Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
/* thread.c - test nanokernel CPU and thread APIs */

/*
 * Copyright (c) 2012-2015 Wind River Systems, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
DESCRIPTION
This module tests the following CPU and thread related routines:
  fiber_fiber_start(), task_fiber_start(), fiber_yield(),
  sys_thread_self_get(), sys_execution_context_type_get(), nano_cpu_idle(),
  irq_lock(), irq_unlock(),
  irq_offload(), nanoCpuExcConnect(),
  irq_enable(), irq_disable(),
 */

#include <tc_util.h>
#include <nano_private.h>
#include <arch/cpu.h>
#include <irq_offload.h>

#include <util_test_common.h>

/*
 * Include board.h from platform to get IRQ number.
 * NOTE: Cortex-M3/M4 does not need IRQ numbers
 */
#if !defined(CONFIG_CPU_CORTEX_M3_M4)
  #include <board.h>
#endif

#define FIBER_STACKSIZE    256
#define FIBER_PRIORITY     4

#define THREAD_SELF_CMD    0
#define EXEC_CTX_TYPE_CMD  1

#define UNKNOWN_COMMAND    -1

/*
 * Get the timer type dependent IRQ number. If timer type
 * is not defined in platform, generate an error
 */
#if defined(CONFIG_HPET_TIMER)
  #define TICK_IRQ CONFIG_HPET_TIMER_IRQ
#elif defined(CONFIG_LOAPIC_TIMER)
  #define TICK_IRQ CONFIG_LOAPIC_TIMER_IRQ
#elif defined(CONFIG_CPU_CORTEX_M3_M4)
  /* Cortex-M3/M4 does not need a tick IRQ number. */
#else
  /* generate an error */
  #error Timer type is not defined for this platform
#endif

typedef struct {
	int     command;    /* command to process */
	int     error;      /* error value (if any) */
	union {
		void   *data;   /* pointer to data to use or return */
		int     value;  /* value to be passed or returned */
	};
} ISR_INFO;

typedef int  (* disable_interrupt_func)(int);
typedef void (* enable_interrupt_func)(int);

/* Cortex-M3/M4 does not implement connecting non-IRQ exception handlers */
#if !defined(CONFIG_CPU_CORTEX_M3_M4)
static volatile int    excHandlerExecuted;
#endif

static struct nano_sem        wakeFiber;
static struct nano_timer      timer;
static struct nano_sem        reply_timeout;
struct nano_fifo              timeout_order_fifo;
static void *timerData[1];

static int  fiberDetectedError = 0;
static char __stack fiberStack1[FIBER_STACKSIZE];
static char __stack fiberStack2[FIBER_STACKSIZE];
static int  fiberEvidence = 0;

static ISR_INFO  isrInfo;

/**
 *
 * @brief Handler to perform various actions from within an ISR context
 *
 * This routine is the ISR handler for _trigger_isrHandler().  It performs
 * the command requested in <isrInfo.command>.
 *
 * @return N/A
 */

void isr_handler(void *data)
{
	ARG_UNUSED(data);

	switch (isrInfo.command) {
	case THREAD_SELF_CMD:
		isrInfo.data = (void *) sys_thread_self_get();
		break;

	case EXEC_CTX_TYPE_CMD:
		isrInfo.value = sys_execution_context_type_get();
		break;

	default:
		isrInfo.error = UNKNOWN_COMMAND;
		break;
	}
}
static void _trigger_isrHandler(void)
{
	irq_offload(isr_handler, NULL);
}


/* Cortex-M3/M4 does not implement connecting non-IRQ exception handlers */
#if !defined(CONFIG_CPU_CORTEX_M3_M4)
/**
 *
 * @brief Divide by zero exception handler
 *
 * This handler is part of a test that is only interested in detecting the
 * error so that we know the exception connect code is working. It simply
 * adds 2 to the EIP to skip over the offending instruction:
 *         f7 f9         idiv %ecx
 * thereby preventing the infinite loop of divide-by-zero errors which would
 * arise if control simply returns to that instruction.
 *
 * @return N/A
 */

void exc_divide_error_handler(NANO_ESF *pEsf)
{
	pEsf->eip += 2;
	excHandlerExecuted = 1;    /* provide evidence that the handler executed */
}
#endif

