Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 | /* * Copyright (c) 2018 omSquare s.r.o. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * @brief Atmel SAM0 series RTC-based system timer * * This system timer implementation supports both tickless and ticking modes. * In tickless mode, RTC counts continually in 32-bit mode and timeouts are * scheduled using the RTC comparator. In ticking mode, RTC is configured to * generate an interrupt every tick. */ #include <soc.h> #include <clock_control.h> #include <system_timer.h> #include <sys_clock.h> /* RTC registers. */ #define RTC0 ((RtcMode0 *) DT_RTC_SAM0_BASE_ADDRESS) /* Number of sys timer cycles per on tick. */ #define CYCLES_PER_TICK (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC \ / CONFIG_SYS_CLOCK_TICKS_PER_SEC) /* Maximum number of ticks. */ #define MAX_TICKS (UINT32_MAX / CYCLES_PER_TICK - 2) #ifdef CONFIG_TICKLESS_KERNEL /* * Due to the nature of clock synchronization, reading from or writing to some * RTC registers takes approximately six RTC_GCLK cycles. This constant defines * a safe threshold for the comparator. */ #define TICK_THRESHOLD 7 BUILD_ASSERT_MSG(CYCLES_PER_TICK > TICK_THRESHOLD, "CYCLES_PER_TICK must be greater than TICK_THRESHOLD for " "tickless mode"); #else /* !CONFIG_TICKLESS_KERNEL */ /* * For some reason, RTC does not generate interrupts when COMP == 0, * MATCHCLR == 1 and PRESCALER == 0. So we need to check that CYCLES_PER_TICK * is more than one. */ BUILD_ASSERT_MSG(CYCLES_PER_TICK > 1, "CYCLES_PER_TICK must be greater than 1 for ticking mode"); #endif /* CONFIG_TICKLESS_KERNEL */ /* Helper macro to get the correct GCLK GEN based on configuration. */ #define GCLK_GEN(n) GCLK_EVAL(n) #define GCLK_EVAL(n) GCLK_CLKCTRL_GEN_GCLK##n /* Tick/cycle count of the last announce call. */ static volatile u32_t rtc_last; #ifndef CONFIG_TICKLESS_KERNEL /* Current tick count. */ static volatile u32_t rtc_counter; /* Tick value of the next timeout. */ static volatile u32_t rtc_timeout; #endif /* CONFIG_TICKLESS_KERNEL */ /* * Waits for RTC bus synchronization. */ static inline void rtc_sync(void) { while (RTC0->STATUS.reg & RTC_STATUS_SYNCBUSY) { /* Wait for bus synchronization... */ } } /* * Reads RTC COUNT register. First a read request must be written to READREQ, * then - when bus synchronization completes - the COUNT register is read and * returned. */ static u32_t rtc_count(void) { RTC0->READREQ.reg = RTC_READREQ_RREQ; rtc_sync(); return RTC0->COUNT.reg; } static void rtc_reset(void) { rtc_sync(); /* Disable interrupt. */ RTC0->INTENCLR.reg = RTC_MODE0_INTENCLR_MASK; /* Clear interrupt flag. */ RTC0->INTFLAG.reg = RTC_MODE0_INTFLAG_MASK; /* Disable RTC module. */ RTC0->CTRL.reg &= ~RTC_MODE0_CTRL_ENABLE; rtc_sync(); /* Initiate software reset. */ RTC0->CTRL.reg |= RTC_MODE0_CTRL_SWRST; } static void rtc_isr(void *arg) { ARG_UNUSED(arg); /* Read and clear the interrupt flag register. */ u16_t status = RTC0->INTFLAG.reg; RTC0->INTFLAG.reg = status; #ifdef CONFIG_TICKLESS_KERNEL /* Read the current