Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
/*
 * Copyright (c) 2019-2020 Peter Bigot Consulting, LLC
 * Copyright (c) 2021 Laird Connectivity
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT microchip_mcp7940n

#include <device.h>
#include <drivers/counter.h>
#include <drivers/gpio.h>
#include <drivers/i2c.h>
#include <drivers/rtc/mcp7940n.h>
#include <kernel.h>
#include <logging/log.h>
#include <sys/timeutil.h>
#include <sys/util.h>
#include <time.h>

LOG_MODULE_REGISTER(MCP7940N, CONFIG_COUNTER_LOG_LEVEL);

/* Alarm channels */
#define ALARM0_ID			0
#define ALARM1_ID			1

/* Size of block when writing whole struct */
#define RTC_TIME_REGISTERS_SIZE		sizeof(struct mcp7940n_time_registers)
#define RTC_ALARM_REGISTERS_SIZE	sizeof(struct mcp7940n_alarm_registers)

/* Largest block size */
#define MAX_WRITE_SIZE                  (RTC_TIME_REGISTERS_SIZE)

/* tm struct uses years since 1900 but unix time uses years since
 * 1970. MCP7940N default year is '1' so the offset is 69
 */
#define UNIX_YEAR_OFFSET		69

/* Macro used to decode BCD to UNIX time to avoid potential copy and paste
 * errors.
 */
#define RTC_BCD_DECODE(reg_prefix) (reg_prefix##_one + reg_prefix##_ten * 10)

struct mcp7940n_config {
	struct counter_config_info generic;
	const struct device *i2c_dev;
	const struct gpio_dt_spec int_gpios;
	uint8_t addr;
};

struct mcp7940n_data {
	const struct device *mcp7940n;
	struct k_sem lock;
	struct mcp7940n_time_registers registers;
	struct mcp7940n_alarm_registers alm0_registers;
	struct mcp7940n_alarm_registers alm1_registers;

	struct k_work alarm_work;
	struct gpio_callback int_callback;

	counter_alarm_callback_t counter_handler[2];
	uint32_t counter_ticks[2];
	void *alarm_user_data[2];

	bool int_active_high;
};

/** @brief Convert bcd time in device registers to UNIX time
 *
 * @param dev the MCP7940N device pointer.
 *
 * @retval returns unix time.
 */
static time_t decode_rtc(const struct device *dev)
{
	struct mcp7940n_data *data = dev->data;
	time_t time_unix = 0;
	struct tm time = { 0 };

	time.tm_sec = RTC_BCD_DECODE(data->registers.rtc_sec.sec);
	time.tm_min = RTC_BCD_DECODE(data->registers.rtc_min.min);
	time.tm_hour = RTC_BCD_DECODE(data->registers.rtc_hours.hr);
	time.tm_mday = RTC_BCD_DECODE(data->registers.rtc_date.date);
	time.tm_wday = data->registers.rtc_weekday.weekday;
	/* tm struct starts months at 0, mcp7940n starts at 1 */
	time.tm_mon = RTC_BCD_DECODE(data->registers.rtc_month.month) - 1;
	/* tm struct uses years since 1900 but unix time uses years since 1970 */
	time.tm_year = RTC_BCD_DECODE(data->registers.rtc_year.year) +
		UNIX_YEAR_OFFSET;

	time_unix = timeutil_timegm(&time);

	LOG_DBG("Unix time is %d\n", (uint32_t)time_unix);

	return time_unix;
}

/** @brief Encode time struct tm into mcp7940n rtc registers
 *
 * @param dev the MCP7940N device pointer.
 * @param time_buffer tm struct containing time to be encoded into mcp7940n
 * registers.
 *
 * @retval return 0 on success, or a negative error code from invalid
 * parameter.
 */
static int encode_rtc(const struct device *dev, struct tm *time_buffer)
{
	struct mcp7940n_data *data = dev->data;
	uint8_t month;
	uint8_t year_since_epoch;

	/* In a tm struct, months start at 0, mcp7940n starts with 1 */
	month = time_buffer->tm_mon + 1;

	if (time_buffer->tm_year < UNIX_YEAR_OFFSET) {
		return -EINVAL;
	}
	year_since_epoch = time_buffer->tm_year - UNIX_YEAR_OFFSET;