/**
 *
 * @brief Initialize nanokernel objects
 *
 * This routine initializes the nanokernel objects used in this module's tests.
 *
 * @return TC_PASS on success, TC_FAIL on failure
 */

int initNanoObjects(void)
{
	nano_sem_init(&wakeFiber);
	nano_timer_init(&timer, timerData);
	nano_fifo_init(&timeout_order_fifo);

/* no nanoCpuExcConnect on Cortex-M3/M4 */
#if !defined(CONFIG_CPU_CORTEX_M3_M4)
	nanoCpuExcConnect(IV_DIVIDE_ERROR, exc_divide_error_handler);
#endif

	return TC_PASS;
}

/**
 *
 * @brief Test the nano_cpu_idle() routine
 *
 * This tests the nano_cpu_idle() routine.  The first thing it does is align to
 * a tick boundary.  The only source of interrupts while the test is running is
 * expected to be the tick clock timer which should wake the CPU.  Thus after
 * each call to nano_cpu_idle(), the tick count should be one higher.
 *
 * @return TC_PASS on success, TC_FAIL on failure
 */

int nano_cpu_idleTest(void)
{
	int  tick;   /* current tick count */
	int  i;      /* loop variable */

	/* Align to a "tick boundary". */
	tick = sys_tick_get_32();
	while (tick == sys_tick_get_32()) {
	}
	tick = sys_tick_get_32();

	for (i = 0; i < 5; i++) {     /* Repeat the test five times */
		nano_cpu_idle();
		tick++;
		if (sys_tick_get_32() != tick) {
			return TC_FAIL;
		}
	}

	return TC_PASS;
}

/**
 *
 * @brief A wrapper for irq_lock()
 *
 * @return irq_lock() return value
 */

int irq_lockWrapper(int unused)
{
	ARG_UNUSED(unused);

	return irq_lock();
}

/**
 *
 * @brief A wrapper for irq_unlock()
 *
 * @return N/A
 */

void irq_unlockWrapper(int imask)
{
	irq_unlock(imask);
}

/**
 *
 * @brief A wrapper for irq_disable()
 *
 * @return <irq>
 */

int irq_disableWrapper(int irq)
{
	irq_disable(irq);
	return irq;
}

/**
 *
 * @brief A wrapper for irq_enable()
 *
 * @return N/A
 */

void irq_enableWrapper(int irq)
{
	irq_enable(irq);
}

/**
 *
 * @brief Test routines for disabling and enabling ints
 *
 * This routine tests the routines for disabling and enabling interrupts.  These
 * include irq_lock() and irq_unlock(), irq_disable() and irq_enable().
 *
 * @return TC_PASS on success, TC_FAIL on failure
 */

int nanoCpuDisableInterruptsTest(disable_interrupt_func disableRtn,
								 enable_interrupt_func enableRtn, int irq)
{
	unsigned long long  count = 0;
	unsigned long long  i = 0;
	int  tick;
	int  tick2;
	int  imask;

	/* Align to a "tick boundary" */
	tick = sys_tick_get_32();
	while (sys_tick_get_32() == tick) {
	}
	tick++;

	while (sys_tick_get_32() == tick) {
		count++;
	}

	/*
	 * Inflate <count> so that when we loop later, many ticks should have
	 * elapsed during the loop.  This later loop will not exactly match the
	 * previous loop, but it should be close enough in structure that when
	 * combined with the inflated count, many ticks will have passed.
	 */

	count <<= 4;

	imask = disableRtn(irq);
	tick = sys_tick_get_32();
	for (i = 0; i < count; i++) {
		sys_tick_get_32();
	}

	tick2 = sys_tick_get_32();

