Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
/*
 * Copyright (c) 2016 Open-RnD Sp. z o.o.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/**
 * @brief Driver for UART port on STM32F10x family processor.
 *
 * Based on reference manual:
 *   STM32F101xx, STM32F102xx, STM32F103xx, STM32F105xx and STM32F107xx
 *   advanced ARM ® -based 32-bit MCUs
 *
 * Chapter 27: Universal synchronous asynchronous receiver
 *             transmitter (USART)
 */

#include <nanokernel.h>
#include <arch/cpu.h>
#include <misc/__assert.h>
#include <board.h>
#include <init.h>
#include <uart.h>
#include <clock_control.h>

#include <sections.h>
#include <clock_control/stm32_clock_control.h>
#include "uart_stm32.h"

/* convenience defines */
#define DEV_CFG(dev)							\
	((struct uart_stm32_config * const)(dev)->config->config_info)
#define DEV_DATA(dev)							\
	((struct uart_stm32_data * const)(dev)->driver_data)
#define UART_STRUCT(dev)					\
	((volatile struct uart_stm32 *)(DEV_CFG(dev))->uconf.base)

/**
 * @brief set baud rate
 *
 */
static void set_baud_rate(struct device *dev, uint32_t rate)
{
	volatile struct uart_stm32 *uart = UART_STRUCT(dev);
	struct uart_stm32_data *data = DEV_DATA(dev);
	struct uart_stm32_config *cfg = DEV_CFG(dev);
	uint32_t div, mantissa, fraction;
	uint32_t clock;

	/* Baud rate is controlled through BRR register. The values
	 * written into the register depend on the clock driving the
	 * peripheral. Ask clock_control for the current clock rate of
	 * our peripheral.
	 */
	clock_control_get_rate(data->clock, cfg->clock_subsys, &clock);

	/* baud rate calculation:
	 *
	 *     baud rate = f_clk / (16 * usartdiv)
	 *
	 * Example (STM32F10x, USART1, PCLK2 @ 36MHz, 9600bps):
	 *
	 *    f_clk == PCLK2,
	 *    usartdiv = 234.375,
	 *    mantissa = 234,
	 *    fracion = 6 (0.375 * 16)
	 */

	div = clock / rate;
	mantissa = div >> 4;
	fraction = div & 0xf;

	uart->brr.bit.mantissa = mantissa;
	uart->brr.bit.fraction = fraction;
}

static int uart_stm32_poll_in(struct device *dev, unsigned char *c)
{
	volatile struct uart_stm32 *uart = UART_STRUCT(dev);

	/* check if RXNE is set */
	if (!uart->sr.bit.rxne) {
		return -1;
	}

	/* read character */
	*c = (unsigned char)uart->dr.bit.dr;

	return 0;
}

static unsigned char uart_stm32_poll_out(struct device *dev,
					unsigned char c)
{
	volatile struct uart_stm32 *uart = UART_STRUCT(dev);

	/* wait for TXE to be set */
	while (!uart->sr.bit.txe) {
	}

	uart->dr.bit.dr = c;
	return c;
}

static inline void __uart_stm32_get_clock(struct device *dev)
{
	struct uart_stm32_data *ddata = dev->driver_data;
	struct device *clk =
		device_get_binding(STM32_CLOCK_CONTROL_NAME);

	__ASSERT_NO_MSG(clk);

	ddata->clock = clk;
}

#ifdef CONFIG_UART_INTERRUPT_DRIVEN

static int uart_stm32_fifo_fill(struct device *dev, const uint8_t *tx_data,
				  int size)
{
	volatile struct uart_stm32 *uart = UART_STRUCT(dev);
	size_t num_tx = 0;

	/* FIXME: DMA maybe? */
	while ((size - num_tx > 0) && (uart->sr.bit.txe)) {
		uart->dr.bit.dr = tx_data[num_tx++];
	}

	return num_tx;
}

static int uart_stm32_fifo_read(struct device *dev, uint8_t *rx_data,
				  const int size)
{
	volatile struct uart_stm32 *uart = UART_STRUCT(dev);
	size_t num_rx = 0;

	while ((size - num_rx > 0) && (uart->sr.bit.rxne)) {
		rx_data[num_rx++] = (uint8_t) uart->dr.bit.dr;
	}
	return num_rx;
}

static void uart_stm32_irq_tx_enable(struct device *dev)
{
	volatile struct uart_stm32 *uart = UART_STRUCT(dev);

	uart->cr1.bit.txeie = 1;
}

static void uart_stm32_irq_tx_disable(struct device *dev)
{
	volatile struct uart_stm32 *uart = UART_STRUCT(dev);

	uart->cr1.bit.txeie = 0;
}

static int uart_stm32_irq_tx_ready(struct device *dev)
{
	volatile struct uart_stm32 *uart = UART_STRUCT(dev);

	return uart->sr.bit.txe;
}

static int uart_stm32_irq_tx_empty(struct device *dev)
{
	volatile struct uart_stm32 *uart = UART_STRUCT(dev);

