Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
/*
 * Copyright (c) 2019 Derek Hageman <hageman@inthat.cloud>
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT atmel_sam0_adc

#include <soc.h>
#include <drivers/adc.h>

#include <logging/log.h>
LOG_MODULE_REGISTER(adc_sam0, CONFIG_ADC_LOG_LEVEL);

#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"

#if defined(CONFIG_SOC_SERIES_SAMD21) || defined(CONFIG_SOC_SERIES_SAMR21) || \
	defined(CONFIG_SOC_SERIES_SAMD20)
/*
 * SAMD21 Manual 33.6.2.1: The first conversion after changing the reference
 * is invalid, so we have to discard it.
 */
#define ADC_SAM0_REFERENCE_GLITCH 1
#endif

struct adc_sam0_data {
	struct adc_context ctx;
	const struct device *dev;

	uint16_t *buffer;

	/*
	 * Saved initial start, so we can reset the advances we've done
	 * if required
	 */
	uint16_t *repeat_buffer;

#ifdef ADC_SAM0_REFERENCE_GLITCH
	uint8_t reference_changed;
#endif
};

struct adc_sam0_cfg {
	Adc *regs;

#ifdef MCLK
	uint32_t mclk_mask;
	uint32_t gclk_mask;
	uint16_t gclk_id;
#else
	uint32_t gclk;
#endif

	uint32_t freq;
	uint16_t prescaler;

	void (*config_func)(const struct device *dev);
};

#define DEV_CFG(dev) \
	((const struct adc_sam0_cfg *const)(dev)->config)
#define DEV_DATA(dev) \
	((struct adc_sam0_data *)(dev)->data)

static void wait_synchronization(Adc *const adc)
{
#if defined(ADC_SYNCBUSY_MASK)
	while ((adc->SYNCBUSY.reg & ADC_SYNCBUSY_MASK) != 0) {
	}
#else
	while ((adc->STATUS.reg & ADC_STATUS_SYNCBUSY) != 0) {
	}
#endif
}

static int adc_sam0_acquisition_to_clocks(const struct device *dev,
					  uint16_t acquisition_time)
{
	const struct adc_sam0_cfg *const cfg = DEV_CFG(dev);
	uint64_t scaled_acq;

	switch (ADC_ACQ_TIME_UNIT(acquisition_time)) {
	case ADC_ACQ_TIME_TICKS:
		if (ADC_ACQ_TIME_VALUE(acquisition_time) > 64U) {
			return -EINVAL;
		}

		return (int)ADC_ACQ_TIME_VALUE(acquisition_time) - 1;
	case ADC_ACQ_TIME_MICROSECONDS:
		scaled_acq = (uint64_t)ADC_ACQ_TIME_VALUE(acquisition_time) *
			     1000000U;
		break;
	case ADC_ACQ_TIME_NANOSECONDS:
		scaled_acq = (uint64_t)ADC_ACQ_TIME_VALUE(acquisition_time) *
			     1000U;
		break;
	default:
		return -EINVAL;
	}

	/*
	 * sample_time = (sample_length+1) * (clk_adc / 2)
	 * sample_length = sample_time * (2/clk_adc) - 1,
	 */

	scaled_acq *= 2U;
	scaled_acq += cfg->freq / 2U;
	scaled_acq /= cfg->freq;
	if (scaled_acq <= 1U) {
		return 0;
	}

	scaled_acq -= 1U;
	if (scaled_acq >= 64U) {
		return -EINVAL;
	}

	return (int)scaled_acq;
}

static int adc_sam0_channel_setup(const struct device *dev,
				  const struct adc_channel_cfg *channel_cfg)
{
	const struct adc_sam0_cfg *const cfg = DEV_CFG(dev);
	Adc *const adc = cfg->regs;
	int retval;
	uint8_t SAMPCTRL = 0;

	if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
		retval = adc_sam0_acquisition_to_clocks(dev,
							channel_cfg->acquisition_time);
		if (retval < 0) {
			LOG_ERR("Selected ADC acquisition time is not valid");
			return retval;
		}