	/* Set external oscillator configuration bit */
	data->registers.rtc_sec.start_osc = 1;

	data->registers.rtc_sec.sec_one = time_buffer->tm_sec % 10;
	data->registers.rtc_sec.sec_ten = time_buffer->tm_sec / 10;
	data->registers.rtc_min.min_one = time_buffer->tm_min % 10;
	data->registers.rtc_min.min_ten = time_buffer->tm_min / 10;
	data->registers.rtc_hours.hr_one = time_buffer->tm_hour % 10;
	data->registers.rtc_hours.hr_ten = time_buffer->tm_hour / 10;
	data->registers.rtc_weekday.weekday = time_buffer->tm_wday;
	data->registers.rtc_date.date_one = time_buffer->tm_mday % 10;
	data->registers.rtc_date.date_ten = time_buffer->tm_mday / 10;
	data->registers.rtc_month.month_one = month % 10;
	data->registers.rtc_month.month_ten = month / 10;
	data->registers.rtc_year.year_one = year_since_epoch % 10;
	data->registers.rtc_year.year_ten = year_since_epoch / 10;

	return 0;
}

/** @brief Encode time struct tm into mcp7940n alarm registers
 *
 * @param dev the MCP7940N device pointer.
 * @param time_buffer tm struct containing time to be encoded into mcp7940n
 * registers.
 * @param alarm_id alarm ID, can be 0 or 1 for MCP7940N.
 *
 * @retval return 0 on success, or a negative error code from invalid
 * parameter.
 */
static int encode_alarm(const struct device *dev, struct tm *time_buffer, uint8_t alarm_id)
{
	struct mcp7940n_data *data = dev->data;
	uint8_t month;
	struct mcp7940n_alarm_registers *alm_regs;

	if (alarm_id == ALARM0_ID) {
		alm_regs = &data->alm0_registers;
	} else if (alarm_id == ALARM1_ID) {
		alm_regs = &data->alm1_registers;
	} else {
		return -EINVAL;
	}
	/* In a tm struct, months start at 0 */
	month = time_buffer->tm_mon + 1;

	alm_regs->alm_sec.sec_one = time_buffer->tm_sec % 10;
	alm_regs->alm_sec.sec_ten = time_buffer->tm_sec / 10;
	alm_regs->alm_min.min_one = time_buffer->tm_min % 10;
	alm_regs->alm_min.min_ten = time_buffer->tm_min / 10;
	alm_regs->alm_hours.hr_one = time_buffer->tm_hour % 10;
	alm_regs->alm_hours.hr_ten = time_buffer->tm_hour / 10;
	alm_regs->alm_weekday.weekday = time_buffer->tm_wday;
	alm_regs->alm_date.date_one = time_buffer->tm_mday % 10;
	alm_regs->alm_date.date_ten = time_buffer->tm_mday / 10;
	alm_regs->alm_month.month_one = month % 10;
	alm_regs->alm_month.month_ten = month / 10;

	return 0;
}

/** @brief Reads single register from MCP7940N
 *
 * @param dev the MCP7940N device pointer.
 * @param addr register address.
 * @param val pointer to uint8_t that will contain register value if
 * successful.
 *
 * @retval return 0 on success, or a negative error code from an I2C
 * transaction.
 */
static int read_register(const struct device *dev, uint8_t addr, uint8_t *val)
{
	const struct mcp7940n_config *cfg = dev->config;

	int rc = i2c_write_read(cfg->i2c_dev, cfg->addr,
				&addr, sizeof(addr),
				val, 1);

	return rc;
}

/** @brief Read registers from device and populate mcp7940n_registers struct
 *
 * @param dev the MCP7940N device pointer.
 * @param unix_time pointer to time_t value that will contain unix time if
 * sucessful.
 *
 * @retval return 0 on success, or a negative error code from an I2C
 * transaction.
 */
static int read_time(const struct device *dev, time_t *unix_time)
{
	struct mcp7940n_data *data = dev->data;
	const struct mcp7940n_config *cfg = dev->config;
	uint8_t addr = REG_RTC_SEC;

	int rc = i2c_write_read(cfg->i2c_dev, cfg->addr,
				&addr, sizeof(addr),
				&data->registers, RTC_TIME_REGISTERS_SIZE);

	if (rc >= 0) {
		*unix_time = decode_rtc(dev);
	}

	return rc;
}

/** @brief Write a single register to MCP7940N
 *
 * @param dev the MCP7940N device pointer.
 * @param addr register address.
 * @param value Value that will be written to the register.
 *
 * @retval return 0 on success, or a negative error code from an I2C
 * transaction or invalid parameter.
 */
static int write_register(const struct device *dev, enum mcp7940n_register addr, uint8_t value)
{
	const struct mcp7940n_config *cfg = dev->config;
	int rc = 0;