	/*
	 * Re-enable interrupts before returning (for both success and failure
	 * cases).
	 */

	enableRtn(imask);

	if (tick2 != tick) {
		return TC_FAIL;
	}

	/* Now repeat with interrupts unlocked. */
	for (i = 0; i < count; i++) {
		sys_tick_get_32();
	}

	return (tick == sys_tick_get_32()) ? TC_FAIL : TC_PASS;
}

/**
 *
 * @brief Test the various nanoCtxXXX() routines from a task
 *
 * This routines tests the sys_thread_self_get() and
 * sys_execution_context_type_get() routines from both a task and an ISR (that
 * interrupted a task).  Checking those routines with fibers are done
 * elsewhere.
 *
 * @return TC_PASS on success, TC_FAIL on failure
 */

int nanoCtxTaskTest(void)
{
	nano_thread_id_t  self_thread_id;

	TC_PRINT("Testing sys_thread_self_get() from an ISR and task\n");
	self_thread_id = sys_thread_self_get();
	isrInfo.command = THREAD_SELF_CMD;
	isrInfo.error = 0;
	_trigger_isrHandler();
	if ((isrInfo.error != 0) || (isrInfo.data != (void *) self_thread_id)) {
		/*
		 * Either the ISR detected an error, or the ISR context ID does not
		 * match the interrupted task's thread ID.
		 */
		return TC_FAIL;
	}

	TC_PRINT("Testing sys_execution_context_type_get() from an ISR\n");
	isrInfo.command = EXEC_CTX_TYPE_CMD;
	isrInfo.error = 0;
	_trigger_isrHandler();
	if ((isrInfo.error != 0) || (isrInfo.value != NANO_CTX_ISR)) {
		return TC_FAIL;
	}

	TC_PRINT("Testing sys_execution_context_type_get() from a task\n");
	if (sys_execution_context_type_get() != NANO_CTX_TASK) {
		return TC_FAIL;
	}

	return TC_PASS;
}

/**
 *
 * @brief Test the various context/thread routines from a fiber
 *
 * This routines tests the sys_thread_self_get() and
 * sys_execution_context_type_get() routines from both a fiber and an ISR (that
 * interrupted a fiber).  Checking those routines with tasks are done
 * elsewhere.
 *
 * This routine may set <fiberDetectedError> to the following values:
 *   1 - if fiber ID matches that of the task
 *   2 - if thread ID taken during ISR does not match that of the fiber
 *   3 - sys_execution_context_type_get() when called from an ISR is not
 *       NANO_TYPE_ISR
 *   4 - sys_execution_context_type_get() when called from a fiber is not
 *       NANO_TYPE_FIBER
 *
 * @return TC_PASS on success, TC_FAIL on failure
 */

int nanoCtxFiberTest(nano_thread_id_t task_thread_id)
{
	nano_thread_id_t  self_thread_id;

	self_thread_id = sys_thread_self_get();
	if (self_thread_id == task_thread_id) {
		fiberDetectedError = 1;
		return TC_FAIL;
	}

	isrInfo.command = THREAD_SELF_CMD;
	isrInfo.error = 0;
	_trigger_isrHandler();
	if ((isrInfo.error != 0) || (isrInfo.data != (void *) self_thread_id)) {
		/*
		 * Either the ISR detected an error, or the ISR context ID does not
		 * match the interrupted fiber's thread ID.
		 */
		fiberDetectedError = 2;
		return TC_FAIL;
	}

	isrInfo.command = EXEC_CTX_TYPE_CMD;
	isrInfo.error = 0;
	_trigger_isrHandler();
	if ((isrInfo.error != 0) || (isrInfo.value != NANO_CTX_ISR)) {
		fiberDetectedError = 3;
		return TC_FAIL;
	}

	if (sys_execution_context_type_get() != NANO_CTX_FIBER) {
		fiberDetectedError = 4;
		return TC_FAIL;
	}

	return TC_PASS;
}

/**
 *
 * @brief Entry point to the fiber's helper
 *
 * This routine is the entry point to the fiber's helper fiber.  It is used to
 * help test the behaviour of the fiber_yield() routine.
 *
 * @param arg1    unused
 * @param arg2    unused
 *
 * @return N/A
 */

static void fiberHelper(int arg1, int arg2)
{
	nano_thread_id_t  self_thread_id;

