Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
/***************************************************************************//**
 * @file em_usart.c
 * @brief Universal synchronous/asynchronous receiver/transmitter (USART/UART)
 *   Peripheral API
 * @version 5.6.0
 *******************************************************************************
 * # License
 * <b>Copyright 2016 Silicon Laboratories, Inc. www.silabs.com</b>
 *******************************************************************************
 *
 * Permission is granted to anyone to use this software for any purpose,
 * including commercial applications, and to alter it and redistribute it
 * freely, subject to the following restrictions:
 *
 * 1. The origin of this software must not be misrepresented; you must not
 *    claim that you wrote the original software.
 * 2. Altered source versions must be plainly marked as such, and must not be
 *    misrepresented as being the original software.
 * 3. This notice may not be removed or altered from any source distribution.
 *
 * DISCLAIMER OF WARRANTY/LIMITATION OF REMEDIES: Silicon Labs has no
 * obligation to support this Software. Silicon Labs is providing the
 * Software "AS IS", with no express or implied warranties of any kind,
 * including, but not limited to, any implied warranties of merchantability
 * or fitness for any particular purpose or warranties against infringement
 * of any proprietary rights of a third party.
 *
 * Silicon Labs will not be liable for any consequential, incidental, or
 * special damages, or any other relief, or for any claim by any third party,
 * arising from your use of this Software.
 *
 ******************************************************************************/

#include "em_usart.h"
#if defined(USART_COUNT) && (USART_COUNT > 0)

#include "em_cmu.h"
#include "em_bus.h"
#include "em_assert.h"
#if defined(USART_CTRLX_CTSEN)
#include "em_gpio.h"
#endif

/***************************************************************************//**
 * @addtogroup emlib
 * @{
 ******************************************************************************/

/***************************************************************************//**
 * @addtogroup USART
 * @{
 ******************************************************************************/

/*******************************************************************************
 *******************************   DEFINES   ***********************************
 ******************************************************************************/

/** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */

/** Validation of USART register block pointer reference for assert statements. */
#if (USART_COUNT == 1) && defined(USART0)
#define USART_REF_VALID(ref)    ((ref) == USART0)

#elif (USART_COUNT == 1) && defined(USART1)
#define USART_REF_VALID(ref)    ((ref) == USART1)

#elif (USART_COUNT == 2) && defined(USART2)
#define USART_REF_VALID(ref)    (((ref) == USART1) || ((ref) == USART2))

#elif (USART_COUNT == 2)
#define USART_REF_VALID(ref)    (((ref) == USART0) || ((ref) == USART1))

#elif (USART_COUNT == 3)
#define USART_REF_VALID(ref)    (((ref) == USART0) || ((ref) == USART1) \
                                 || ((ref) == USART2))
#elif (USART_COUNT == 4)
#define USART_REF_VALID(ref)    (((ref) == USART0) || ((ref) == USART1) \
                                 || ((ref) == USART2) || ((ref) == USART3))
#elif (USART_COUNT == 5)
#define USART_REF_VALID(ref)    (((ref) == USART0) || ((ref) == USART1)    \
                                 || ((ref) == USART2) || ((ref) == USART3) \
                                 || ((ref) == USART4))
#elif (USART_COUNT == 6)
#define USART_REF_VALID(ref)    (((ref) == USART0) || ((ref) == USART1)    \
                                 || ((ref) == USART2) || ((ref) == USART3) \
                                 || ((ref) == USART4) || ((ref) == USART5))
#else
#error "Undefined number of USARTs."
#endif

#if defined(USARTRF_COUNT) && (USARTRF_COUNT > 0)
  #if (USARTRF_COUNT == 1) && defined(USARTRF0)
    #define USARTRF_REF_VALID(ref)  ((ref) == USARTRF0)
  #elif (USARTRF_COUNT == 1) && defined(USARTRF1)
    #define USARTRF_REF_VALID(ref)  ((ref) == USARTRF1)
  #else
    #define USARTRF_REF_VALID(ref)  (0)
  #endif
#else
  #define USARTRF_REF_VALID(ref)  (0)
#endif

#if (_SILICON_LABS_32B_SERIES == 2)
  #define USART_IRDA_VALID(ref)      USART_REF_VALID(ref)
#elif defined(_SILICON_LABS_32B_SERIES_1)
  #if defined(_SILICON_LABS_GECKO_INTERNAL_SDID_100) || defined(_SILICON_LABS_GECKO_INTERNAL_SDID_103)
// If GG11 or TG11
    #define USART_IRDA_VALID(ref)    (((ref) == USART0) || ((ref) == USART2))
  #elif defined(USART3)
    #define USART_IRDA_VALID(ref)    (((ref) == USART0) || ((ref) == USART1) || ((ref) == USART2) || ((ref) == USART3))
  #elif defined(USART2)
    #define USART_IRDA_VALID(ref)    (((ref) == USART0) || ((ref) == USART1) || ((ref) == USART2))
  #else
    #define USART_IRDA_VALID(ref)    (((ref) == USART0) || ((ref) == USART1))
  #endif
#elif defined(_SILICON_LABS_32B_SERIES_0)
  #if defined(_EZR32_HAPPY_FAMILY)
    #define USART_IRDA_VALID(ref)    ((ref) == USART0)
  #elif defined(_EFM32_HAPPY_FAMILY)
    #define USART_IRDA_VALID(ref)    (((ref) == USART0) || ((ref) == USART1))
  #elif defined(USART0)
    #define USART_IRDA_VALID(ref)    ((ref) == USART0)
  #elif (USART_COUNT == 1) && defined(USART1)
    #define USART_IRDA_VALID(ref)    ((ref) == USART1)
  #elif defined(USARTRF0)
    #define USART_IRDA_VALID(ref)    ((ref) == USARTRF0)
  #else
    #define USART_IRDA_VALID(ref)    (0)
  #endif
#endif