	uint8_t time_data[2] = {addr, value};

	rc = i2c_write(cfg->i2c_dev, time_data, sizeof(time_data), cfg->addr);

	return rc;
}

/** @brief Write a full time struct to MCP7940N registers.
 *
 * @param dev the MCP7940N device pointer.
 * @param addr first register address to write to, should be REG_RTC_SEC,
 * REG_ALM0_SEC or REG_ALM0_SEC.
 * @param size size of data struct that will be written.
 *
 * @retval return 0 on success, or a negative error code from an I2C
 * transaction or invalid parameter.
 */
static int write_data_block(const struct device *dev, enum mcp7940n_register addr, uint8_t size)
{
	struct mcp7940n_data *data = dev->data;
	const struct mcp7940n_config *cfg = dev->config;
	int rc = 0;
	uint8_t time_data[MAX_WRITE_SIZE + 1];
	uint8_t *write_block_start;

	if (size > MAX_WRITE_SIZE) {
		return -EINVAL;
	}

	if (addr >= REG_INVAL) {
		return -EINVAL;
	}

	if (addr == REG_RTC_SEC) {
		write_block_start = (uint8_t *)&data->registers;
	} else if (addr == REG_ALM0_SEC) {
		write_block_start = (uint8_t *)&data->alm0_registers;
	} else if (addr == REG_ALM1_SEC) {
		write_block_start = (uint8_t *)&data->alm1_registers;
	} else {
		return -EINVAL;
	}

	/* Load register address into first byte then fill in data values */
	time_data[0] = addr;
	memcpy(&time_data[1], write_block_start, size);

	rc = i2c_write(cfg->i2c_dev, time_data, size + 1, cfg->addr);

	return rc;
}

/** @brief Sets the correct weekday.
 *
 * If the time is never set then the device defaults to 1st January 1970
 * but with the wrong weekday set. This function ensures the weekday is
 * correct in this case.
 *
 * @param dev the MCP7940N device pointer.
 * @param unix_time pointer to unix time that will be used to work out the weekday
 *
 * @retval return 0 on success, or a negative error code from an I2C
 * transaction or invalid parameter.
 */
static int set_day_of_week(const struct device *dev, time_t *unix_time)
{
	struct mcp7940n_data *data = dev->data;
	struct tm time_buffer = { 0 };
	int rc = 0;

	gmtime_r(unix_time, &time_buffer);

	if (time_buffer.tm_wday != 0) {
		data->registers.rtc_weekday.weekday = time_buffer.tm_wday;
		rc = write_register(dev, REG_RTC_WDAY,
			*((uint8_t *)(&data->registers.rtc_weekday)));
	} else {
		rc = -EINVAL;
	}

	return rc;
}

/** @brief Checks the interrupt pending flag (IF) of a given alarm.
 *
 * A callback is fired if an IRQ is pending.
 *
 * @param dev the MCP7940N device pointer.
 * @param alarm_id ID of alarm, can be 0 or 1 for MCP7940N.
 */
static void mcp7940n_handle_interrupt(const struct device *dev, uint8_t alarm_id)
{
	struct mcp7940n_data *data = dev->data;
	uint8_t alarm_reg_address;
	struct mcp7940n_alarm_registers *alm_regs;
	counter_alarm_callback_t cb;
	uint32_t ticks = 0;
	bool fire_callback = false;

	if (alarm_id == ALARM0_ID) {
		alarm_reg_address = REG_ALM0_WDAY;
		alm_regs = &data->alm0_registers;
	} else if (alarm_id == ALARM1_ID) {
		alarm_reg_address = REG_ALM1_WDAY;
		alm_regs = &data->alm1_registers;
	} else {
		return;
	}

	k_sem_take(&data->lock, K_FOREVER);

	/* Check if this alarm has a pending interrupt */
	read_register(dev, alarm_reg_address, (uint8_t *)&alm_regs->alm_weekday);

	if (alm_regs->alm_weekday.alm_if) {
		/* Clear interrupt */
		alm_regs->alm_weekday.alm_if = 0;
		write_register(dev, alarm_reg_address,
			*((uint8_t *)(&alm_regs->alm_weekday)));