		SAMPCTRL |= ADC_SAMPCTRL_SAMPLEN(retval);
	}

	adc->SAMPCTRL.reg = SAMPCTRL;
	wait_synchronization(adc);


	uint8_t REFCTRL;

	switch (channel_cfg->reference) {
	case ADC_REF_INTERNAL:
#ifdef ADC_REFCTRL_REFSEL_INTREF
		REFCTRL = ADC_REFCTRL_REFSEL_INTREF | ADC_REFCTRL_REFCOMP;
		/* Enable the internal reference, defaulting to 1V */
		SUPC->VREF.bit.VREFOE = 1;
#else
		REFCTRL = ADC_REFCTRL_REFSEL_INT1V | ADC_REFCTRL_REFCOMP;
		/* Enable the internal bandgap reference */
		SYSCTRL->VREF.bit.BGOUTEN = 1;
#endif
		break;
	case ADC_REF_VDD_1_2:
#ifdef ADC_REFCTRL_REFSEL_INTVCC0
		REFCTRL = ADC_REFCTRL_REFSEL_INTVCC0 | ADC_REFCTRL_REFCOMP;
#else
		REFCTRL = ADC_REFCTRL_REFSEL_INTVCC1 | ADC_REFCTRL_REFCOMP;
#endif
		break;
#ifdef ADC_REFCTRL_REFSEL_INTVCC1
	case ADC_REF_VDD_1:
		REFCTRL = ADC_REFCTRL_REFSEL_INTVCC1 | ADC_REFCTRL_REFCOMP;
		break;
#endif
	case ADC_REF_EXTERNAL0:
		REFCTRL = ADC_REFCTRL_REFSEL_AREFA;
		break;
	case ADC_REF_EXTERNAL1:
		REFCTRL = ADC_REFCTRL_REFSEL_AREFB;
		break;
	default:
		LOG_ERR("Selected reference is not valid");
		return -EINVAL;
	}
	if (adc->REFCTRL.reg != REFCTRL) {
		adc->REFCTRL.reg = REFCTRL;
		wait_synchronization(adc);
#ifdef ADC_SAM0_REFERENCE_GLITCH
		struct adc_sam0_data *data = DEV_DATA(dev);

		data->reference_changed = 1;
#endif
	}


	uint32_t INPUTCTRL = 0;

	switch (channel_cfg->gain) {
	case ADC_GAIN_1:
#ifdef ADC_INPUTCTRL_GAIN_1X
		INPUTCTRL = ADC_INPUTCTRL_GAIN_1X;
#endif
		break;
#ifdef ADC_INPUTCTRL_GAIN_DIV2
	case ADC_GAIN_1_2:
		INPUTCTRL = ADC_INPUTCTRL_GAIN_DIV2;
		break;
#endif
#ifdef ADC_INPUTCTRL_GAIN_2X
	case ADC_GAIN_2:
		INPUTCTRL = ADC_INPUTCTRL_GAIN_2X;
		break;
#endif
#ifdef ADC_INPUTCTRL_GAIN_4X
	case ADC_GAIN_4:
		INPUTCTRL = ADC_INPUTCTRL_GAIN_4X;
		break;
#endif
#ifdef ADC_INPUTCTRL_GAIN_8X
	case ADC_GAIN_8:
		INPUTCTRL = ADC_INPUTCTRL_GAIN_8X;
		break;
#endif
#ifdef ADC_INPUTCTRL_GAIN_16X
	case ADC_GAIN_16:
		INPUTCTRL = ADC_INPUTCTRL_GAIN_16X;
		break;
#endif
	default:
		LOG_ERR("Selected ADC gain is not valid");
		return -EINVAL;
	}