	ARG_UNUSED(arg1);
	ARG_UNUSED(arg2);

	/*
	 * This fiber starts off at a higher priority than fiberEntry().  Thus, it
	 * should execute immediately.
	 */

	fiberEvidence++;

	/* Test that helper will yield to a fiber of equal priority */
	self_thread_id = sys_thread_self_get();
	self_thread_id->prio++;  /* Lower priority to that of fiberEntry() */
	fiber_yield();        /* Yield to fiber of equal priority */

	fiberEvidence++;
	/* <fiberEvidence> should now be 2 */

}

/**
 *
 * @brief Test the fiber_yield() routine
 *
 * This routine tests the fiber_yield() routine.  It starts another fiber
 * (thus also testing fiber_fiber_start()) and checks that behaviour of
 * fiber_yield() against the cases of there being a higher priority fiber,
 * a lower priority fiber, and another fiber of equal priority.
 *
 * On error, it may set <fiberDetectedError> to one of the following values:
 *   10 - helper fiber ran prematurely
 *   11 - fiber_yield() did not yield to a higher priority fiber
 *   12 - fiber_yield() did not yield to an equal prioirty fiber
 *   13 - fiber_yield() yielded to a lower priority fiber
 *
 * @return TC_PASS on success, TC_FAIL on failure
 */

int fiber_yieldTest(void)
{
	nano_thread_id_t  self_thread_id;

	/*
	 * Start a fiber of higher priority.  Note that since the new fiber is
	 * being started from a fiber, it will not automatically switch to the
	 * fiber as it would if done from a task.
	 */

	self_thread_id = sys_thread_self_get();
	fiberEvidence = 0;
	fiber_fiber_start(fiberStack2, FIBER_STACKSIZE, fiberHelper,
		0, 0, FIBER_PRIORITY - 1, 0);

	if (fiberEvidence != 0) {
		/* ERROR! Helper spawned at higher */
		fiberDetectedError = 10;    /* priority ran prematurely. */
		return TC_FAIL;
	}

	/*
	 * Test that the fiber will yield to the higher priority helper.
	 * <fiberEvidence> is still 0.
	 */

	fiber_yield();

	if (fiberEvidence == 0) {
		/* ERROR! Did not yield to higher */
		fiberDetectedError = 11;    /* priority fiber. */
		return TC_FAIL;
	}

	if (fiberEvidence > 1) {
		/* ERROR! Helper did not yield to */
		fiberDetectedError = 12;    /* equal priority fiber. */
		return TC_FAIL;
	}

	/*
	 * Raise the priority of fiberEntry().  Calling fiber_yield() should
	 * not result in switching to the helper.
	 */

	self_thread_id->prio--;
	fiber_yield();

	if (fiberEvidence != 1) {
		/* ERROR! Context switched to a lower */
		fiberDetectedError = 13;    /* priority fiber! */
		return TC_FAIL;
	}

	/*
	 * Block on <wakeFiber>.  This will allow the helper fiber to complete.
	 * The main task will wake this fiber.
	 */

	nano_fiber_sem_take(&wakeFiber, TICKS_UNLIMITED);

	return TC_PASS;
}

/**
 *
 * @brief Entry point to fiber started by the task
 *
 * This routine is the entry point to the fiber started by the task.
 *
 * @param task_thread_id    thread ID of the spawning task
 * @param arg1         unused
 *
 * @return N/A
 */

static void fiberEntry(int task_thread_id, int arg1)
{
	int          rv;

	ARG_UNUSED(arg1);

	fiberEvidence++;    /* Prove to the task that the fiber has run */
	nano_fiber_sem_take(&wakeFiber, TICKS_UNLIMITED);

	rv = nanoCtxFiberTest((nano_thread_id_t) task_thread_id);
	if (rv != TC_PASS) {
		return;
	}