		/* Fire callback */
		if (data->counter_handler[alarm_id]) {
			cb = data->counter_handler[alarm_id];
			ticks = data->counter_ticks[alarm_id];
			fire_callback = true;
		}
	}

	k_sem_give(&data->lock);

	if (fire_callback) {
		cb(data->mcp7940n, 0, ticks, data->alarm_user_data[alarm_id]);
	}
}

static void mcp7940n_work_handler(struct k_work *work)
{
	struct mcp7940n_data *data =
		CONTAINER_OF(work, struct mcp7940n_data, alarm_work);

	/* Check interrupt flags for both alarms */
	mcp7940n_handle_interrupt(data->mcp7940n, ALARM0_ID);
	mcp7940n_handle_interrupt(data->mcp7940n, ALARM1_ID);
}

static void mcp7940n_init_cb(const struct device *dev,
				 struct gpio_callback *gpio_cb, uint32_t pins)
{
	struct mcp7940n_data *data =
		CONTAINER_OF(gpio_cb, struct mcp7940n_data, int_callback);

	ARG_UNUSED(pins);

	k_work_submit(&data->alarm_work);
}

int mcp7940n_rtc_set_time(const struct device *dev, time_t unix_time)
{
	struct mcp7940n_data *data = dev->data;
	struct tm time_buffer = { 0 };
	int rc = 0;

	if (unix_time > UINT32_MAX) {
		LOG_ERR("Unix time must be 32-bit");
		return -EINVAL;
	}

	k_sem_take(&data->lock, K_FOREVER);

	/* Convert unix_time to civil time */
	gmtime_r(&unix_time, &time_buffer);
	LOG_DBG("Desired time is %d-%d-%d %d:%d:%d\n", (time_buffer.tm_year + 1900),
		(time_buffer.tm_mon + 1), time_buffer.tm_mday, time_buffer.tm_hour,
		time_buffer.tm_min, time_buffer.tm_sec);

	/* Encode time */
	rc = encode_rtc(dev, &time_buffer);
	if (rc < 0) {
		goto out;
	}

	/* Write to device */
	rc = write_data_block(dev, REG_RTC_SEC, RTC_TIME_REGISTERS_SIZE);

out:
	k_sem_give(&data->lock);

	return rc;
}

static int mcp7940n_counter_start(const struct device *dev)
{
	struct mcp7940n_data *data = dev->data;
	int rc = 0;

	k_sem_take(&data->lock, K_FOREVER);

	/* Set start oscillator configuration bit */
	data->registers.rtc_sec.start_osc = 1;
	rc = write_register(dev, REG_RTC_SEC,
		*((uint8_t *)(&data->registers.rtc_sec)));

	k_sem_give(&data->lock);

	return rc;
}

static int mcp7940n_counter_stop(const struct device *dev)
{
	struct mcp7940n_data *data = dev->data;
	int rc = 0;

	k_sem_take(&data->lock, K_FOREVER);

	/* Clear start oscillator configuration bit */
	data->registers.rtc_sec.start_osc = 0;
	rc = write_register(dev, REG_RTC_SEC,
		*((uint8_t *)(&data->registers.rtc_sec)));

	k_sem_give(&data->lock);

	return rc;
}

static int mcp7940n_counter_get_value(const struct device *dev,
				      uint32_t *ticks)
{
	struct mcp7940n_data *data = dev->data;
	time_t unix_time;
	int rc;

	k_sem_take(&data->lock, K_FOREVER);

	/* Get time */
	rc = read_time(dev, &unix_time);

	/* Convert time to ticks */
	if (rc >= 0) {
		*ticks = unix_time;
	}

	k_sem_give(&data->lock);

	return rc;
}

static int mcp7940n_counter_set_alarm(const struct device *dev, uint8_t alarm_id,
				      const struct counter_alarm_cfg *alarm_cfg)
{
	struct mcp7940n_data *data = dev->data;
	uint32_t seconds_until_alarm;
	time_t current_time;
	time_t alarm_time;
	struct tm time_buffer = { 0 };
	uint8_t alarm_base_address;
	struct mcp7940n_alarm_registers *alm_regs;
	int rc = 0;

	k_sem_take(&data->lock, K_FOREVER);

	if (alarm_id == ALARM0_ID) {
		alarm_base_address = REG_ALM0_SEC;
		alm_regs = &data->alm0_registers;
	} else if (alarm_id == ALARM1_ID) {
		alarm_base_address = REG_ALM1_SEC;
		alm_regs = &data->alm1_registers;
	} else {
		rc = -EINVAL;
		goto out;
	}

	/* Convert ticks to time */
	seconds_until_alarm = alarm_cfg->ticks;

