONNECT(1, 2);
	DMA_STM32_IRQ_CONNECT(1, 3);
	DMA_STM32_IRQ_CONNECT(1, 4);
#if DT_INST_IRQ_HAS_IDX(1, 5)
	DMA_STM32_IRQ_CONNECT(1, 5);
#if DT_INST_IRQ_HAS_IDX(1, 6)
	DMA_STM32_IRQ_CONNECT(1, 6);
#if DT_INST_IRQ_HAS_IDX(1, 7)
	DMA_STM32_IRQ_CONNECT(1, 7);
#endif /* DT_INST_IRQ_HAS_IDX(1, 5) */
#endif /* DT_INST_IRQ_HAS_IDX(1, 6) */
#endif /* DT_INST_IRQ_HAS_IDX(1, 7) */
#endif /* CONFIG_DMA_STM32_SHARED_IRQS */
/*
 * Either 5 or 6 or 7 or 8 channels for DMA across all stm32 series.
 * STM32F0 and STM32G0: if dma2 exits, the channel interrupts overlap with dma1
 */
}

DMA_STM32_INIT_DEV(1);

#endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(1), okay) */