	/* Allow the task to print any messages before the next test runs */
	nano_fiber_sem_take(&wakeFiber, TICKS_UNLIMITED);

	rv = fiber_yieldTest();
	if (rv != TC_PASS) {
		return;
	}
}

/*
 * Timeout tests
 *
 * Test the fiber_sleep() API, as well as the fiber_delayed_start() ones.
 */

#include <tc_nano_timeout_common.h>

struct timeout_order_data {
	void *link_in_fifo;
	int32_t timeout;
	int timeout_order;
	int q_order;
};

struct timeout_order_data timeout_order_data[] = {
	{0, TIMEOUT(2), 2, 0},
	{0, TIMEOUT(4), 4, 1},
	{0, TIMEOUT(0), 0, 2},
	{0, TIMEOUT(1), 1, 3},
	{0, TIMEOUT(5), 5, 4},
	{0, TIMEOUT(6), 6, 5},
	{0, TIMEOUT(3), 3, 6},
};

#define NUM_TIMEOUT_FIBERS ARRAY_SIZE(timeout_order_data)
static char __stack timeout_stacks[NUM_TIMEOUT_FIBERS][FIBER_STACKSIZE];

/* a fiber busy waits, then reports through a fifo */
static void test_fiber_busy_wait(int ticks, int unused)
{
	ARG_UNUSED(unused);

	uint32_t usecs = ticks * sys_clock_us_per_tick;

	TC_PRINT(" fiber busy waiting for %d usecs (%d ticks)\n",
			 usecs, ticks);
	sys_thread_busy_wait(usecs);
	TC_PRINT(" fiber busy waiting completed\n");

	/*
	 * Ideally the test should verify that the correct number of ticks
	 * have elapsed. However, when run under QEMU the tick interrupt
	 * may be processed on a very irregular basis, meaning that far
	 * fewer than the expected number of ticks may occur for a given
	 * number of clock cycles vs. what would ordinarily be expected.
	 *
	 * Consequently, the best we can do for now to test busy waiting is
	 * to invoke the API and verify that it returns. (If it takes way
	 * too long, or never returns, the main test task may be able to
	 * time out and report an error.)
	 */

	nano_fiber_sem_give(&reply_timeout);
}

/* a fiber sleeps and times out, then reports through a fifo */
static void test_fiber_sleep(int timeout, int arg2)
{
	int64_t orig_ticks = sys_tick_get();

	TC_PRINT(" fiber sleeping for %d ticks\n", timeout);
	fiber_sleep(timeout);
	TC_PRINT(" fiber back from sleep\n");
	if (!is_timeout_in_range(orig_ticks, timeout)) {
		return;
	}

	nano_fiber_sem_give(&reply_timeout);
}

/* a fiber is started with a delay, then it reports that it ran via a fifo */
void delayed_fiber(int num, int unused)
{
	struct timeout_order_data *data = &timeout_order_data[num];

	ARG_UNUSED(unused);

	TC_PRINT(" fiber (q order: %d, t/o: %d) is running\n",
				data->q_order, data->timeout);

	nano_fiber_fifo_put(&timeout_order_fifo, data);
}

static int test_timeout(void)
{
	int32_t timeout;
	int rv;
	int ii;
	struct timeout_order_data *data;

	/* test sys_thread_busy_wait() */

	TC_PRINT("Testing sys_thread_busy_wait()\n");
	timeout = 2;
	task_fiber_start(timeout_stacks[0], FIBER_STACKSIZE,
						test_fiber_busy_wait, (int)timeout, 0,
						FIBER_PRIORITY, 0);

	rv = nano_task_sem_take(&reply_timeout, timeout + 2);
	if (!rv) {
		rv = TC_FAIL;
		TC_ERROR(" *** task timed out waiting for sys_thread_busy_wait()\n");
		return TC_FAIL;
	}

	/* test fiber_sleep() */

	TC_PRINT("Testing fiber_sleep()\n");
	timeout = 5;
	task_fiber_start(timeout_stacks[0], FIBER_STACKSIZE,
						test_fiber_sleep, (int)timeout, 0,
						FIBER_PRIORITY, 0);

	rv = nano_task_sem_take(&reply_timeout, timeout + 5);
	if (!rv) {
		rv = TC_FAIL;
		TC_ERROR(" *** task timed out waiting for fiber on fiber_sleep().\n");
		return TC_FAIL;
	}