#if (_SILICON_LABS_32B_SERIES == 2)
  #define USART_I2S_VALID(ref)      USART_REF_VALID(ref)
#elif defined(_SILICON_LABS_32B_SERIES_1)
  #if defined(USART4)
    #define USART_I2S_VALID(ref)    (((ref) == USART1) || ((ref) == USART3) || ((ref) == USART4))
  #elif defined(USART3)
    #define USART_I2S_VALID(ref)    (((ref) == USART1) || ((ref) == USART3))
  #else
    #define USART_I2S_VALID(ref)    ((ref) == USART1)
  #endif
#elif defined(_SILICON_LABS_32B_SERIES_0)
  #if defined(_EZR32_HAPPY_FAMILY)
    #define USART_I2S_VALID(ref)    ((ref) == USART0)
  #elif defined(_EFM32_HAPPY_FAMILY)
    #define USART_I2S_VALID(ref)    (((ref) == USART0) || ((ref) == USART1))
  #elif defined(_EFM32_TINY_FAMILY) || defined(_EFM32_ZERO_FAMILY)
    #define USART_I2S_VALID(ref)    ((ref) == USART1)
  #elif defined(_EFM32_GIANT_FAMILY) || defined(_EFM32_WONDER_FAMILY)
    #define USART_I2S_VALID(ref)    (((ref) == USART1) || ((ref) == USART2))
  #endif
#endif

#if (UART_COUNT == 1)
  #define UART_REF_VALID(ref)    ((ref) == UART0)
#elif (UART_COUNT == 2)
  #define UART_REF_VALID(ref)    (((ref) == UART0) || ((ref) == UART1))
#else
  #define UART_REF_VALID(ref)    (0)
#endif

#if defined(_USART_CLKDIV_DIVEXT_MASK)
  #define CLKDIV_MASK  (_USART_CLKDIV_DIV_MASK | _USART_CLKDIV_DIVEXT_MASK)
#else
  #define CLKDIV_MASK  _USART_CLKDIV_DIV_MASK
#endif

/** @endcond */

/*******************************************************************************
 **************************   LOCAL FUNCTIONS   ********************************
 ******************************************************************************/

#if !defined(_EFM32_GECKO_FAMILY)
/***************************************************************************//**
 * @brief
 *   Configure a PRS channel as USART Rx input
 *
 * @param[in] usart
 *   A pointer to the USART/UART peripheral register block.
 *
 * @param[in] ch
 *   PRS channel.
 ******************************************************************************/
static void prsRxInput(USART_TypeDef *usart, USART_PRS_Channel_t ch)
{
#if defined(_USART_INPUT_MASK)
  usart->INPUT = ((uint32_t)ch << _USART_INPUT_RXPRSSEL_SHIFT)
                 | USART_INPUT_RXPRS;
#elif defined(USART_CTRLX_RXPRSEN)
  if (usart == USART0) {
    PRS->CONSUMER_USART0_RX = ch;
  } else if (usart == USART1) {
    PRS->CONSUMER_USART1_RX = ch;
  } else if (usart == USART2) {
    PRS->CONSUMER_USART2_RX = ch;
  }
  usart->CTRLX |= USART_CTRLX_RXPRSEN;
#endif
}
#endif

/***************************************************************************//**
 * @brief
 *   Configure a PRS channel as USART Ir input
 *
 * @param[in] usart
 *   A pointer to the USART/UART peripheral register block.
 *
 * @param[in] ch
 *   PRS channel.
 ******************************************************************************/
static void prsIrInput(USART_TypeDef *usart, USART_PRS_Channel_t ch)
{
#if defined(_USART_IRCTRL_IRPRSSEL_MASK)
  usart->IRCTRL |= ((uint32_t)ch << _USART_IRCTRL_IRPRSSEL_SHIFT)
                   | USART_IRCTRL_IRPRSEN;
#else
  if (usart == USART0) {
    PRS->CONSUMER_USART0_IR = ch;
  } else if (usart == USART1) {
    PRS->CONSUMER_USART1_IR = ch;
  } else if (usart == USART2) {
    PRS->CONSUMER_USART2_IR = ch;
  }
  usart->IRCTRL |= USART_IRCTRL_IRPRSEN;
#endif
}

/***************************************************************************//**
 * @brief
 *   Configure a PRS channel as USART Trigger input
 *
 * @param[in] usart
 *   A pointer to the USART/UART peripheral register block.
 *
 * @param[in] ch
 *   PRS channel.
 ******************************************************************************/
static void prsTriggerInput(USART_TypeDef *usart, USART_PRS_Channel_t ch)
{
#if defined(_USART_IRCTRL_IRPRSSEL_MASK)
  usart->TRIGCTRL = (usart->TRIGCTRL & ~_USART_TRIGCTRL_TSEL_MASK)
                    | (ch << _USART_TRIGCTRL_TSEL_SHIFT);
#else
  if (usart == USART0) {
    PRS->CONSUMER_USART0_TRIGGER = ch;
  } else if (usart == USART1) {
    PRS->CONSUMER_USART1_TRIGGER = ch;
  } else if (usart == USART2) {
    PRS->CONSUMER_USART2_TRIGGER = ch;
  }
#endif
}

/*******************************************************************************
 **************************   GLOBAL FUNCTIONS   *******************************
 ******************************************************************************/

/***************************************************************************//**
 * @brief
 *   Configure USART/UART operating in asynchronous mode to use a given
 *   baudrate (or as close as possible to a specified baudrate).
 *
 * @param[in] usart
 *   A pointer to the USART/UART peripheral register block.
 *
 * @param[in] refFreq
 *   USART/UART reference clock frequency in Hz. If set to 0,
 *   the currently configured reference clock is assumed.
 *
 * @param[in] baudrate
 *   Baudrate to try to achieve for USART/UART.
 *
 * @param[in] ovs
 *   Oversampling to be used. Normal is 16x oversampling but lower oversampling
 *   may be used to achieve higher rates or better baudrate accuracy in some
 *   cases. Notice that lower oversampling frequency makes the channel more
 *   vulnerable to bit faults during reception due to clock inaccuracies
 *   compared to the link partner.
 ******************************************************************************/
void USART_BaudrateAsyncSet(USART_TypeDef *usart,
                            uint32_t refFreq,
                            uint32_t baudrate,
                            USART_OVS_TypeDef ovs)
{
  uint32_t clkdiv;
  uint32_t oversample;

  /* Inhibit divide by 0 */
  EFM_ASSERT(baudrate);

