Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
/*
 * Copyright (c) 2016 Intel Corporation.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <errno.h>

#include <pwm.h>
#include <device.h>
#include <kernel.h>
#include <init.h>
#include <power.h>

#include "qm_pwm.h"
#include "clk.h"

#define HW_CLOCK_CYCLES_PER_USEC  (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / \
				   USEC_PER_SEC)

/* pwm uses 32 bits counter to control low and high period */
#define MAX_LOW_PERIOD_IN_HW_CLOCK_CYCLES (((uint64_t)1) << 32)
#define MAX_HIGH_PERIOD_IN_HW_CLOCK_CYCLES (((uint64_t)1) << 32)

#define MAX_PERIOD_IN_HW_CLOCK_CYCLES (MAX_LOW_PERIOD_IN_HW_CLOCK_CYCLES + \
				       MAX_HIGH_PERIOD_IN_HW_CLOCK_CYCLES)

/* in micro seconds. */
#define MAX_PERIOD (MAX_PERIOD_IN_HW_CLOCK_CYCLES / HW_CLOCK_CYCLES_PER_USEC)

/**
 * in micro seconds. To be able to get 1% granularity, MIN_PERIOD should
 * have at least 100 HW clock cycles.
 */
#define MIN_PERIOD ((100 + (HW_CLOCK_CYCLES_PER_USEC - 1)) / \
		    HW_CLOCK_CYCLES_PER_USEC)

/* in micro seconds */
#define DEFAULT_PERIOD 2000

struct pwm_data {
#ifdef CONFIG_PWM_QMSI_API_REENTRANCY
	struct k_sem sem;
#endif
#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
	uint32_t device_power_state;
#endif
	uint32_t channel_period[CONFIG_PWM_QMSI_NUM_PORTS];
};

static struct pwm_data pwm_context;

#ifdef CONFIG_PWM_QMSI_API_REENTRANCY
static const int reentrancy_protection = 1;
#define RP_GET(dev) (&((struct pwm_data *)(dev->driver_data))->sem)
#else
static const int reentrancy_protection;
#define RP_GET(dev) (NULL)
#endif

static void pwm_reentrancy_init(struct device *dev)
{
	if (!reentrancy_protection) {
		return;
	}

	k_sem_init(RP_GET(dev), 0, UINT_MAX);
	k_sem_give(RP_GET(dev));
}

static void pwm_critical_region_start(struct device *dev)
{
	if (!reentrancy_protection) {
		return;
	}

	k_sem_take(RP_GET(dev), K_FOREVER);
}

static void pwm_critical_region_end(struct device *dev)
{
	if (!reentrancy_protection) {
		return;
	}

	k_sem_give(RP_GET(dev));
}

static int pwm_qmsi_configure(struct device *dev, int access_op,
				 uint32_t pwm, int flags)
{
	ARG_UNUSED(dev);
	ARG_UNUSED(access_op);
	ARG_UNUSED(pwm);
	ARG_UNUSED(flags);

	return 0;
}

static int __set_one_port(struct device *dev, qm_pwm_t id, uint32_t pwm,
				uint32_t on, uint32_t off)
{
	qm_pwm_config_t cfg;
	int ret_val = 0;

	pwm_critical_region_start(dev);

	/* Disable timer to prevent any output */
	qm_pwm_stop(id, pwm);

	if (on == 0) {
		/* stop PWM if so specified */
		goto pwm_set_port_return;
	}

	/**
	 * off period must be more than zero. Otherwise, the PWM pin will be
	 * turned off. Let's use the minimum value which is 1 for this case.
	 */
	if (off == 0) {
		off = 1;
	}

	/* PWM mode, user-defined count mode, timer disabled */
	cfg.mode = QM_PWM_MODE_PWM;

	/* No interrupts */
	cfg.mask_interrupt = true;
	cfg.callback = NULL;
	cfg.callback_data = NULL;

	/* Data for the timer to stay high and low */
	cfg.hi_count = on;
	cfg.lo_count = off;

	if (qm_pwm_set_config(id, pwm, &cfg) != 0) {
		ret_val = -EIO;
		goto pwm_set_port_return;
	}

	/* Enable timer so it starts running and counting */
	qm_pwm_start(id, pwm);

pwm_set_port_return:
	pwm_critical_region_end(dev);

	return ret_val;
}

/*
 * Set the time to assert and de-assert the PWM pin.
 *
 * This sets the duration for the pin to stay low or high.
 *
 * For example, with a nominal system clock of 32MHz, each count of on/off
 * represents 31.25ns (e.g. off == 2 means the pin is to be de-asserted at
 * 62.5ns from the beginning of a PWM cycle). The duration of 1 count depends
 * on system clock. Refer to the hardware manual for more information.
 *
 * Parameters
 * dev: Pointer to PWM device structure
 * access_op: whether to set one pin or all
 * pwm: PWM port number to set
 * on: How far (in timer count) from the beginning of a PWM cycle the PWM
 *     pin should be asserted. Must be zero, since PWM from Quark MCU always
 *     starts from high.
 * off: How far (in timer count) from the beginning of a PWM cycle the PWM
 *	pin should be de-asserted.
 *
 * return 0, or negative errno code
 */
static int pwm_qmsi_set_values(struct device *dev, int access_op,
			       uint32_t pwm, uint32_t on, uint32_t off)
{
	struct pwm_data *context = dev->driver_data;
	uint32_t *channel_period = context->channel_period;
	int i, high, low;

