Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
/*
 * Copyright (c) 2016-2017 Nordic Semiconductor ASA
 * Copyright (c) 2018 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <soc.h>
#include <drivers/clock_control.h>
#include <drivers/clock_control/nrf_clock_control.h>
#include <drivers/timer/system_timer.h>
#include <drivers/timer/nrf_rtc_timer.h>
#include <sys_clock.h>
#include <hal/nrf_rtc.h>
#include <spinlock.h>


#define EXT_CHAN_COUNT CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT
#define CHAN_COUNT (EXT_CHAN_COUNT + 1)

#define RTC NRF_RTC1
#define RTC_IRQn NRFX_IRQ_NUMBER_GET(RTC)
#define RTC_LABEL rtc1
#define RTC_CH_COUNT RTC1_CC_NUM

BUILD_ASSERT(CHAN_COUNT <= RTC_CH_COUNT, "Not enough compare channels");

#define COUNTER_SPAN BIT(24)
#define COUNTER_MAX (COUNTER_SPAN - 1U)
#define COUNTER_HALF_SPAN (COUNTER_SPAN / 2U)
#define CYC_PER_TICK (sys_clock_hw_cycles_per_sec()	\
		      / CONFIG_SYS_CLOCK_TICKS_PER_SEC)
#define MAX_TICKS ((COUNTER_HALF_SPAN - CYC_PER_TICK) / CYC_PER_TICK)
#define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK)

static struct k_spinlock lock;

static uint32_t last_count;

struct z_nrf_rtc_timer_chan_data {
	z_nrf_rtc_timer_compare_handler_t callback;
	void *user_context;
};

static struct z_nrf_rtc_timer_chan_data cc_data[CHAN_COUNT];
static atomic_t int_mask;
static atomic_t alloc_mask;

static uint32_t counter_sub(uint32_t a, uint32_t b)
{
	return (a - b) & COUNTER_MAX;
}

static void set_comparator(uint32_t chan, uint32_t cyc)
{
	nrf_rtc_cc_set(RTC, chan, cyc & COUNTER_MAX);
}

static uint32_t get_comparator(uint32_t chan)
{
	return nrf_rtc_cc_get(RTC, chan);
}

static void event_clear(uint32_t chan)
{
	nrf_rtc_event_clear(RTC, RTC_CHANNEL_EVENT_ADDR(chan));
}

static void event_enable(uint32_t chan)
{
	nrf_rtc_event_enable(RTC, RTC_CHANNEL_INT_MASK(chan));
}

static void event_disable(uint32_t chan)
{
	nrf_rtc_event_disable(RTC, RTC_CHANNEL_INT_MASK(chan));
}

static uint32_t counter(void)
{
	return nrf_rtc_counter_get(RTC);
}

uint32_t z_nrf_rtc_timer_read(void)
{
	return nrf_rtc_counter_get(RTC);
}

uint32_t z_nrf_rtc_timer_compare_evt_address_get(uint32_t chan)
{
	__ASSERT_NO_MSG(chan < CHAN_COUNT);
	return nrf_rtc_event_address_get(RTC, nrf_rtc_compare_event_get(chan));
}

bool z_nrf_rtc_timer_compare_int_lock(uint32_t chan)
{
	__ASSERT_NO_MSG(chan && chan < CHAN_COUNT);

	atomic_val_t prev = atomic_and(&int_mask, ~BIT(chan));

	nrf_rtc_int_disable(RTC, RTC_CHANNEL_INT_MASK(chan));

	return prev & BIT(chan);
}

void z_nrf_rtc_timer_compare_int_unlock(uint32_t chan, bool key)
{
	__ASSERT_NO_MSG(chan && chan < CHAN_COUNT);

	if (key) {
		atomic_or(&int_mask, BIT(chan));
		nrf_rtc_int_enable(RTC, RTC_CHANNEL_INT_MASK(chan));
	}
}

uint32_t z_nrf_rtc_timer_compare_read(uint32_t chan)
{
	__ASSERT_NO_MSG(chan < CHAN_COUNT);

	return nrf_rtc_cc_get(RTC, chan);
}

int z_nrf_rtc_timer_get_ticks(k_timeout_t t)
{
	uint32_t curr_count;
	int64_t curr_tick;
	int64_t result;
	int64_t abs_ticks;

	do {
		curr_count = counter();
		curr_tick = z_tick_get();
	} while (curr_count != counter());

	abs_ticks = Z_TICK_ABS(t.ticks);
	if (abs_ticks < 0) {
		/* relative timeout */
		return (t.ticks > COUNTER_HALF_SPAN) ?
			-EINVAL : ((curr_count + t.ticks) & COUNTER_MAX);
	}