  /*
   * Use integer division to avoid forcing in float division
   * utils and yet keep rounding effect errors to a minimum.
   *
   * CLKDIV in asynchronous mode is given by:
   *
   * CLKDIV = 256 * (fHFPERCLK/(oversample * br) - 1)
   * or
   * CLKDIV = (256 * fHFPERCLK)/(oversample * br) - 256
   *
   * The basic problem with integer division in the above formula is that
   * the dividend (256 * fHFPERCLK) may become higher than max 32 bit
   * integer. Yet, we want to evaluate the dividend first before dividing
   * to get as small rounding effects as possible.
   * Too harsh restrictions on maximum fHFPERCLK value should not be made.
   *
   * It is possible to factorize 256 and oversample/br. However,
   * since the last 6 or 3 bits of CLKDIV are don't care, base the
   * integer arithmetic on the below formula
   *
   * CLKDIV / 64 = (4 * fHFPERCLK)/(oversample * br) - 4 (3 bits dont care)
   * or
   * CLKDIV / 8  = (32 * fHFPERCLK)/(oversample * br) - 32 (6 bits dont care)
   *
   * and calculate 1/64 of CLKDIV first. This allows for fHFPERCLK
   * up to 1 GHz without overflowing a 32 bit value.
   */

  /* HFPERCLK used to clock all USART/UART peripheral modules. */
  if (!refFreq) {
#if defined(_SILICON_LABS_32B_SERIES_2)
    refFreq = CMU_ClockFreqGet(cmuClock_PCLK);
#else
    refFreq = CMU_ClockFreqGet(cmuClock_HFPER);
#endif
  }

  /* Map oversampling. */
  switch (ovs) {
    case usartOVS16:
      EFM_ASSERT(baudrate <= (refFreq / 16));
      oversample = 16;
      break;

    case usartOVS8:
      EFM_ASSERT(baudrate <= (refFreq / 8));
      oversample = 8;
      break;

    case usartOVS6:
      EFM_ASSERT(baudrate <= (refFreq / 6));
      oversample = 6;
      break;

    case usartOVS4:
      EFM_ASSERT(baudrate <= (refFreq / 4));
      oversample = 4;
      break;

    default:
      /* Invalid input */
      EFM_ASSERT(0);
      return;
  }

  /* Calculate and set CLKDIV with fractional bits.
   * The added (oversample*baudrate)/2 in the first line is to round the
   * divisor to the nearest fractional divisor. */
#if defined(_SILICON_LABS_32B_SERIES_0) && !defined(_EFM32_HAPPY_FAMILY)
  /* Devices with 2 fractional bits. CLKDIV[7:6] */
  clkdiv  = 4 * refFreq + (oversample * baudrate) / 2;
  clkdiv /= oversample * baudrate;
  clkdiv -= 4;
  clkdiv *= 64;
#else
  /* Devices with 5 fractional bits. CLKDIV[7:3] */
  clkdiv  = 32 * refFreq + (oversample * baudrate) / 2;
  clkdiv /= oversample * baudrate;
  clkdiv -= 32;
  clkdiv *= 8;
#endif

  /* Verify that the resulting clock divider is within limits. */
  EFM_ASSERT(clkdiv <= CLKDIV_MASK);

  /* Make sure that reserved bits are not written to. */
  clkdiv &= CLKDIV_MASK;

  usart->CTRL  &= ~_USART_CTRL_OVS_MASK;
  usart->CTRL  |= ovs;
  usart->CLKDIV = clkdiv;
}

/***************************************************************************//**
 * @brief
 *   Calculate baudrate for USART/UART given reference frequency, clock division,
 *   and oversampling rate (if async mode).
 *
 * @details
 *   This function returns the baudrate that a USART/UART module will use if
 *   configured with the given frequency, clock divisor, and mode. Notice that
 *   this function will not use the hardware configuration. It can be used
 *   to determine if a given configuration is sufficiently accurate for the
 *   application.
 *
 * @param[in] refFreq
 *   USART/UART HF peripheral frequency used.
 *
 * @param[in] clkdiv
 *   A clock division factor to be used.
 *
 * @param[in] syncmode
 *   @li True - synchronous mode operation.
 *   @li False - asynchronous mode operation.
 *
 * @param[in] ovs
 *   Oversampling used if in asynchronous mode. Not used if @p syncmode is true.
 *
 * @return
 *   Baudrate with given settings.
 ******************************************************************************/
uint32_t USART_BaudrateCalc(uint32_t refFreq,
                            uint32_t clkdiv,
                            bool syncmode,
                            USART_OVS_TypeDef ovs)
{
  uint32_t oversample;
  uint64_t divisor;
  uint64_t factor;
  uint64_t remainder;
  uint64_t quotient;
  uint32_t br;

  /* Out of bound clkdiv. */
  EFM_ASSERT(clkdiv <= CLKDIV_MASK);

  /* Mask out unused bits */
  clkdiv &= CLKDIV_MASK;

  /* Use integer division to avoid forcing in float division */
  /* utils and yet keep rounding effect errors to a minimum. */

  /* Baudrate calculation depends on if synchronous or asynchronous mode. */
  if (syncmode) {
    /*
     * Baudrate is given by:
     *
     * br = fHFPERCLK/(2 * (1 + (CLKDIV / 256)))
     *
     * which can be rewritten to
     *
     * br = (128 * fHFPERCLK)/(256 + CLKDIV)
     */
    oversample = 1; /* Not used in sync mode, i.e., 1 */
    factor     = 128;
  } else {
    /*
     * Baudrate in asynchronous mode is given by:
     *
     * br = fHFPERCLK/(oversample * (1 + (CLKDIV / 256)))
     *
     * which can be rewritten to
     *
     * br = (256 * fHFPERCLK)/(oversample * (256 + CLKDIV))
     *
     * 256 factor of the dividend is reduced with a
     * (part of) oversample part of the divisor.
     */

    switch (ovs) {
      case usartOVS16:
        oversample = 1;
        factor     = 256 / 16;
        break;

      case usartOVS8:
        oversample = 1;
        factor     = 256 / 8;
        break;

      case usartOVS6:
        oversample = 3;
        factor     = 256 / 2;
        break;

      default:
        oversample = 1;
        factor     = 256 / 4;
        break;
    }
  }