	INPUTCTRL |= ADC_INPUTCTRL_MUXPOS(channel_cfg->input_positive);
	if (channel_cfg->differential) {
		INPUTCTRL |= ADC_INPUTCTRL_MUXNEG(channel_cfg->input_negative);

#ifdef ADC_INPUTCTRL_DIFFMODE
		INPUTCTRL |= ADC_INPUTCTRL_DIFFMODE;
#else
		adc->CTRLB.bit.DIFFMODE = 1;
		wait_synchronization(adc);
#endif
	} else {
		INPUTCTRL |= ADC_INPUTCTRL_MUXNEG_GND;

#ifndef ADC_INPUTCTRL_DIFFMODE
		adc->CTRLB.bit.DIFFMODE = 0;
		wait_synchronization(adc);
#endif
	}

	adc->INPUTCTRL.reg = INPUTCTRL;
	wait_synchronization(adc);

	/* Enable references if they're selected */
	switch (channel_cfg->input_positive) {
#ifdef ADC_INPUTCTRL_MUXPOS_TEMP_Val
	case ADC_INPUTCTRL_MUXPOS_TEMP_Val:
		SYSCTRL->VREF.bit.TSEN = 1;
		break;
#endif
#ifdef ADC_INPUTCTRL_MUXPOS_PTAT_Val
	case ADC_INPUTCTRL_MUXPOS_PTAT_Val:
		SUPC->VREF.bit.TSEN = 1;
		break;
#endif
#ifdef ADC_INPUTCTRL_MUXPOS_CTAT_Val
	case ADC_INPUTCTRL_MUXPOS_CTAT_Val:
		SUPC->VREF.bit.TSEN = 1;
		break;
#endif
	case ADC_INPUTCTRL_MUXPOS_BANDGAP_Val:
#ifdef ADC_REFCTRL_REFSEL_INTREF
		SUPC->VREF.bit.VREFOE = 1;
#else
		SYSCTRL->VREF.bit.BGOUTEN = 1;
#endif
		break;
	default:
		break;
	}


	return 0;
}

static void adc_sam0_start_conversion(const struct device *dev)
{
	const struct adc_sam0_cfg *const cfg = DEV_CFG(dev);
	Adc *const adc = cfg->regs;

	LOG_DBG("Starting conversion");

	adc->SWTRIG.reg = ADC_SWTRIG_START;
	/*
	 * Should be safe to not synchronize here because the only things
	 * that might access the ADC after this will wait for it to complete
	 * (synchronize finished implicitly)
	 */
}

static void adc_context_start_sampling(struct adc_context *ctx)
{
	struct adc_sam0_data *data =
		CONTAINER_OF(ctx, struct adc_sam0_data, ctx);

	adc_sam0_start_conversion(data->dev);
}

static void adc_context_update_buffer_pointer(struct adc_context *ctx,
					      bool repeat_sampling)
{
	struct adc_sam0_data *data =
		CONTAINER_OF(ctx, struct adc_sam0_data, ctx);

	if (repeat_sampling) {
		data->buffer = data->repeat_buffer;
	}
}

static int check_buffer_size(const struct adc_sequence *sequence,
			     uint8_t active_channels)
{
	size_t needed_buffer_size;

	needed_buffer_size = active_channels * sizeof(uint16_t);
	if (sequence->options) {
		needed_buffer_size *= (1U + sequence->options->extra_samplings);
	}

	if (sequence->buffer_size < needed_buffer_size) {
		LOG_ERR("Provided buffer is too small (%u/%u)",
			sequence->buffer_size, needed_buffer_size);
		return -ENOMEM;
	}
	return 0;
}

static int start_read(const struct device *dev,
		      const struct adc_sequence *sequence)
{
	const struct adc_sam0_cfg *const cfg = DEV_CFG(dev);
	struct adc_sam0_data *data = DEV_DATA(dev);
	Adc *const adc = cfg->regs;
	int error;

	if (sequence->oversampling > 10U) {
		LOG_ERR("Invalid oversampling");
		return -EINVAL;
	}

	adc->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM(sequence->oversampling);
	/* AVGCTRL is not synchronized */