	/* test fiber_delayed_start() without cancellation */

	TC_PRINT("Testing fiber_delayed_start() without cancellation\n");

	for (ii = 0; ii < NUM_TIMEOUT_FIBERS; ii++) {
		(void)task_fiber_delayed_start(timeout_stacks[ii], FIBER_STACKSIZE,
										delayed_fiber, ii, 0, 5, 0,
										timeout_order_data[ii].timeout);
	}
	for (ii = 0; ii < NUM_TIMEOUT_FIBERS; ii++) {

		data = nano_task_fifo_get(&timeout_order_fifo, TIMEOUT_TWO_INTERVALS);

		if (!data) {
			TC_ERROR(" *** timeout while waiting for delayed fiber\n");
			return TC_FAIL;
		}

		if (data->timeout_order != ii) {
			TC_ERROR(" *** wrong delayed fiber ran (got %d, expected %d)\n",
						data->timeout_order, ii);
			return TC_FAIL;
		}

		TC_PRINT(" got fiber (q order: %d, t/o: %d) as expected\n",
					data->q_order, data->timeout);
	}

	/* ensure no more fibers fire */

	data = nano_task_fifo_get(&timeout_order_fifo, TIMEOUT_TWO_INTERVALS);

	if (data) {
		TC_ERROR(" *** got something on the fifo, but shouldn't have...\n");
		return TC_FAIL;
	}

	/* test fiber_delayed_start() with cancellation */

	TC_PRINT("Testing fiber_delayed_start() with cancellations\n");

	int cancellations[] = {0, 3, 4, 6};
	int num_cancellations = ARRAY_SIZE(cancellations);
	int next_cancellation = 0;

	nano_thread_id_t delayed_fibers[NUM_TIMEOUT_FIBERS];

	for (ii = 0; ii < NUM_TIMEOUT_FIBERS; ii++) {
		delayed_fibers[ii] =
			task_fiber_delayed_start(timeout_stacks[ii], FIBER_STACKSIZE,
										delayed_fiber, ii, 0, 5, 0,
										timeout_order_data[ii].timeout);
	}

	for (ii = 0; ii < NUM_TIMEOUT_FIBERS; ii++) {
		int jj;

		if (ii == cancellations[next_cancellation]) {
			TC_PRINT(" cancelling [q order: %d, t/o: %d, t/o order: %d]\n",
						timeout_order_data[ii].q_order,
						timeout_order_data[ii].timeout, ii);
			for (jj = 0; jj < NUM_TIMEOUT_FIBERS; jj++) {
				if (timeout_order_data[jj].timeout_order == ii) {
					break;
				}
			}
			task_fiber_delayed_start_cancel(delayed_fibers[jj]);
			++next_cancellation;
			continue;
		}

		data = nano_task_fifo_get(&timeout_order_fifo, TIMEOUT_TEN_INTERVALS);

		if (!data) {
			TC_ERROR(" *** timeout while waiting for delayed fiber\n");
			return TC_FAIL;
		}

		if (data->timeout_order != ii) {
			TC_ERROR(" *** wrong delayed fiber ran (got %d, expected %d)\n",
						data->timeout_order, ii);
			return TC_FAIL;
		}

		TC_PRINT(" got (q order: %d, t/o: %d, t/o order %d) as expected\n",
					data->q_order, data->timeout);
	}

	if (num_cancellations != next_cancellation) {
		TC_ERROR(" *** wrong number of cancellations (expected %d, got %d\n",
					num_cancellations, next_cancellation);
		return TC_FAIL;
	}

	/* ensure no more fibers fire */

	data = nano_task_fifo_get(&timeout_order_fifo, TIMEOUT_TWO_INTERVALS);

	if (data) {
		TC_ERROR(" *** got something on the fifo, but shouldn't have...\n");
		return TC_FAIL;
	}

	return TC_PASS;
}

/**
 *
 * @brief Entry point to timer tests
 *
 * This is the entry point to the CPU and thread tests.
 *
 * @return N/A
 */

void main(void)
{
	int           rv;       /* return value from tests */

	TC_START("Test Nanokernel CPU and thread routines");