  /*
   * The basic problem with integer division in the above formula is that
   * the dividend (factor * fHFPERCLK) may become larger than a 32 bit
   * integer. Yet we want to evaluate the dividend first before dividing
   * to get as small rounding effects as possible. Too harsh restrictions
   * should not be made on the maximum fHFPERCLK value either.
   *
   * For division a/b,
   *
   * a = qb + r
   *
   * where q is the quotient and r is the remainder, both integers.
   *
   * The original baudrate formula can be rewritten as
   *
   * br = xa / b = x(qb + r)/b = xq + xr/b
   *
   * where x is 'factor', a is 'refFreq' and b is 'divisor', referring to
   * variable names.
   */

  /*
   * The divisor will never exceed max 32 bit value since
   * clkdiv <= _USART_CLKDIV_DIV_MASK (currently 0x1FFFC0 or 0x7FFFF8)
   * and 'oversample' has been reduced to <= 3.
   */
  divisor = oversample * (256 + clkdiv);

  quotient  = refFreq / divisor;
  remainder = refFreq % divisor;

  /* The factor <= 128 and since divisor >= 256, the below cannot exceed the maximum */
  /* 32 bit value. However, factor * remainder can become larger than 32-bit */
  /* because of the size of _USART_CLKDIV_DIV_MASK on some families. */
  br = (uint32_t)(factor * quotient);

  /*
   * The factor <= 128 and remainder < (oversample*(256 + clkdiv)), which
   * means dividend (factor * remainder) worst case is
   * 128 * (3 * (256 + _USART_CLKDIV_DIV_MASK)) = 0x1_8001_7400.
   */
  br += (uint32_t)((factor * remainder) / divisor);

  return br;
}

/***************************************************************************//**
 * @brief
 *   Get the current baudrate for USART/UART.
 *
 * @details
 *   This function returns the actual baudrate (not considering oscillator
 *   inaccuracies) used by a USART/UART peripheral.
 *
 * @param[in] usart
 *   A pointer to the USART/UART peripheral register block.
 *
 * @return
 *   The current baudrate.
 ******************************************************************************/
uint32_t USART_BaudrateGet(USART_TypeDef *usart)
{
  uint32_t          freq;
  USART_OVS_TypeDef ovs;
  bool              syncmode;

  if (usart->CTRL & USART_CTRL_SYNC) {
    syncmode = true;
  } else {
    syncmode = false;
  }

  /* HFPERCLK used to clock all USART/UART peripheral modules. */
#if defined(_SILICON_LABS_32B_SERIES_2)
  freq = CMU_ClockFreqGet(cmuClock_PCLK);
#else
  freq = CMU_ClockFreqGet(cmuClock_HFPER);
#endif
  ovs  = (USART_OVS_TypeDef)(usart->CTRL & _USART_CTRL_OVS_MASK);
  return USART_BaudrateCalc(freq, usart->CLKDIV, syncmode, ovs);
}

/***************************************************************************//**
 * @brief
 *   Configure the USART operating in synchronous mode to use a given baudrate
 *   (or as close as possible to a specified baudrate).
 *
 * @details
 *   The configuration will be set to use a baudrate <= the specified baudrate
 *   to ensure that the baudrate does not exceed the specified value.
 *
 *   The fractional clock division is suppressed, although the hardware design allows it.
 *   It could cause half clock cycles to exceed a specified limit and thus
 *   potentially violate specifications for the slave device. In some special
 *   situations, a fractional clock division may be useful even in synchronous
 *   mode, but in those cases it must be directly adjusted, possibly assisted
 *   by USART_BaudrateCalc():
 *
 * @param[in] usart
 *   A pointer to the USART peripheral register block. (Cannot be used on UART
 *   modules.)
 *
 * @param[in] refFreq
 *   A USART reference clock frequency in Hz that will be used. If set to 0,
 *   the currently-configured reference clock is assumed.
 *
 * @param[in] baudrate
 *   Baudrate to try to achieve for USART.
 ******************************************************************************/
void USART_BaudrateSyncSet(USART_TypeDef *usart, uint32_t refFreq, uint32_t baudrate)
{
  uint32_t clkdiv;

  /* Prevent dividing by 0. */
  EFM_ASSERT(baudrate);

  /*
   * CLKDIV in synchronous mode is given by:
   *
   * CLKDIV = 256 * (fHFPERCLK/(2 * br) - 1)
   */

  /* HFPERCLK used to clock all USART/UART peripheral modules. */
  if (!refFreq) {
#if defined(_SILICON_LABS_32B_SERIES_2)
    refFreq = CMU_ClockFreqGet(cmuClock_PCLK);
#else
    refFreq = CMU_ClockFreqGet(cmuClock_HFPER);
#endif
  }

  clkdiv = (refFreq - 1) / (2 * baudrate);
  clkdiv = clkdiv << 8;

  /* Verify that resulting clock divider is within limits. */
  EFM_ASSERT(!(clkdiv & ~CLKDIV_MASK));

  usart->CLKDIV = clkdiv;
}

/***************************************************************************//**
 * @brief
 *   Enable/disable USART/UART receiver and/or transmitter.
 *
 * @details
 *   Notice that this function does not do any configuration. Enabling should
 *   normally be done after initialization (if not enabled as part
 *   of initialization).
 *
 * @param[in] usart
 *   A pointer to the USART/UART peripheral register block.
 *
 * @param[in] enable
 *   Select the status for the receiver/transmitter.
 ******************************************************************************/
void USART_Enable(USART_TypeDef *usart, USART_Enable_TypeDef enable)
{
  uint32_t tmp;

  /* Make sure the module exists on the selected chip. */
  EFM_ASSERT(USART_REF_VALID(usart)
             || USARTRF_REF_VALID(usart)
             || UART_REF_VALID(usart));

#if defined(USART_EN_EN)
  usart->EN_SET = USART_EN_EN;
#endif

  /* Disable as specified. */
  tmp        = ~((uint32_t)enable);
  tmp       &= _USART_CMD_RXEN_MASK | _USART_CMD_TXEN_MASK;
  usart->CMD = tmp << 1;

  /* Enable as specified. */
  usart->CMD = (uint32_t)enable;

#if defined(USART_EN_EN)
  if (enable == usartDisable) {
    usart->EN_CLR = USART_EN_EN;
  }
#endif
}