	if (on) {
		return -EINVAL;
	}

	switch (access_op) {
	case PWM_ACCESS_BY_PIN:
		/* make sure the PWM port exists */
		if (pwm >= CONFIG_PWM_QMSI_NUM_PORTS) {
			return -EIO;
		}

		high = off;
		low = channel_period[pwm] - off;

		if (off >= channel_period[pwm]) {
			high = channel_period[pwm] - 1;
			low = 1;
		}

		if (off == 0) {
			high = 1;
			low = channel_period[pwm] - 1;
		}

		return __set_one_port(dev, QM_PWM_0, pwm, high, low);

	case PWM_ACCESS_ALL:
		for (i = 0; i < CONFIG_PWM_QMSI_NUM_PORTS; i++) {
			high = off;
			low = channel_period[i] - off;

			if (off >= channel_period[i]) {
				high = channel_period[i] - 1;
				low = 1;
			}

			if (off == 0) {
				high = 1;
				low = channel_period[i] - 1;
			}

			if (__set_one_port(dev, QM_PWM_0, i, high, low) != 0) {
				return -EIO;
			}
		}
		break;
	default:
		return -ENOTSUP;
	}

	return 0;

}

static int pwm_qmsi_set_period(struct device *dev, int access_op,
			       uint32_t pwm, uint32_t period)
{
	struct pwm_data *context = dev->driver_data;
	uint32_t *channel_period = context->channel_period;
	int ret_val = 0;

	if (channel_period == NULL) {
		return -EIO;
	}

	if (period < MIN_PERIOD || period > MAX_PERIOD) {
		return -ENOTSUP;
	}

	pwm_critical_region_start(dev);

	switch (access_op) {
	case PWM_ACCESS_BY_PIN:
		/* make sure the PWM port exists */
		if (pwm >= CONFIG_PWM_QMSI_NUM_PORTS) {
			ret_val = -EIO;
			goto pwm_set_period_return;
		}
		channel_period[pwm] = period * HW_CLOCK_CYCLES_PER_USEC;
		break;
	case PWM_ACCESS_ALL:
		for (int i = 0; i < CONFIG_PWM_QMSI_NUM_PORTS; i++) {
			channel_period[i] = period *
					    HW_CLOCK_CYCLES_PER_USEC;
		}
		break;
	default:
		ret_val = -ENOTSUP;
	}

pwm_set_period_return:
	pwm_critical_region_end(dev);

	return ret_val;
}

static int pwm_qmsi_set_duty_cycle(struct device *dev, int access_op,
				   uint32_t pwm, uint8_t duty)
{
	struct pwm_data *context = dev->driver_data;
	uint32_t *channel_period = context->channel_period;
	uint32_t on, off;

	if (channel_period == NULL) {
		return -EIO;
	}

	if (duty > 100) {
		return -ENOTSUP;
	}

	switch (access_op) {
	case PWM_ACCESS_BY_PIN:
		/* make sure the PWM port exists */
		if (pwm >= CONFIG_PWM_QMSI_NUM_PORTS) {
			return -EIO;
		}
		on = (channel_period[pwm] * duty) / 100;
		off = channel_period[pwm] - on;
		if (off == 0) {
			on--;
			off = 1;
		}
		return __set_one_port(dev, QM_PWM_0, pwm, on, off);
	case PWM_ACCESS_ALL:
		for (int i = 0; i < CONFIG_PWM_QMSI_NUM_PORTS; i++) {
			on = (channel_period[i] * duty) / 100;
			off = channel_period[i] - on;
			if (off == 0) {
				on--;
				off = 1;
			}
			if (__set_one_port(dev, QM_PWM_0, i, on, off) != 0) {
				return -EIO;
			}
		}
		break;
	default:
		return -ENOTSUP;
	}

	return 0;
}

static int pwm_qmsi_set_phase(struct device *dev, int access_op,
			      uint32_t pwm, uint8_t phase)
{
	ARG_UNUSED(dev);
	ARG_UNUSED(access_op);
	ARG_UNUSED(pwm);
	ARG_UNUSED(phase);

	return -ENOTSUP;
}

/*
 * Set the period and pulse width for a PWM pin.
 *
 * For example, with a nominal system clock of 32MHz, each count represents
 * 31.25ns (e.g. period = 100 means the pulse is to repeat every 3125ns). The
 * duration of one count depends on system clock. Refer to the hardware manual
 * for more information.
 *
 * Parameters
 * dev: Pointer to PWM device structure
 * pwm: PWM port number to set
 * period_cycles: Period (in timer count)
 * pulse_cycles: Pulse width (in timer count).
 *
 * return 0, or negative errno code
 */
static int pwm_qmsi_pin_set(struct device *dev, uint32_t pwm,
			    uint32_t period_cycles, uint32_t pulse_cycles)
{
	uint32_t high, low;

	if (pwm >= CONFIG_PWM_QMSI_NUM_PORTS) {
		return -EINVAL;
	}

	if (period_cycles == 0 || pulse_cycles > period_cycles) {
		return -EINVAL;
	}

	high = pulse_cycles;
	low = period_cycles - pulse_cycles;