	/* absolute timeout */
	result = abs_ticks - curr_tick;

	if ((result > COUNTER_HALF_SPAN) ||
	    (result < -(int64_t)COUNTER_HALF_SPAN)) {
		return -EINVAL;
	}

	return (curr_count + result) & COUNTER_MAX;
}

/* Function safely sets absolute alarm. It assumes that provided value is
 * less than COUNTER_HALF_SPAN from now. It detects late setting and also
 * handle +1 cycle case.
 */
static void set_absolute_alarm(uint32_t chan, uint32_t abs_val)
{
	uint32_t now;
	uint32_t now2;
	uint32_t cc_val = abs_val & COUNTER_MAX;
	uint32_t prev_cc = get_comparator(chan);

	do {
		now = counter();

		/* Handle case when previous event may generate an event.
		 * It is handled by setting CC to now (far in the future),
		 * in case previous event was set for next tick wait for half
		 * LF tick and clear event that may have been generated.
		 */
		set_comparator(chan, now);
		if (counter_sub(prev_cc, now) == 1) {
			/* It should wait for half of RTC tick 15.26us. As
			 * busy wait runs from different clock source thus
			 * wait longer to cover for discrepancy.
			 */
			k_busy_wait(19);
		}


		/* If requested cc_val is in the past or next tick, set to 2
		 * ticks from now. RTC may not generate event if CC is set for
		 * 1 tick from now.
		 */
		if (counter_sub(cc_val, now + 2) > COUNTER_HALF_SPAN) {
			cc_val = now + 2;
		}

		event_clear(chan);
		event_enable(chan);
		set_comparator(chan, cc_val);
		now2 = counter();
		prev_cc = cc_val;
		/* Rerun the algorithm if counter progressed during execution
		 * and cc_val is in the past or one tick from now. In such
		 * scenario, it is possible that event will not be generated.
		 * Reruning the algorithm will delay the alarm but ensure that
		 * event will be generated at the moment indicated by value in
		 * CC register.
		 */
	} while ((now2 != now) &&
		 (counter_sub(cc_val, now2 + 2) > COUNTER_HALF_SPAN));
}

static void compare_set(uint32_t chan, uint32_t cc_value,
			z_nrf_rtc_timer_compare_handler_t handler,
			void *user_data)
{
	cc_data[chan].callback = handler;
	cc_data[chan].user_context = user_data;

	set_absolute_alarm(chan, cc_value);
}

void z_nrf_rtc_timer_compare_set(uint32_t chan, uint32_t cc_value,
			      z_nrf_rtc_timer_compare_handler_t handler,
			      void *user_data)
{
	__ASSERT_NO_MSG(chan && chan < CHAN_COUNT);

	bool key = z_nrf_rtc_timer_compare_int_lock(chan);

	compare_set(chan, cc_value, handler, user_data);

	z_nrf_rtc_timer_compare_int_unlock(chan, key);
}

static void sys_clock_timeout_handler(uint32_t chan,
				      uint32_t cc_value,
				      void *user_data)
{
	uint32_t dticks = counter_sub(cc_value, last_count) / CYC_PER_TICK;

	last_count += dticks * CYC_PER_TICK;

	if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
		/* protection is not needed because we are in the RTC interrupt
		 * so it won't get preempted by the interrupt.
		 */
		compare_set(chan, last_count + CYC_PER_TICK,
					  sys_clock_timeout_handler, NULL);
	}

	z_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL) ?
						dticks : (dticks > 0));
}

/* Note: this function has public linkage, and MUST have this
 * particular name.  The platform architecture itself doesn't care,
 * but there is a test (tests/arch/arm_irq_vector_table) that needs
 * to find it to it can set it in a custom vector table.  Should
 * probably better abstract that at some point (e.g. query and reset
 * it by pointer at runtime, maybe?) so we don't have this leaky
 * symbol.
 */
void rtc_nrf_isr(const void *arg)
{
	ARG_UNUSED(arg);

	for (uint32_t chan = 0; chan < CHAN_COUNT; chan++) {
		if (nrf_rtc_int_enable_check(RTC, RTC_CHANNEL_INT_MASK(chan)) &&
		    nrf_rtc_event_check(RTC, RTC_CHANNEL_EVENT_ADDR(chan))) {
			uint32_t cc_val;
			z_nrf_rtc_timer_compare_handler_t handler;