/***************************************************************************//**
 * @brief
 *   Initialize USART/UART for normal asynchronous mode.
 *
 * @details
 *   This function will configure basic settings to operate in normal
 *   asynchronous mode.
 *
 *   A special control setup not covered by this function must be done after
 *   using this function by direct modification of the CTRL register.
 *
 *   Notice that pins used by the USART/UART module must be properly configured
 *   by the user explicitly for the USART/UART to work as intended.
 *   (When configuring pins, remember to consider the sequence of
 *   configuration to avoid unintended pulses/glitches on output
 *   pins.)
 *
 * @param[in] usart
 *   A pointer to the USART/UART peripheral register block.
 *
 * @param[in] init
 *   A pointer to the initialization structure used to configure the basic async setup.
 ******************************************************************************/
void USART_InitAsync(USART_TypeDef *usart, const USART_InitAsync_TypeDef *init)
{
  /* Make sure the module exists on the selected chip. */
  EFM_ASSERT(USART_REF_VALID(usart)
             || USARTRF_REF_VALID(usart)
             || UART_REF_VALID(usart));

  /* Initialize USART registers to hardware reset state. */
  USART_Reset(usart);

#if defined(USART_EN_EN)
  usart->EN_SET = USART_EN_EN;
#endif

#if defined(USART_CTRL_MVDIS)
  /* Disable the majority vote if specified. */
  if (init->mvdis) {
    usart->CTRL |= USART_CTRL_MVDIS;
  }
#endif

#if !defined(_EFM32_GECKO_FAMILY)
  /* Configure the PRS input mode. */
  if (init->prsRxEnable) {
    prsRxInput(usart, init->prsRxCh);
  }
#endif

  /* Configure databits, stopbits, and parity. */
  usart->FRAME = (uint32_t)init->databits
                 | (uint32_t)init->stopbits
                 | (uint32_t)init->parity;

  /* Configure baudrate. */
  USART_BaudrateAsyncSet(usart, init->refFreq, init->baudrate, init->oversampling);

  if (init->autoCsEnable) {
    usart->CTRL |= USART_CTRL_AUTOCS;
  }
#if defined(_USART_TIMING_CSHOLD_MASK)
  usart->TIMING = ((init->autoCsHold << _USART_TIMING_CSHOLD_SHIFT)
                   & _USART_TIMING_CSHOLD_MASK)
                  | ((init->autoCsSetup << _USART_TIMING_CSSETUP_SHIFT)
                     & _USART_TIMING_CSSETUP_MASK);

#endif

#if defined(_USART_ROUTEPEN_RTSPEN_MASK) && defined(_USART_ROUTEPEN_CTSPEN_MASK)
  usart->ROUTEPEN &= ~(_USART_ROUTEPEN_RTSPEN_MASK | _USART_ROUTEPEN_CTSPEN_MASK);
  usart->ROUTEPEN |= init->hwFlowControl;

#elif defined(USART_CTRLX_CTSEN)
  if ((init->hwFlowControl == usartHwFlowControlRts)
      || (init->hwFlowControl == usartHwFlowControlCtsAndRts)) {
    GPIO->USARTROUTE_SET[USART_NUM(usart)].ROUTEEN = GPIO_USART_ROUTEEN_RTSPEN;
  } else {
    GPIO->USARTROUTE_CLR[USART_NUM(usart)].ROUTEEN = GPIO_USART_ROUTEEN_RTSPEN;
  }

  if ((init->hwFlowControl == usartHwFlowControlCts)
      || (init->hwFlowControl == usartHwFlowControlCtsAndRts)) {
    usart->CTRLX_SET = USART_CTRLX_CTSEN;
  } else {
    usart->CTRLX_CLR = USART_CTRLX_CTSEN;
  }
#endif

  /* Finally, enable (as specified). */
  usart->CMD = (uint32_t)init->enable;
}

/***************************************************************************//**
 * @brief
 *   Initialize USART for synchronous mode.
 *
 * @details
 *   This function will configure basic settings to operate in
 *   synchronous mode.
 *
 *   A special control setup not covered by this function must be done after
 *   using this function by direct modification of the CTRL register.
 *
 *   Notice that pins used by the USART module must be properly configured
 *   by the user explicitly for the USART to work as intended.
 *   (When configuring pins remember to consider the sequence of
 *   configuration to avoid unintended pulses/glitches on output
 *   pins.)
 *
 * @param[in] usart
 *   A pointer to the USART peripheral register block. (UART does not support this
 *   mode.)
 *
 * @param[in] init
 *   A pointer to the initialization structure used to configure basic async setup.
 ******************************************************************************/
void USART_InitSync(USART_TypeDef *usart, const USART_InitSync_TypeDef *init)
{
  /* Make sure the module exists on the selected chip. */
  EFM_ASSERT(USART_REF_VALID(usart) || USARTRF_REF_VALID(usart) );

  /* Initialize USART registers to hardware reset state. */
  USART_Reset(usart);

#if defined(USART_EN_EN)
  usart->EN_SET = USART_EN_EN;
#endif

  /* Set bits for synchronous mode. */
  usart->CTRL |= (USART_CTRL_SYNC)
                 | (uint32_t)init->clockMode
                 | (init->msbf ? USART_CTRL_MSBF : 0);

#if defined(_USART_CTRL_AUTOTX_MASK)
  usart->CTRL |= init->autoTx ? USART_CTRL_AUTOTX : 0;
#endif

#if !defined(_EFM32_GECKO_FAMILY)
  if (init->prsRxEnable) {
    prsRxInput(usart, init->prsRxCh);
  }
#endif

  /* Configure databits, leave stopbits and parity at reset default (not used). */
  usart->FRAME = (uint32_t)init->databits
                 | USART_FRAME_STOPBITS_DEFAULT
                 | USART_FRAME_PARITY_DEFAULT;

  /* Configure the baudrate. */
  USART_BaudrateSyncSet(usart, init->refFreq, init->baudrate);