#ifdef CONFIG_SOC_SERIES_SAMD20
	/*
	 * Errata: silicon revisions B and C do not perform the automatic right
	 * shifts in accumulation
	 */
	if (sequence->oversampling > 4U && DSU->DID.bit.REVISION < 3) {
		adc->AVGCTRL.bit.ADJRES = sequence->oversampling - 4U;
	}
#endif

	switch (sequence->resolution) {
	case 8:
		if (sequence->oversampling) {
			LOG_ERR("Oversampling requires 12 bit resolution");
			return -EINVAL;
		}

		adc->CTRLB.bit.RESSEL = ADC_CTRLB_RESSEL_8BIT_Val;
		break;
	case 10:
		if (sequence->oversampling) {
			LOG_ERR("Oversampling requires 12 bit resolution");
			return -EINVAL;
		}

		adc->CTRLB.bit.RESSEL = ADC_CTRLB_RESSEL_10BIT_Val;
		break;
	case 12:
		if (sequence->oversampling) {
			adc->CTRLB.bit.RESSEL = ADC_CTRLB_RESSEL_16BIT_Val;
		} else {
			adc->CTRLB.bit.RESSEL = ADC_CTRLB_RESSEL_12BIT_Val;
		}

		break;
	default:
		LOG_ERR("ADC resolution value %d is not valid",
			sequence->resolution);
		return -EINVAL;
	}

	wait_synchronization(adc);

	if (sequence->channels != 1U) {
		LOG_ERR("Channel scanning is not supported");
		return -ENOTSUP;
	}

	error = check_buffer_size(sequence, 1);
	if (error) {
		return error;
	}

	data->buffer = sequence->buffer;
	data->repeat_buffer = sequence->buffer;

	/* At this point we allow the scheduler to do other things while
	 * we wait for the conversions to complete. This is provided by the
	 * adc_context functions. However, the caller of this function is
	 * blocked until the results are in.
	 */
	adc_context_start_read(&data->ctx, sequence);

	error = adc_context_wait_for_completion(&data->ctx);
	return error;
}

static int adc_sam0_read(const struct device *dev,
			 const struct adc_sequence *sequence)
{
	struct adc_sam0_data *data = DEV_DATA(dev);
	int error;

	adc_context_lock(&data->ctx, false, NULL);
	error = start_read(dev, sequence);
	adc_context_release(&data->ctx, error);

	return error;
}

static void adc_sam0_isr(const struct device *dev)
{
	struct adc_sam0_data *data = DEV_DATA(dev);
	const struct adc_sam0_cfg *const cfg = DEV_CFG(dev);
	Adc *const adc = cfg->regs;
	uint16_t result;

	adc->INTFLAG.reg = ADC_INTFLAG_MASK;

	result = (uint16_t)(adc->RESULT.reg);

#ifdef ADC_SAM0_REFERENCE_GLITCH
	if (data->reference_changed) {
		data->reference_changed = 0;
		LOG_DBG("Discarded initial conversion due to reference change");

		adc_sam0_start_conversion(dev);
		return;
	}
#endif

	*data->buffer++ = result;
	adc_context_on_sampling_done(&data->ctx, dev);
}

static int adc_sam0_init(const struct device *dev)
{
	const struct adc_sam0_cfg *const cfg = DEV_CFG(dev);
	struct adc_sam0_data *data = DEV_DATA(dev);
	Adc *const adc = cfg->regs;

#ifdef MCLK
	GCLK->PCHCTRL[cfg->gclk_id].reg = cfg->gclk_mask | GCLK_PCHCTRL_CHEN;