	TC_PRINT("Initializing nanokernel objects\n");
	rv = initNanoObjects();
	if (rv != TC_PASS) {
		goto doneTests;
	}

	TC_PRINT("Testing nano_cpu_idle()\n");
	rv = nano_cpu_idleTest();
	if (rv != TC_PASS) {
		goto doneTests;
	}

	TC_PRINT("Testing interrupt locking and unlocking\n");
	rv = nanoCpuDisableInterruptsTest(irq_lockWrapper,
									  irq_unlockWrapper, -1);
	if (rv != TC_PASS) {
		goto doneTests;
	}


/*
 * The Cortex-M3/M4 use the SYSTICK exception for the system timer, which is
 * not considered an IRQ by the irq_enable/Disable APIs.
 */
#if !defined(CONFIG_CPU_CORTEX_M3_M4)
	/* Disable interrupts coming from the timer. */

	TC_PRINT("Testing irq_disable() and irq_enable()\n");
	rv = nanoCpuDisableInterruptsTest(irq_disableWrapper,
									  irq_enableWrapper, TICK_IRQ);
	if (rv != TC_PASS) {
		goto doneTests;
	}
#endif

	rv = nanoCtxTaskTest();
	if (rv != TC_PASS) {
		goto doneTests;
	}

	TC_PRINT("Spawning a fiber from a task\n");
	fiberEvidence = 0;
	task_fiber_start(fiberStack1, FIBER_STACKSIZE, fiberEntry,
					 (int) sys_thread_self_get(), 0, FIBER_PRIORITY, 0);

	if (fiberEvidence != 1) {
		rv = TC_FAIL;
		TC_ERROR("  - fiber did not execute as expected!\n");
		goto doneTests;
	}

	/*
	 * The fiber ran, now wake it so it can test sys_thread_self_get and
	 * sys_execution_context_type_get.
	 */
	TC_PRINT("Fiber to test sys_thread_self_get() and sys_execution_context_type_get\n");
	nano_task_sem_give(&wakeFiber);

	if (fiberDetectedError != 0) {
		rv = TC_FAIL;
		TC_ERROR("  - failure detected in fiber; fiberDetectedError = %d\n",
				 fiberDetectedError);
		goto doneTests;
	}

	TC_PRINT("Fiber to test fiber_yield()\n");
	nano_task_sem_give(&wakeFiber);

	if (fiberDetectedError != 0) {
		rv = TC_FAIL;
		TC_ERROR("  - failure detected in fiber; fiberDetectedError = %d\n",
				 fiberDetectedError);
		goto doneTests;
	}

	nano_task_sem_give(&wakeFiber);

	rv = test_timeout();
	if (rv != TC_PASS) {
		goto doneTests;
	}

/* Cortex-M3/M4 does not implement connecting non-IRQ exception handlers */
#if !defined(CONFIG_CPU_CORTEX_M3_M4)
	/*
	 * Test divide by zero exception handler.
	 *
	 * WARNING: This code has been very carefully crafted so that it does
	 * what it is supposed to. Both "error" and "excHandlerExecuted" must be
	 * volatile to prevent the compiler from issuing a "divide by zero"
	 * warning (since otherwise in knows "excHandlerExecuted" is zero),
	 * and to ensure the compiler issues the two byte "idiv" instruction
	 * that the exception handler is designed to deal with.
	 */

	volatile int error;    /* used to create a divide by zero error */
	TC_PRINT("Verifying exception handler installed\n");
	excHandlerExecuted = 0;
	error = error / excHandlerExecuted;
	TC_PRINT("excHandlerExecuted: %d\n", excHandlerExecuted);

	rv = (excHandlerExecuted == 1) ? TC_PASS : TC_FAIL;
#endif

doneTests:
	TC_END_RESULT(rv);
	TC_END_REPORT(rv);
}