  /* Finally, enable (as specified). */
  if (init->master) {
    usart->CMD = USART_CMD_MASTEREN;
  }

  if (init->autoCsEnable) {
    usart->CTRL |= USART_CTRL_AUTOCS;
  }
#if defined(_USART_TIMING_CSHOLD_MASK)
  usart->TIMING = ((init->autoCsHold << _USART_TIMING_CSHOLD_SHIFT)
                   & _USART_TIMING_CSHOLD_MASK)
                  | ((init->autoCsSetup << _USART_TIMING_CSSETUP_SHIFT)
                     & _USART_TIMING_CSSETUP_MASK);
#endif

  usart->CMD = (uint32_t)init->enable;
}

/***************************************************************************//**
 * @brief
 *   Initialize USART for asynchronous IrDA mode.
 *
 * @details
 *   This function will configure basic settings to operate in
 *   asynchronous IrDA mode.
 *
 *   A special control setup not covered by this function must be done after
 *   using this function by direct modification of the CTRL and IRCTRL
 *   registers.
 *
 *   Notice that pins used by the USART/UART module must be properly configured
 *   by the user explicitly for the USART/UART to work as intended.
 *   (When configuring pins, remember to consider the sequence of
 *   configuration to avoid unintended pulses/glitches on output
 *   pins.)
 *
 * @param[in] usart
 *   A pointer to the USART peripheral register block.
 *
 * @param[in] init
 *   A pointer to the initialization structure used to configure async IrDA setup.
 *
 * @note
 *   Not all USART instances support IrDA. See the data sheet for your device.
 *
 ******************************************************************************/
void USARTn_InitIrDA(USART_TypeDef *usart, const USART_InitIrDA_TypeDef *init)
{
  EFM_ASSERT(USART_IRDA_VALID(usart));

  /* Initialize USART as an async device. */
  USART_InitAsync(usart, &(init->async));

  /* Set IrDA modulation to RZI (return-to-zero-inverted). */
  usart->CTRL |= USART_CTRL_TXINV;

  /* Invert the Rx signal before the demodulator if enabled. */
  if (init->irRxInv) {
    usart->CTRL |= USART_CTRL_RXINV;
  }

  /* Configure IrDA. */
  usart->IRCTRL = (uint32_t)init->irPw
                  | ((init->irFilt ? 1UL : 0UL) << _USART_IRCTRL_IRFILT_SHIFT);
  if (init->irPrsEn) {
    prsIrInput(usart, init->irPrsSel);
  }

  /* Enable IrDA. */
  usart->IRCTRL |= USART_IRCTRL_IREN;
}

#if defined(_USART_I2SCTRL_MASK)
/***************************************************************************//**
 * @brief
 *   Initialize USART for I2S mode.
 *
 * @details
 *   This function will configure basic settings to operate in I2S
 *   mode.
 *
 *   A special control setup not covered by this function must be done after
 *   using this function by direct modification of the CTRL and I2SCTRL
 *   registers.
 *
 *   Notice that pins used by the USART module must be properly configured
 *   by the user explicitly for the USART to work as intended.
 *   (When configuring pins, remember to consider the sequence of
 *   configuration to avoid unintended pulses/glitches on output
 *   pins.)
 *
 * @param[in] usart
 *   A pointer to the USART peripheral register block. (UART does not support this
 *   mode.)
 *
 * @param[in] init
 *   A pointer to the initialization structure used to configure the basic I2S setup.
 *
 * @note
 *   This function does not apply to all USART's. See the chip Reference Manual.
 *
 ******************************************************************************/
void USART_InitI2s(USART_TypeDef *usart, USART_InitI2s_TypeDef *init)
{
  USART_Enable_TypeDef enable;

  /* Make sure the module exists on the selected chip. */
  EFM_ASSERT(USART_I2S_VALID(usart));

  /* Override the enable setting. */
  enable            = init->sync.enable;
  init->sync.enable = usartDisable;

  /* Initialize USART as a sync device. */
  USART_InitSync(usart, &init->sync);

  /* Configure and enable I2CCTRL register according to the selected mode. */
  usart->I2SCTRL = (uint32_t)init->format
                   | (uint32_t)init->justify
                   | (init->delay    ? USART_I2SCTRL_DELAY    : 0)
                   | (init->dmaSplit ? USART_I2SCTRL_DMASPLIT : 0)
                   | (init->mono     ? USART_I2SCTRL_MONO     : 0)
                   | USART_I2SCTRL_EN;

  if (enable != usartDisable) {
    USART_Enable(usart, enable);
  }
}
#endif

/***************************************************************************//**
 * @brief
 *   Initialize the automatic transmissions using PRS channel as a trigger.
 * @note
 *   Initialize USART with USART_Init() before setting up the PRS configuration.
 *
 * @param[in] usart A pointer to USART to configure.
 * @param[in] init A pointer to the initialization structure.
 ******************************************************************************/
void USART_InitPrsTrigger(USART_TypeDef *usart, const USART_PrsTriggerInit_TypeDef *init)
{
  uint32_t trigctrl;

  prsTriggerInput(usart, init->prsTriggerChannel);
  /* Clear values that will be reconfigured. */
  trigctrl = usart->TRIGCTRL & ~(_USART_TRIGCTRL_RXTEN_MASK
                                 | _USART_TRIGCTRL_TXTEN_MASK
#if defined(USART_TRIGCTRL_AUTOTXTEN)
                                 | _USART_TRIGCTRL_AUTOTXTEN_MASK
#endif
                                 );

#if defined(USART_TRIGCTRL_AUTOTXTEN)
  if (init->autoTxTriggerEnable) {
    trigctrl |= USART_TRIGCTRL_AUTOTXTEN;
  }
#endif
  if (init->txTriggerEnable) {
    trigctrl |= USART_TRIGCTRL_TXTEN;
  }
  if (init->rxTriggerEnable) {
    trigctrl |= USART_TRIGCTRL_RXTEN;
  }
  usart->TRIGCTRL = trigctrl;
}

/***************************************************************************//**
 * @brief
 *   Reset USART/UART to the same state that it was in after a hardware reset.
 *
 * @param[in] usart
 *   A pointer to USART/UART peripheral register block.
 ******************************************************************************/
void USART_Reset(USART_TypeDef *usart)
{
  /* Make sure the module exists on the selected chip. */
  EFM_ASSERT(USART_REF_VALID(usart)
             || USARTRF_REF_VALID(usart)
             || UART_REF_VALID(usart) );