	/* Get current time and add alarm offset */
	rc = read_time(dev, &current_time);
	if (rc < 0) {
		goto out;
	}

	alarm_time = current_time + seconds_until_alarm;
	gmtime_r(&alarm_time, &time_buffer);

	/* Set alarm trigger mask and alarm enable flag */
	if (alarm_id == ALARM0_ID) {
		data->registers.rtc_control.alm0_en = 1;
	} else if (alarm_id == ALARM1_ID) {
		data->registers.rtc_control.alm1_en = 1;
	}

	/* Set alarm to match with second, minute, hour, day of week, day of
	 * month and month
	 */
	alm_regs->alm_weekday.alm_msk = MCP7940N_ALARM_TRIGGER_ALL;

	/* Write time to alarm registers */
	encode_alarm(dev, &time_buffer, alarm_id);
	rc = write_data_block(dev, alarm_base_address, RTC_ALARM_REGISTERS_SIZE);
	if (rc < 0) {
		goto out;
	}

	/* Enable alarm */
	rc = write_register(dev, REG_RTC_CONTROL,
		*((uint8_t *)(&data->registers.rtc_control)));
	if (rc < 0) {
		goto out;
	}

	/* Config user data and callback */
	data->counter_handler[alarm_id] = alarm_cfg->callback;
	data->counter_ticks[alarm_id] = current_time;
	data->alarm_user_data[alarm_id] = alarm_cfg->user_data;

out:
	k_sem_give(&data->lock);

	return rc;
}

static int mcp7940n_counter_cancel_alarm(const struct device *dev, uint8_t alarm_id)
{
	struct mcp7940n_data *data = dev->data;
	int rc = 0;

	k_sem_take(&data->lock, K_FOREVER);

	/* Clear alarm enable bit */
	if (alarm_id == ALARM0_ID) {
		data->registers.rtc_control.alm0_en = 0;
	} else if (alarm_id == ALARM1_ID) {
		data->registers.rtc_control.alm1_en = 0;
	} else {
		rc = -EINVAL;
		goto out;
	}

	rc = write_register(dev, REG_RTC_CONTROL,
		*((uint8_t *)(&data->registers.rtc_control)));

out:
	k_sem_give(&data->lock);

	return rc;
}

static int mcp7940n_counter_set_top_value(const struct device *dev,
					  const struct counter_top_cfg *cfg)
{
	return -ENOTSUP;
}

/* This function can be used to poll the alarm interrupt flags if the MCU is
 * not connected to the MC7940N MFP pin. It can also be used to check if an
 * alarm was triggered while the MCU was in reset. This function will clear
 * the interrupt flag
 *
 * Return bitmask of alarm interrupt flag (IF) where each IF is shifted by
 * the alarm ID.
 */
static uint32_t mcp7940n_counter_get_pending_int(const struct device *dev)
{
	struct mcp7940n_data *data = dev->data;
	uint32_t interrupt_pending = 0;
	int rc;

	k_sem_take(&data->lock, K_FOREVER);

	/* Check interrupt flag for alarm 0 */
	rc = read_register(dev, REG_ALM0_WDAY,
		(uint8_t *)&data->alm0_registers.alm_weekday);
	if (rc < 0) {
		goto out;
	}

	if (data->alm0_registers.alm_weekday.alm_if) {
		/* Clear interrupt */
		data->alm0_registers.alm_weekday.alm_if = 0;
		rc = write_register(dev, REG_ALM0_WDAY,
			*((uint8_t *)(&data->alm0_registers.alm_weekday)));
		if (rc < 0) {
			goto out;
		}
		interrupt_pending |= (1 << ALARM0_ID);
	}

	/* Check interrupt flag for alarm 1 */
	rc = read_register(dev, REG_ALM1_WDAY,
		(uint8_t *)&data->alm1_registers.alm_weekday);
	if (rc < 0) {
		goto out;
	}

	if (data->alm1_registers.alm_weekday.alm_if) {
		/* Clear interrupt */
		data->alm1_registers.alm_weekday.alm_if = 0;
		rc = write_register(dev, REG_ALM1_WDAY,
			*((uint8_t *)(&data->alm1_registers.alm_weekday)));
		if (rc < 0) {
			goto out;
		}
		interrupt_pending |= (1 << ALARM1_ID);
	}

out:
	k_sem_give(&data->lock);

	if (rc) {
		interrupt_pending = 0;
	}
	return (interrupt_pending);
}

static uint32_t mcp7940n_counter_get_top_value(const struct device *dev)
{
	return UINT32_MAX;
}

static int mcp7940n_init(const struct device *dev)
{
	struct mcp7940n_data *data = dev->data;
	const struct mcp7940n_config *cfg = dev->config;
	int rc = 0;
	time_t unix_time = 0;