	return uart->sr.bit.txe;
}

static void uart_stm32_irq_rx_enable(struct device *dev)
{
	volatile struct uart_stm32 *uart = UART_STRUCT(dev);

	uart->cr1.bit.rxneie = 1;
}

static void uart_stm32_irq_rx_disable(struct device *dev)
{
	volatile struct uart_stm32 *uart = UART_STRUCT(dev);

	uart->cr1.bit.rxneie = 0;
}

static int uart_stm32_irq_rx_ready(struct device *dev)
{
	volatile struct uart_stm32 *uart = UART_STRUCT(dev);

	return uart->sr.bit.rxne;
}

static void uart_stm32_irq_err_enable(struct device *dev)
{
	volatile struct uart_stm32 *uart = UART_STRUCT(dev);

	uart->cr3.bit.eie = 1;
}

static void uart_stm32_irq_err_disable(struct device *dev)
{
	volatile struct uart_stm32 *uart = UART_STRUCT(dev);

	uart->cr3.bit.eie = 0;
}

static int uart_stm32_irq_is_pending(struct device *dev)
{
	volatile struct uart_stm32 *uart = UART_STRUCT(dev);

	return uart->sr.bit.rxne || uart->sr.bit.txe;
}

static int uart_stm32_irq_update(struct device *dev)
{
	return 1;
}

static void uart_stm32_irq_callback_set(struct device *dev,
				       uart_irq_callback_t cb)
{
	struct uart_stm32_data *data = DEV_DATA(dev);

	data->user_cb = cb;
}

static void uart_stm32_isr(void *arg)
{
	struct device *dev = arg;
	struct uart_stm32_data *data = DEV_DATA(dev);

	if (data->user_cb) {
		data->user_cb(dev);
	}
}

#endif /* CONFIG_UART_INTERRUPT_DRIVEN */

static struct uart_driver_api uart_stm32_driver_api = {
	.poll_in = uart_stm32_poll_in,
	.poll_out = uart_stm32_poll_out,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
	.fifo_fill = uart_stm32_fifo_fill,
	.fifo_read = uart_stm32_fifo_read,
	.irq_tx_enable = uart_stm32_irq_tx_enable,
	.irq_tx_disable = uart_stm32_irq_tx_disable,
	.irq_tx_ready = uart_stm32_irq_tx_ready,
	.irq_tx_empty = uart_stm32_irq_tx_empty,
	.irq_rx_enable = uart_stm32_irq_rx_enable,
	.irq_rx_disable = uart_stm32_irq_rx_disable,
	.irq_rx_ready = uart_stm32_irq_rx_ready,
	.irq_err_enable = uart_stm32_irq_err_enable,
	.irq_err_disable = uart_stm32_irq_err_disable,
	.irq_is_pending = uart_stm32_irq_is_pending,
	.irq_update = uart_stm32_irq_update,
	.irq_callback_set = uart_stm32_irq_callback_set,
#endif	/* CONFIG_UART_INTERRUPT_DRIVEN */
};

/**
 * @brief Initialize UART channel
 *
 * This routine is called to reset the chip in a quiescent state.
 * It is assumed that this function is called only once per UART.
 *
 * @param dev UART device struct
 *
 * @return 0
 */
static int uart_stm32_init(struct device *dev)
{
	volatile struct uart_stm32 *uart = UART_STRUCT(dev);
	struct uart_stm32_data *data = DEV_DATA(dev);
	struct uart_stm32_config *cfg = DEV_CFG(dev);

	__uart_stm32_get_clock(dev);

	/* enable clock */
	clock_control_on(data->clock, cfg->clock_subsys);

	/* FIXME: hardcoded, clear stop bits */
	uart->cr2.bit.stop = 0;

	uart->cr1.val = 0;
	/* FIXME: hardcoded, 8n1 */
	uart->cr1.bit.m = 0;
	uart->cr1.bit.pce = 0;

	/* FIXME: hardcoded, disable hardware flow control */
	uart->cr3.bit.ctse = 0;
	uart->cr3.bit.rtse = 0;

	set_baud_rate(dev, data->baud_rate);

	/* enable TX/RX */
	uart->cr1.bit.te = 1;
	uart->cr1.bit.re = 1;

	/* enable */
	uart->cr1.bit.ue = 1;

	dev->driver_api = &uart_stm32_driver_api;

#ifdef CONFIG_UART_INTERRUPT_DRIVEN
	cfg->uconf.irq_config_func(dev);
#endif
	return 0;
}

#ifdef CONFIG_UART_STM32_PORT_0

#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_stm32_irq_config_func_0(struct device *dev);
#endif	/* CONFIG_UART_INTERRUPT_DRIVEN */

static struct uart_stm32_config uart_stm32_dev_cfg_0 = {
	.uconf = {
		.base = (uint8_t *)USART1_ADDR,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
		.irq_config_func = uart_stm32_irq_config_func_0,
#endif	/* CONFIG_UART_INTERRUPT_DRIVEN */
	},
#ifdef CONFIG_SOC_STM32F1X
	.clock_subsys = UINT_TO_POINTER(STM32F10X_CLOCK_SUBSYS_USART1),
#endif	/* CONFIG_SOC_STM32F1X */
};

static struct uart_stm32_data uart_stm32_dev_data_0 = {
	.baud_rate = CONFIG_UART_STM32_PORT_0_BAUD_RATE,
};