#if defined(USART_EN_EN)
  usart->EN_SET = USART_EN_EN;
  /* Make sure disabled first, before resetting other registers. */
  usart->CMD = USART_CMD_RXDIS | USART_CMD_TXDIS | USART_CMD_MASTERDIS
               | USART_CMD_RXBLOCKDIS | USART_CMD_TXTRIDIS | USART_CMD_CLEARTX
               | USART_CMD_CLEARRX;

  usart->CTRL      = _USART_CTRL_RESETVALUE;
  usart->CTRLX     = _USART_CTRLX_RESETVALUE;
  usart->FRAME     = _USART_FRAME_RESETVALUE;
  usart->TRIGCTRL  = _USART_TRIGCTRL_RESETVALUE;
  usart->CLKDIV    = _USART_CLKDIV_RESETVALUE;
  usart->IEN       = _USART_IEN_RESETVALUE;
  usart->IF_CLR    = _USART_IF_MASK;
  usart->TIMING    = _USART_TIMING_RESETVALUE;

  if (USART_IRDA_VALID(usart)) {
    usart->IRCTRL = _USART_IRCTRL_RESETVALUE;
  }

  if (USART_I2S_VALID(usart)) {
    usart->I2SCTRL = _USART_I2SCTRL_RESETVALUE;
  }
  usart->EN_CLR = USART_EN_EN;

#else
  /* Make sure disabled first, before resetting other registers */
  usart->CMD = USART_CMD_RXDIS | USART_CMD_TXDIS | USART_CMD_MASTERDIS
               | USART_CMD_RXBLOCKDIS | USART_CMD_TXTRIDIS | USART_CMD_CLEARTX
               | USART_CMD_CLEARRX;

  usart->CTRL      = _USART_CTRL_RESETVALUE;
  usart->FRAME     = _USART_FRAME_RESETVALUE;
  usart->TRIGCTRL  = _USART_TRIGCTRL_RESETVALUE;
  usart->CLKDIV    = _USART_CLKDIV_RESETVALUE;
  usart->IEN       = _USART_IEN_RESETVALUE;
  usart->IFC       = _USART_IFC_MASK;
#if defined(_USART_TIMING_MASK)
  usart->TIMING    = _USART_TIMING_RESETVALUE;
#endif
#if defined(_USART_ROUTEPEN_MASK) || defined(_UART_ROUTEPEN_MASK)
  usart->ROUTEPEN  = _USART_ROUTEPEN_RESETVALUE;
  usart->ROUTELOC0 = _USART_ROUTELOC0_RESETVALUE;
  usart->ROUTELOC1 = _USART_ROUTELOC1_RESETVALUE;
#else
  usart->ROUTE     = _USART_ROUTE_RESETVALUE;
#endif

  if (USART_IRDA_VALID(usart)) {
    usart->IRCTRL = _USART_IRCTRL_RESETVALUE;
  }

#if defined(_USART_INPUT_RESETVALUE)
  usart->INPUT = _USART_INPUT_RESETVALUE;
#endif

#if defined(_USART_I2SCTRL_RESETVALUE)
  if (USART_I2S_VALID(usart)) {
    usart->I2SCTRL = _USART_I2SCTRL_RESETVALUE;
  }
#endif
#endif
}

/***************************************************************************//**
 * @brief
 *   Receive one 4-8 bit frame, (or part of 10-16 bit frame).
 *
 * @details
 *   This function is normally used to receive one frame when operating with
 *   frame length 4-8 bits. See @ref USART_RxExt() for reception of
 *   9 bit frames.
 *
 *   Notice that possible parity/stop bits in asynchronous mode are not
 *   considered part of a specified frame bit length.
 *
 * @note
 *   This function will stall if the buffer is empty until data is received.
 *   Alternatively, the user can explicitly check whether data is available.
 *   If data is available, call @ref USART_RxDataGet() to read the RXDATA
 *   register directly.
 *
 * @param[in] usart
 *   A pointer to the USART/UART peripheral register block.
 *
 * @return
 *   Data received.
 ******************************************************************************/
uint8_t USART_Rx(USART_TypeDef *usart)
{
  while (!(usart->STATUS & USART_STATUS_RXDATAV)) {
  }

  return (uint8_t)usart->RXDATA;
}

/***************************************************************************//**
 * @brief
 *   Receive two 4-8 bit frames or one 10-16 bit frame.
 *
 * @details
 *   This function is normally used to receive one frame when operating with
 *   frame length 10-16 bits. See @ref USART_RxDoubleExt() for
 *   reception of two 9 bit frames.
 *
 *   Notice that possible parity/stop bits in asynchronous mode are not
 *   considered part of a specified frame bit length.
 *
 * @note
 *   This function will stall if the buffer is empty until data is received.
 *   Alternatively, the user can explicitly check whether data is available.
 *   If data is available, call @ref USART_RxDoubleGet() to read the RXDOUBLE
 *   register directly.
 *
 * @param[in] usart
 *   A pointer to the USART/UART peripheral register block.
 *
 * @return
 *   Data received.
 ******************************************************************************/
uint16_t USART_RxDouble(USART_TypeDef *usart)
{
  while (!(usart->STATUS & USART_STATUS_RXFULL)) {
  }

  return (uint16_t)usart->RXDOUBLE;
}

/***************************************************************************//**
 * @brief
 *   Receive two 4-9 bit frames, or one 10-16 bit frame with extended
 *   information.
 *
 * @details
 *   This function is normally used to receive one frame when operating with
 *   frame length 10-16 bits and additional RX status information is required.
 *
 *   Notice that possible parity/stop bits in asynchronous mode are not
 *   considered part of a specified frame bit length.
 *
 * @note
 *   This function will stall if buffer is empty until data is received.
 *   Alternatively, the user can explicitly check whether data is available.
 *   If data is available, call @ref USART_RxDoubleXGet() to read the RXDOUBLEX
 *   register directly.
 *
 * @param[in] usart
 *   A pointer to the USART/UART peripheral register block.
 *
 * @return
 *   Data received.
 ******************************************************************************/
uint32_t USART_RxDoubleExt(USART_TypeDef *usart)
{
  while (!(usart->STATUS & USART_STATUS_RXFULL)) {
  }