counter and announce the elapsed time in ticks. */ u32_t count = rtc_count(); if (count != rtc_last) { u32_t ticks = (count - rtc_last) / CYCLES_PER_TICK; z_clock_announce(ticks); rtc_last += ticks * CYCLES_PER_TICK; } #else /* !CONFIG_TICKLESS_KERNEL */ if (status) { /* RTC just ticked one more tick... */ if (++rtc_counter == rtc_timeout) { z_clock_announce(rtc_counter - rtc_last); rtc_last = rtc_counter; } } else { /* ISR was invoked directly from z_clock_set_timeout. */ z_clock_announce(0); } #endif /* CONFIG_TICKLESS_KERNEL */ } int z_clock_driver_init(struct device *device) { ARG_UNUSED(device); /* Set up bus clock and GCLK generator. */ PM->APBAMASK.reg |= PM_APBAMASK_RTC; GCLK->CLKCTRL.reg = GCLK_CLKCTRL_ID(RTC_GCLK_ID) | GCLK_CLKCTRL_CLKEN | GCLK_GEN(DT_RTC_SAM0_CLOCK_GENERATOR); while (GCLK->STATUS.bit.SYNCBUSY) { /* Synchronize GCLK. */ } /* Reset module to hardware defaults. */ rtc_reset(); rtc_last = 0U; /* Configure RTC with 32-bit mode, configured prescaler and MATCHCLR. */ u16_t ctrl = RTC_MODE0_CTRL_MODE(0) | RTC_MODE0_CTRL_PRESCALER(0); #ifndef CONFIG_TICKLESS_KERNEL ctrl |= RTC_MODE0_CTRL_MATCHCLR; #endif rtc_sync(); RTC0->CTRL.reg = ctrl; #ifdef CONFIG_TICKLESS_KERNEL /* Tickless kernel lets RTC count continually and ignores overflows. */ RTC0->INTENSET.reg = RTC_MODE0_INTENSET_CMP0; #else /* Non-tickless mode uses comparator together with MATCHCLR. */ rtc_sync(); RTC0->COMP[0].reg = CYCLES_PER_TICK; RTC0->INTENSET.reg = RTC_MODE0_INTENSET_OVF; rtc_counter = 0U; rtc_timeout = 0U; #endif /* Enable RTC module. */ rtc_sync(); RTC0->CTRL.reg |= RTC_MODE0_CTRL_ENABLE; /* Enable RTC interrupt. */ NVIC_ClearPendingIRQ(DT_RTC_SAM0_IRQ); IRQ_CONNECT(DT_RTC_SAM0_IRQ, DT_RTC_SAM0_IRQ_PRIORITY, rtc_isr, 0, 0); irq_enable(DT_RTC_SAM0_IRQ); return 0; } void z_clock_set_timeout(s32_t ticks, bool idle) { ARG_UNUSED(idle); #ifdef CONFIG_TICKLESS_KERNEL ticks = (ticks == K_FOREVER) ? MAX_TICKS : ticks; ticks = MAX(MIN(ticks - 1, (s32_t) MAX_TICKS), 0); /* Compute number of RTC cycles until the next timeout. */ u32_t count = rtc_count(); u32_t timeout = ticks * CYCLES_PER_TICK + count % CYCLES_PER_TICK; /* Round to the nearest tick boundary. */ timeout = (timeout + CYCLES_PER_TICK - 1) / CYCLES_PER_TICK * CYCLES_PER_TICK; if (timeout < TICK_THRESHOLD) { timeout += CYCLES_PER_TICK; } rtc_sync(); RTC0->COMP[0].reg = count + timeout; #else /* !CONFIG_TICKLESS_KERNEL */ if (ticks == K_FOREVER) { /* Disable comparator for K_FOREVER and other negative * values. */ rtc_timeout = rtc_counter; return; } if (ticks < 1) { ticks = 1; } /* Avoid race condition between reading counter and ISR incrementing * it. */ int key = irq_lock(); rtc_timeout = rtc_counter + ticks; irq_unlock(key); #endif /* CONFIG_TICKLESS_KERNEL */ } u32_t z_clock_elapsed(void) { #ifdef CONFIG_TICKLESS_KERNEL return (rtc_count() - rtc_last) / CYCLES_PER_TICK; #else return rtc_counter - rtc_last; #endif } u32_t z_timer_cycle_get_32(void) { /* Just return the absolute value of RTC cycle counter. */ return rtc_count(); } |