			event_clear(chan);
			event_disable(chan);
			cc_val = get_comparator(chan);
			handler = cc_data[chan].callback;
			cc_data[chan].callback = NULL;
			if (handler) {
				handler(chan, cc_val,
					cc_data[chan].user_context);
			}
		}
	}
}

int z_nrf_rtc_timer_chan_alloc(void)
{
	int chan;
	atomic_val_t prev;
	do {
		chan = alloc_mask ? 31 - __builtin_clz(alloc_mask) : -1;
		if (chan < 0) {
			return -ENOMEM;
		}
		prev = atomic_and(&alloc_mask, ~BIT(chan));
	} while (!(prev & BIT(chan)));

	return chan;
}

void z_nrf_rtc_timer_chan_free(uint32_t chan)
{
	__ASSERT_NO_MSG(chan && chan < CHAN_COUNT);

	atomic_or(&alloc_mask, BIT(chan));
}

int z_clock_driver_init(const struct device *device)
{
	ARG_UNUSED(device);
	static const enum nrf_lfclk_start_mode mode =
		IS_ENABLED(CONFIG_SYSTEM_CLOCK_NO_WAIT) ?
			CLOCK_CONTROL_NRF_LF_START_NOWAIT :
			(IS_ENABLED(CONFIG_SYSTEM_CLOCK_WAIT_FOR_AVAILABILITY) ?
			CLOCK_CONTROL_NRF_LF_START_AVAILABLE :
			CLOCK_CONTROL_NRF_LF_START_STABLE);

	/* TODO: replace with counter driver to access RTC */
	nrf_rtc_prescaler_set(RTC, 0);
	for (uint32_t chan = 0; chan < CHAN_COUNT; chan++) {
		nrf_rtc_int_enable(RTC, RTC_CHANNEL_INT_MASK(chan));
	}

	NVIC_ClearPendingIRQ(RTC_IRQn);

	IRQ_CONNECT(RTC_IRQn, DT_IRQ(DT_NODELABEL(RTC_LABEL), priority),
		    rtc_nrf_isr, 0, 0);
	irq_enable(RTC_IRQn);

	nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_CLEAR);
	nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_START);

	int_mask = BIT_MASK(CHAN_COUNT);
	if (CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT) {
		alloc_mask = BIT_MASK(EXT_CHAN_COUNT) << 1;
	}

	if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
		compare_set(0, counter() + CYC_PER_TICK,
			    sys_clock_timeout_handler, NULL);
	}

	z_nrf_clock_control_lf_on(mode);

	return 0;
}

void z_clock_set_timeout(int32_t ticks, bool idle)
{
	ARG_UNUSED(idle);
	uint32_t cyc;

	if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
		return;
	}

	ticks = (ticks == K_TICKS_FOREVER) ? MAX_TICKS : ticks;
	ticks = CLAMP(ticks - 1, 0, (int32_t)MAX_TICKS);

	uint32_t unannounced = counter_sub(counter(), last_count);

	/* If we haven't announced for more than half the 24-bit wrap
	 * duration, then force an announce to avoid loss of a wrap
	 * event.  This can happen if new timeouts keep being set
	 * before the existing one triggers the interrupt.
	 */
	if (unannounced >= COUNTER_HALF_SPAN) {
		ticks = 0;
	}

	/* Get the cycles from last_count to the tick boundary after
	 * the requested ticks have passed starting now.
	 */
	cyc = ticks * CYC_PER_TICK + 1 + unannounced;
	cyc += (CYC_PER_TICK - 1);
	cyc = (cyc / CYC_PER_TICK) * CYC_PER_TICK;

	/* Due to elapsed time the calculation above might produce a
	 * duration that laps the counter.  Don't let it.
	 */
	if (cyc > MAX_CYCLES) {
		cyc = MAX_CYCLES;
	}

	cyc += last_count;
	compare_set(0, cyc, sys_clock_timeout_handler, NULL);
}

uint32_t z_clock_elapsed(void)
{
	if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
		return 0;
	}

	k_spinlock_key_t key = k_spin_lock(&lock);
	uint32_t ret = counter_sub(counter(), last_count) / CYC_PER_TICK;

	k_spin_unlock(&lock, key);
	return ret;
}

uint32_t z_timer_cycle_get_32(void)
{
	k_spinlock_key_t key = k_spin_lock(&lock);
	uint32_t ret = counter_sub(counter(), last_count) + last_count;

	k_spin_unlock(&lock, key);
	return ret;
}