  return usart->RXDOUBLEX;
}

/***************************************************************************//**
 * @brief
 *   Receive one 4-9 bit frame (or part of 10-16 bit frame) with extended
 *   information.
 *
 * @details
 *   This function is normally used to receive one frame when operating with
 *   frame length 4-9 bits and additional RX status information is required.
 *
 *   Notice that possible parity/stop bits in asynchronous mode are not
 *   considered part of a specified frame bit length.
 *
 * @note
 *   This function will stall if the buffer is empty until data is received.
 *   Alternatively, the user can explicitly check whether data is available.
 *   If data is available, call @ref USART_RxDataXGet() to read the RXDATAX
 *   register directly.
 *
 * @param[in] usart
 *   A pointer to the USART/UART peripheral register block.
 *
 * @return
 *   Data received.
 ******************************************************************************/
uint16_t USART_RxExt(USART_TypeDef *usart)
{
  while (!(usart->STATUS & USART_STATUS_RXDATAV)) {
  }

  return (uint16_t)usart->RXDATAX;
}

/***************************************************************************//**
 * @brief
 *   Perform one 8 bit frame SPI transfer.
 *
 * @note
 *   This function will stall if the transmit buffer is full. When a transmit
 *   buffer becomes available, data is written and the function will wait until
 *   data is fully transmitted. The SPI return value is then read out and
 *   returned.
 *
 * @param[in] usart
 *   A pointer to the USART peripheral register block.
 *
 * @param[in] data
 *   Data to transmit.
 *
 * @return
 *   Data received.
 ******************************************************************************/
uint8_t USART_SpiTransfer(USART_TypeDef *usart, uint8_t data)
{
  while (!(usart->STATUS & USART_STATUS_TXBL)) {
  }
  usart->TXDATA = (uint32_t)data;
  while (!(usart->STATUS & USART_STATUS_TXC)) {
  }
  return (uint8_t)usart->RXDATA;
}

/***************************************************************************//**
 * @brief
 *   Transmit one 4-9 bit frame.
 *
 * @details
 *   Depending on the frame length configuration, 4-8 (least significant) bits from
 *   @p data are transmitted. If the frame length is 9, 8 bits are transmitted from
 *   @p data and one bit as specified by CTRL register, BIT8DV field.
 *   See USART_TxExt() for transmitting 9 bit frame with full control of
 *   all 9 bits.
 *
 *   Notice that possible parity/stop bits in asynchronous mode are not
 *   considered part of a specified frame bit length.
 *
 * @note
 *   This function will stall if the buffer is full until the buffer becomes available.
 *
 * @param[in] usart
 *   A pointer to the USART/UART peripheral register block.
 *
 * @param[in] data
 *   Data to transmit. See details above for more information.
 ******************************************************************************/
void USART_Tx(USART_TypeDef *usart, uint8_t data)
{
  /* Check that transmit buffer is empty */
  while (!(usart->STATUS & USART_STATUS_TXBL)) {
  }
  usart->TXDATA = (uint32_t)data;
}

/***************************************************************************//**
 * @brief
 *   Transmit two 4-9 bit frames or one 10-16 bit frame.
 *
 * @details
 *   Depending on the frame length configuration, 4-8 (least significant) bits from
 *   each byte in @p data are transmitted. If frame length is 9, 8 bits are
 *   transmitted from each byte in @p data adding one bit as specified by the CTRL
 *   register, BIT8DV field, to each byte. See USART_TxDoubleExt()
 *   for transmitting two 9 bit frames with full control of all 9 bits.
 *
 *   If the frame length is 10-16, 10-16 (least significant) bits from @p data
 *   are transmitted.
 *
 *   Notice that possible parity/stop bits in asynchronous mode are not
 *   considered part of a specified frame bit length.
 *
 * @note
 *   This function will stall if the buffer is full until the buffer becomes available.
 *
 * @param[in] usart
 *   A pointer to the USART/UART peripheral register block.
 *
 * @param[in] data
 *   Data to transmit, the least significant byte holds the frame transmitted
 *   first. See details above for more info.
 ******************************************************************************/
void USART_TxDouble(USART_TypeDef *usart, uint16_t data)
{
  /* Check that transmit buffer is empty */
  while (!(usart->STATUS & USART_STATUS_TXBL)) {
  }
  usart->TXDOUBLE = (uint32_t)data;
}

/***************************************************************************//**
 * @brief
 *   Transmit two 4-9 bit frames or one 10-16 bit frame with extended control.
 *
 * @details
 *   Notice that possible parity/stop bits in asynchronous mode are not
 *   considered part of a specified frame bit length.
 *
 * @note
 *   This function will stall if the buffer is full until the buffer becomes available.
 *
 * @param[in] usart
 *   A pointer to the USART/UART peripheral register block.
 *
 * @param[in] data
 *   Data to transmit with extended control. Contains two 16 bit words
 *   concatenated. Least significant word holds the frame transmitted first. If the frame
 *   length is 4-9, two frames with 4-9 least significant bits from each 16 bit
 *   word are transmitted.
 * @par
 *   If the frame length is 10-16 bits, 8 data bits are taken from the least
 *   significant 16 bit word and the remaining bits from the other 16 bit word.
 * @par
 *   Additional control bits are available as documented in the reference
 *   manual (set to 0 if not used). For 10-16 bit frame length, these control
 *   bits are taken from the most significant 16 bit word.
 ******************************************************************************/
void USART_TxDoubleExt(USART_TypeDef *usart, uint32_t data)
{
  /* Check that transmit buffer is empty. */
  while (!(usart->STATUS & USART_STATUS_TXBL)) {
  }
  usart->TXDOUBLEX = data;
}

/***************************************************************************//**
 * @brief
 *   Transmit one 4-9 bit frame with extended control.
 *
 * @details
 *   Notice that possible parity/stop bits in asynchronous mode are not
 *   considered part of a specified frame bit length.
 *
 * @note
 *   This function will stall if the buffer is full until the buffer becomes available.
 *
 * @param[in] usart
 *   A pointer to the USART/UART peripheral register block.
 *
 * @param[in] data
 *   Data to transmit with extended control. Least significant bit contains
 *   frame bits. Additional control bits are available as documented in
 *   the reference manual (set to 0 if not used).
 ******************************************************************************/
void USART_TxExt(USART_TypeDef *usart, uint16_t data)
{
  /* Check that the transmit buffer is empty. */
  while (!(usart->STATUS & USART_STATUS_TXBL)) {
  }
  usart->TXDATAX = (uint32_t)data;
}

/** @} (end addtogroup USART) */
/** @} (end addtogroup emlib) */
#endif /* defined(USART_COUNT) && (USART_COUNT > 0) */