	/*
	 * low must be more than zero. Otherwise, the PWM pin will be
	 * turned off. Let's make sure low is always more than zero.
	 */
	if (low == 0) {
		high--;
		low = 1;
	}

	return __set_one_port(dev, QM_PWM_0, pwm, high, low);
}

/*
 * Get the clock rate (cycles per second) for a PWM pin.
 *
 * Parameters
 * dev: Pointer to PWM device structure
 * pwm: PWM port number
 * cycles: Pointer to the memory to store clock rate (cycles per second)
 *
 * return 0, or negative errno code
 */
static int pwm_qmsi_get_cycles_per_sec(struct device *dev, uint32_t pwm,
				       uint64_t *cycles)
{
	if (cycles == NULL) {
		return -EINVAL;
	}

	*cycles = (uint64_t)clk_sys_get_ticks_per_us() * USEC_PER_SEC;

	return 0;
}

static const struct pwm_driver_api pwm_qmsi_drv_api_funcs = {
	.config = pwm_qmsi_configure,
	.set_values = pwm_qmsi_set_values,
	.set_period = pwm_qmsi_set_period,
	.set_duty_cycle = pwm_qmsi_set_duty_cycle,
	.set_phase = pwm_qmsi_set_phase,
	.pin_set = pwm_qmsi_pin_set,
	.get_cycles_per_sec = pwm_qmsi_get_cycles_per_sec,
};

#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
static void pwm_qmsi_set_power_state(struct device *dev, uint32_t power_state)
{
	struct pwm_data *context = dev->driver_data;

	context->device_power_state = power_state;
}
#else
#define pwm_qmsi_set_power_state(...)
#endif

static int pwm_qmsi_init(struct device *dev)
{
	struct pwm_data *context = dev->driver_data;
	uint32_t *channel_period = context->channel_period;

	for (int i = 0; i < CONFIG_PWM_QMSI_NUM_PORTS; i++) {
		channel_period[i] = DEFAULT_PERIOD *
				    HW_CLOCK_CYCLES_PER_USEC;
	}

	clk_periph_enable(CLK_PERIPH_PWM_REGISTER | CLK_PERIPH_CLK);

	pwm_reentrancy_init(dev);

	pwm_qmsi_set_power_state(dev, DEVICE_PM_ACTIVE_STATE);

	return 0;
}

#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
static uint32_t pwm_qmsi_get_power_state(struct device *dev)
{
	struct pwm_data *context = dev->driver_data;

	return context->device_power_state;
}

#ifdef CONFIG_SYS_POWER_DEEP_SLEEP
static qm_pwm_context_t pwm_ctx;

static int pwm_qmsi_suspend(struct device *dev)
{
	qm_pwm_save_context(QM_PWM_0, &pwm_ctx);

	pwm_qmsi_set_power_state(dev, DEVICE_PM_SUSPEND_STATE);

	return 0;
}

static int pwm_qmsi_resume_from_suspend(struct device *dev)
{
	qm_pwm_restore_context(QM_PWM_0, &pwm_ctx);

	pwm_qmsi_set_power_state(dev, DEVICE_PM_ACTIVE_STATE);

	return 0;
}
#endif

/*
* Implements the driver control management functionality
* the *context may include IN data or/and OUT data
*/
static int pwm_qmsi_device_ctrl(struct device *dev, uint32_t ctrl_command,
				void *context)
{
	if (ctrl_command == DEVICE_PM_SET_POWER_STATE) {
#ifdef CONFIG_SYS_POWER_DEEP_SLEEP
		if (*((uint32_t *)context) == DEVICE_PM_SUSPEND_STATE) {
			return pwm_qmsi_suspend(dev);
		} else if (*((uint32_t *)context) == DEVICE_PM_ACTIVE_STATE) {
			return pwm_qmsi_resume_from_suspend(dev);
		}
#endif
	} else if (ctrl_command == DEVICE_PM_GET_POWER_STATE) {
		*((uint32_t *)context) = pwm_qmsi_get_power_state(dev);
		return 0;
	}

	return 0;
}
#endif

DEVICE_DEFINE(pwm_qmsi_0, CONFIG_PWM_QMSI_DEV_NAME, pwm_qmsi_init,
	      pwm_qmsi_device_ctrl, &pwm_context, NULL,
	      POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
	      &pwm_qmsi_drv_api_funcs);