	MCLK->APBDMASK.reg |= cfg->mclk_mask;
#else
	PM->APBCMASK.bit.ADC_ = 1;

	GCLK->CLKCTRL.reg = cfg->gclk | GCLK_CLKCTRL_CLKEN;
#endif

#ifdef ADC_CTRLA_PRESCALER_Pos
	adc->CTRLA.reg = cfg->prescaler;
#else
	adc->CTRLB.reg = cfg->prescaler;
#endif
	wait_synchronization(adc);

	adc->INTENCLR.reg = ADC_INTENCLR_MASK;
	adc->INTFLAG.reg = ADC_INTFLAG_MASK;

	cfg->config_func(dev);

	adc->INTENSET.reg = ADC_INTENSET_RESRDY;

	data->dev = dev;
#ifdef ADC_SAM0_REFERENCE_GLITCH
	data->reference_changed = 1;
#endif

	adc->CTRLA.bit.ENABLE = 1;
	wait_synchronization(adc);

	adc_context_unlock_unconditionally(&data->ctx);

	return 0;
}

#ifdef CONFIG_ADC_ASYNC
static int adc_sam0_read_async(const struct device *dev,
			       const struct adc_sequence *sequence,
			       struct k_poll_signal *async)
{
	struct adc_sam0_data *data = DEV_DATA(dev);
	int error;

	adc_context_lock(&data->ctx, true, async);
	error = start_read(dev, sequence);
	adc_context_release(&data->ctx, error);

	return error;
}
#endif

static const struct adc_driver_api adc_sam0_api = {
	.channel_setup = adc_sam0_channel_setup,
	.read = adc_sam0_read,
#ifdef CONFIG_ADC_ASYNC
	.read_async = adc_sam0_read_async,
#endif
};


#ifdef MCLK

#define ADC_SAM0_CLOCK_CONTROL(n)					\
	.mclk_mask = BIT(DT_INST_CLOCKS_CELL_BY_NAME(n, mclk, bit)),	\
	.gclk_mask = UTIL_CAT(GCLK_PCHCTRL_GEN_GCLK,			\
			      DT_INST_PROP(n, gclk)),			\
	.gclk_id = DT_INST_CLOCKS_CELL_BY_NAME(n, gclk, periph_ch),	\
	.prescaler = UTIL_CAT(ADC_CTRLA_PRESCALER_DIV,			\
			      DT_INST_PROP(n, prescaler)),

#define ADC_SAM0_BIASCOMP_SHIFT(n)					\
	(ADC0_FUSES_BIASCOMP_Pos + DT_INST_PROP(n, calib_offset))
#define ADC_SAM0_BIASCOMP(n)						\
	(((*(uint32_t *)NVMCTRL_SW0) >> ADC_SAM0_BIASCOMP_SHIFT(n)) & 0x7)

#define ADC_SAM0_BIASR2R_SHIFT(n)					\
	(ADC0_FUSES_BIASR2R_Pos + DT_INST_PROP(n, calib_offset))
#define ADC_SAM0_BIASR2R(n)						\
	(((*(uint32_t *)NVMCTRL_SW0) >> ADC_SAM0_BIASR2R_SHIFT(n)) & 0x7)

#define ADC_SAM0_BIASREFBUF_SHIFT(n)					\
	(ADC0_FUSES_BIASREFBUF_Pos + DT_INST_PROP(n, calib_offset))
#define ADC_SAM0_BIASREFBUF(n)						\
	(((*(uint32_t *)NVMCTRL_SW0) >> ADC_SAM0_BIASREFBUF_SHIFT(n)) & 0x7)

#define ADC_SAM0_CONFIGURE(n)						\
do {									\
	const struct adc_sam0_cfg *const cfg = DEV_CFG(dev);		\
	Adc * const adc = cfg->regs;					\
	uint32_t comp = ADC_SAM0_BIASCOMP(n);				\
	uint32_t r2r = ADC_SAM0_BIASR2R(n);				\
	uint32_t rbuf = ADC_SAM0_BIASREFBUF(n);				\
	adc->CALIB.reg = ADC_CALIB_BIASCOMP(comp) |			\
			 ADC_CALIB_BIASR2R(r2r) |			\
			 ADC_CALIB_BIASREFBUF(rbuf);			\
} while (0)