	/* Initialize and take the lock */
	k_sem_init(&data->lock, 0, 1);

	if (!device_is_ready(cfg->i2c_dev)) {
		LOG_ERR("I2C device %s is not ready", cfg->i2c_dev->name);
		rc = -ENODEV;
		goto out;
	}

	rc = read_time(dev, &unix_time);
	if (rc < 0) {
		goto out;
	}

	rc = set_day_of_week(dev, &unix_time);
	if (rc < 0) {
		goto out;
	}

	/* Set 24-hour time */
	data->registers.rtc_hours.twelve_hr = false;
	rc = write_register(dev, REG_RTC_HOUR,
		*((uint8_t *)(&data->registers.rtc_hours)));
	if (rc < 0) {
		goto out;
	}

	/* Configure alarm interrupt gpio */
	if (cfg->int_gpios.port != NULL) {

		if (!device_is_ready(cfg->int_gpios.port)) {
			LOG_ERR("Port device %s is not ready",
				cfg->int_gpios.port->name);
			rc = -ENODEV;
			goto out;
		}

		data->mcp7940n = dev;
		k_work_init(&data->alarm_work, mcp7940n_work_handler);

		gpio_pin_configure_dt(&cfg->int_gpios, GPIO_INPUT);

		gpio_pin_interrupt_configure_dt(&cfg->int_gpios,
						GPIO_INT_EDGE_TO_ACTIVE);

		gpio_init_callback(&data->int_callback, mcp7940n_init_cb,
				   BIT(cfg->int_gpios.pin));

		gpio_add_callback(cfg->int_gpios.port, &data->int_callback);

		/* Configure interrupt polarity */
		if ((cfg->int_gpios.dt_flags & GPIO_ACTIVE_LOW) == GPIO_ACTIVE_LOW) {
			data->int_active_high = false;
		} else {
			data->int_active_high = true;
		}
		data->alm0_registers.alm_weekday.alm_pol = data->int_active_high;
		data->alm1_registers.alm_weekday.alm_pol = data->int_active_high;
		rc = write_register(dev, REG_ALM0_WDAY,
				    *((uint8_t *)(&data->alm0_registers.alm_weekday)));
		rc = write_register(dev, REG_ALM1_WDAY,
				    *((uint8_t *)(&data->alm1_registers.alm_weekday)));
	}
out:
	k_sem_give(&data->lock);

	return rc;
}

static const struct counter_driver_api mcp7940n_api = {
	.start = mcp7940n_counter_start,
	.stop = mcp7940n_counter_stop,
	.get_value = mcp7940n_counter_get_value,
	.set_alarm = mcp7940n_counter_set_alarm,
	.cancel_alarm = mcp7940n_counter_cancel_alarm,
	.set_top_value = mcp7940n_counter_set_top_value,
	.get_pending_int = mcp7940n_counter_get_pending_int,
	.get_top_value = mcp7940n_counter_get_top_value,
};

#define INST_DT_MCP7904N(index)                                                         \
											\
	static struct mcp7940n_data mcp7940n_data_##index;				\
											\
	static const struct mcp7940n_config mcp7940n_config_##index = {			\
		.generic = {								\
			.max_top_value = UINT32_MAX,					\
			.freq = 1,							\
			.flags = COUNTER_CONFIG_INFO_COUNT_UP,				\
			.channels = 2,							\
		},									\
		.i2c_dev = DEVICE_DT_GET(DT_INST_BUS(index)),				\
		.addr = DT_INST_REG_ADDR(index),					\
		.int_gpios =  GPIO_DT_SPEC_GET_OR(DT_DRV_INST(index), int_gpios, {0}),	\
	};										\
											\
	DEVICE_DT_INST_DEFINE(index, mcp7940n_init, NULL,				\
		    &mcp7940n_data_##index,						\
		    &mcp7940n_config_##index,						\
		    POST_KERNEL,							\
		    CONFIG_COUNTER_MICROCHIP_MCP7940N_INIT_PRIORITY,			\
		    &mcp7940n_api);

DT_INST_FOREACH_STATUS_OKAY(INST_DT_MCP7904N);