DEVICE_INIT(uart_stm32_0, CONFIG_UART_STM32_PORT_0_NAME, &uart_stm32_init,
	    &uart_stm32_dev_data_0, &uart_stm32_dev_cfg_0,
	    PRIMARY, CONFIG_KERNEL_INIT_PRIORITY_DEVICE);

#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_stm32_irq_config_func_0(struct device *dev)
{
#ifdef CONFIG_SOC_STM32F1X
#define PORT_0_IRQ STM32F1_IRQ_USART1
#endif
	IRQ_CONNECT(PORT_0_IRQ,
		CONFIG_UART_STM32_PORT_0_IRQ_PRI,
		uart_stm32_isr, DEVICE_GET(uart_stm32_0),
		0);
	irq_enable(PORT_0_IRQ);
}
#endif	/* CONFIG_UART_INTERRUPT_DRIVEN */

#endif	/* CONFIG_UART_STM32_PORT_0 */

#ifdef CONFIG_UART_STM32_PORT_1

#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_stm32_irq_config_func_1(struct device *dev);
#endif	/* CONFIG_UART_INTERRUPT_DRIVEN */

static struct uart_stm32_config uart_stm32_dev_cfg_1 = {
	.uconf = {
		.base = (uint8_t *)USART2_ADDR,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
		.irq_config_func = uart_stm32_irq_config_func_1,
#endif	/* CONFIG_UART_INTERRUPT_DRIVEN */
	},
#ifdef CONFIG_SOC_STM32F1X
	.clock_subsys = UINT_TO_POINTER(STM32F10X_CLOCK_SUBSYS_USART2),
#endif	/* CONFIG_SOC_STM32F1X */
};

static struct uart_stm32_data uart_stm32_dev_data_1 = {
	.baud_rate = CONFIG_UART_STM32_PORT_1_BAUD_RATE,
};

DEVICE_INIT(uart_stm32_1, CONFIG_UART_STM32_PORT_1_NAME, &uart_stm32_init,
	    &uart_stm32_dev_data_1, &uart_stm32_dev_cfg_1,
	    PRIMARY, CONFIG_KERNEL_INIT_PRIORITY_DEVICE);

#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_stm32_irq_config_func_1(struct device *dev)
{
#ifdef CONFIG_SOC_STM32F1X
#define PORT_1_IRQ STM32F1_IRQ_USART2
#endif
	IRQ_CONNECT(PORT_1_IRQ,
		CONFIG_UART_STM32_PORT_1_IRQ_PRI,
		uart_stm32_isr, DEVICE_GET(uart_stm32_1),
		0);
	irq_enable(PORT_1_IRQ);
}
#endif	/* CONFIG_UART_INTERRUPT_DRIVEN */

#endif	/* CONFIG_UART_STM32_PORT_1 */

#ifdef CONFIG_UART_STM32_PORT_2

#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_stm32_irq_config_func_2(struct device *dev);
#endif	/* CONFIG_UART_INTERRUPT_DRIVEN */

static struct uart_stm32_config uart_stm32_dev_cfg_2 = {
	.uconf = {
		.base = (uint8_t *)USART3_ADDR,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
		.irq_config_func = uart_stm32_irq_config_func_2,
#endif	/* CONFIG_UART_INTERRUPT_DRIVEN */
	},
#ifdef CONFIG_SOC_STM32F1X
	.clock_subsys = UINT_TO_POINTER(STM32F10X_CLOCK_SUBSYS_USART3),
#endif	/* CONFIG_SOC_STM32F1X */
};

static struct uart_stm32_data uart_stm32_dev_data_2 = {
	.baud_rate = CONFIG_UART_STM32_PORT_2_BAUD_RATE,
};

DEVICE_INIT(uart_stm32_2, CONFIG_UART_STM32_PORT_2_NAME, &uart_stm32_init,
	    &uart_stm32_dev_data_2, &uart_stm32_dev_cfg_2,
	    PRIMARY, CONFIG_KERNEL_INIT_PRIORITY_DEVICE);

#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_stm32_irq_config_func_2(struct device *dev)
{
#ifdef CONFIG_SOC_STM32F1X
#define PORT_2_IRQ STM32F1_IRQ_USART3
#endif
	IRQ_CONNECT(PORT_2_IRQ,
		CONFIG_UART_STM32_PORT_2_IRQ_PRI,
		uart_stm32_isr, DEVICE_GET(uart_stm32_2),
		0);
	irq_enable(PORT_2_IRQ);
}
#endif	/* CONFIG_UART_INTERRUPT_DRIVEN */

#endif	/* CONFIG_UART_STM32_PORT_2 */