#else

#define ADC_SAM0_CLOCK_CONTROL(n)					\
	.gclk = UTIL_CAT(GCLK_CLKCTRL_GEN_GCLK,	DT_INST_PROP(n, gclk)) |\
			 GCLK_CLKCTRL_ID_ADC,				\
	.prescaler = UTIL_CAT(ADC_CTRLB_PRESCALER_DIV,			\
			      DT_INST_PROP(n, prescaler)),		\

#define ADC_SAM0_CONFIGURE(n)						\
do {									\
	const struct adc_sam0_cfg *const cfg = DEV_CFG(dev);		\
	Adc * const adc = cfg->regs;					\
	/* Linearity is split across two words */			\
	uint32_t lin = ((*(uint32_t *)ADC_FUSES_LINEARITY_0_ADDR) &		\
		     ADC_FUSES_LINEARITY_0_Msk) >>			\
		     ADC_FUSES_LINEARITY_0_Pos;				\
	lin |= (((*(uint32_t *)ADC_FUSES_LINEARITY_1_ADDR) &		\
		 ADC_FUSES_LINEARITY_1_Msk) >>				\
		 ADC_FUSES_LINEARITY_1_Pos) << 4;			\
	uint32_t bias = ((*(uint32_t *)ADC_FUSES_BIASCAL_ADDR) &		\
		      ADC_FUSES_BIASCAL_Msk) >> ADC_FUSES_BIASCAL_Pos;	\
	adc->CALIB.reg = ADC_CALIB_BIAS_CAL(bias) |			\
			 ADC_CALIB_LINEARITY_CAL(lin);			\
} while (0)

#endif

#define ADC_SAM0_DEVICE(n)						\
	static void adc_sam0_config_##n(const struct device *dev);	\
	static const struct adc_sam0_cfg adc_sam_cfg_##n = {		\
		.regs = (Adc *)DT_INST_REG_ADDR(n),			\
		ADC_SAM0_CLOCK_CONTROL(n)				\
		.freq = UTIL_CAT(UTIL_CAT(SOC_ATMEL_SAM0_GCLK,		\
					  DT_INST_PROP(n, gclk)),	\
					  _FREQ_HZ) /			\
			DT_INST_PROP(n, prescaler),			\
		.config_func = &adc_sam0_config_##n,			\
	};								\
	static struct adc_sam0_data adc_sam_data_##n = {		\
		ADC_CONTEXT_INIT_TIMER(adc_sam_data_##n, ctx),		\
		ADC_CONTEXT_INIT_LOCK(adc_sam_data_##n, ctx),		\
		ADC_CONTEXT_INIT_SYNC(adc_sam_data_##n, ctx),		\
	};								\
	DEVICE_DT_INST_DEFINE(n, adc_sam0_init, NULL,			\
			    &adc_sam_data_##n,				\
			    &adc_sam_cfg_##n, POST_KERNEL,		\
			    CONFIG_KERNEL_INIT_PRIORITY_DEVICE,		\
			    &adc_sam0_api);				\
	static void adc_sam0_config_##n(const struct device *dev)	\
	{								\
		IRQ_CONNECT(DT_INST_IRQN(n),				\
			    DT_INST_IRQ(n, priority),			\
			    adc_sam0_isr,				\
			    DEVICE_DT_INST_GET(n), 0);			\
		irq_enable(DT_INST_IRQN(n));				\
		ADC_SAM0_CONFIGURE(n);					\
	}

DT_INST_FOREACH_STATUS_OKAY(ADC_SAM0_DEVICE)