Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
/*
 * Copyright (c) 2017-2018, NXP Semiconductors, Inc.
 * All rights reserved.
 *
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include "fsl_csi.h"
#if CSI_DRIVER_FRAG_MODE
#include "fsl_cache.h"
#endif

/*******************************************************************************
 * Definitions
 ******************************************************************************/

/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.csi"
#endif

/* Two frame buffer loaded to CSI register at most. */
#define CSI_MAX_ACTIVE_FRAME_NUM 2

/* CSI driver only support RGB565 and YUV422 in fragment mode, 2 bytes per pixel. */
#define CSI_FRAG_INPUT_BYTES_PER_PIXEL 2

/*******************************************************************************
 * Prototypes
 ******************************************************************************/

/*!
 * @brief Get the instance from the base address
 *
 * @param base CSI peripheral base address
 *
 * @return The CSI module instance
 */
static uint32_t CSI_GetInstance(CSI_Type *base);

#if !CSI_DRIVER_FRAG_MODE
/*!
 * @brief Get the delta value of two index in queue.
 *
 * @param startIdx Start index.
 * @param endIdx End index.
 *
 * @return The delta between startIdx and endIdx in queue.
 */
static uint32_t CSI_TransferGetQueueDelta(uint32_t startIdx, uint32_t endIdx);

/*!
 * @brief Increase a index value in queue.
 *
 * This function increases the index value in the queue, if the index is out of
 * the queue range, it is reset to 0.
 *
 * @param idx The index value to increase.
 *
 * @return The index value after increase.
 */
static uint32_t CSI_TransferIncreaseQueueIdx(uint32_t idx);

/*!
 * @brief Get the empty frame buffer count in queue.
 *
 * @param base CSI peripheral base address
 * @param handle Pointer to CSI driver handle.
 *
 * @return Number of the empty frame buffer count in queue.
 */
static uint32_t CSI_TransferGetEmptyBufferCount(CSI_Type *base, csi_handle_t *handle);

/*!
 * @brief Load one empty frame buffer in queue to CSI module.
 *
 * Load one empty frame in queue to CSI module, this function could only be called
 * when there is empty frame buffer in queue.
 *
 * @param base CSI peripheral base address
 * @param handle Pointer to CSI driver handle.
 */
static void CSI_TransferLoadBufferToDevice(CSI_Type *base, csi_handle_t *handle);

/* Typedef for interrupt handler. */
typedef void (*csi_isr_t)(CSI_Type *base, csi_handle_t *handle);

#else

/* Typedef for interrupt handler to work in fragment mode. */
typedef void (*csi_isr_t)(CSI_Type *base, csi_frag_handle_t *handle);
#endif /* CSI_DRIVER_FRAG_MODE */

/*******************************************************************************
 * Variables
 ******************************************************************************/
/*! @brief Pointers to CSI bases for each instance. */
static CSI_Type *const s_csiBases[] = CSI_BASE_PTRS;

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to CSI clocks for each CSI submodule. */
static const clock_ip_name_t s_csiClocks[] = CSI_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

/* Array for the CSI driver handle. */
#if !CSI_DRIVER_FRAG_MODE
static csi_handle_t *s_csiHandle[ARRAY_SIZE(s_csiBases)];
#else
static csi_frag_handle_t *s_csiHandle[ARRAY_SIZE(s_csiBases)];
#endif

/* Array of CSI IRQ number. */
static const IRQn_Type s_csiIRQ[] = CSI_IRQS;

/* CSI ISR for transactional APIs. */
static csi_isr_t s_csiIsr;

/*******************************************************************************
 * Code
 ******************************************************************************/
static uint32_t CSI_GetInstance(CSI_Type *base)
{
    uint32_t instance;

    /* Find the instance index from base address mappings. */
    for (instance = 0; instance < ARRAY_SIZE(s_csiBases); instance++)
    {
        if (s_csiBases[instance] == base)
        {
            break;
        }
    }

    assert(instance < ARRAY_SIZE(s_csiBases));

    return instance;
}

#if !CSI_DRIVER_FRAG_MODE
static uint32_t CSI_TransferGetQueueDelta(uint32_t startIdx, uint32_t endIdx)
{
    if (endIdx >= startIdx)
    {
        return endIdx - startIdx;
    }
    else
    {
        return startIdx + CSI_DRIVER_ACTUAL_QUEUE_SIZE - endIdx;
    }
}

static uint32_t CSI_TransferIncreaseQueueIdx(uint32_t idx)
{
    uint32_t ret;

    /*
     * Here not use the method:
     * ret = (idx+1) % CSI_DRIVER_ACTUAL_QUEUE_SIZE;
     *
     * Because the mod function might be slow.
     */

    ret = idx + 1;

    if (ret >= CSI_DRIVER_ACTUAL_QUEUE_SIZE)
    {
        ret = 0;
    }

    return ret;
}

static uint32_t CSI_TransferGetEmptyBufferCount(CSI_Type *base, csi_handle_t *handle)
{
    return CSI_TransferGetQueueDelta(handle->queueDrvReadIdx, handle->queueUserWriteIdx);
}

static void CSI_TransferLoadBufferToDevice(CSI_Type *base, csi_handle_t *handle)
{
    /* Load the frame buffer address to CSI register. */
    CSI_SetRxBufferAddr(base, handle->nextBufferIdx, handle->frameBufferQueue[handle->queueDrvReadIdx]);

    handle->queueDrvReadIdx = CSI_TransferIncreaseQueueIdx(handle->queueDrvReadIdx);
    handle->activeBufferNum++;

    /* There are two CSI buffers, so could use XOR to get the next index. */
    handle->nextBufferIdx ^= 1U;
}
#endif /* CSI_DRIVER_FRAG_MODE */

/*!
 * brief Initialize the CSI.
 *
 * This function enables the CSI peripheral clock, and resets the CSI registers.
 *
 * param base CSI peripheral base address.
 * param config Pointer to the configuration structure.
 *
 * retval kStatus_Success Initialize successfully.
 * retval kStatus_InvalidArgument Initialize failed because of invalid argument.
 */
status_t CSI_Init(CSI_Type *base, const csi_config_t *config)
{
    assert(config);
    uint32_t reg;
    uint32_t imgWidth_Bytes;

    imgWidth_Bytes = config->width * config->bytesPerPixel;

    /* The image width and frame buffer pitch should be multiple of 8-bytes. */
    if ((imgWidth_Bytes & 0x07) | ((uint32_t)config->linePitch_Bytes & 0x07))
    {
        return kStatus_InvalidArgument;
    }

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    uint32_t instance = CSI_GetInstance(base);
    CLOCK_EnableClock(s_csiClocks[instance]);
#endif

    CSI_Reset(base);

    /* Configure CSICR1. CSICR1 has been reset to the default value, so could write it directly. */
    reg = ((uint32_t)config->workMode) | config->polarityFlags | CSI_CSICR1_FCC_MASK;

    if (config->useExtVsync)
    {
        reg |= CSI_CSICR1_EXT_VSYNC_MASK;
    }

    base->CSICR1 = reg;

    /*
     * Generally, CSIIMAG_PARA[IMAGE_WIDTH] indicates how many data bus cycles per line.
     * One special case is when receiving 24-bit pixels through 8-bit data bus, and
     * CSICR3[ZERO_PACK_EN] is enabled, in this case, the CSIIMAG_PARA[IMAGE_WIDTH]
     * should be set to the pixel number per line.
     *
     * Currently the CSI driver only support 8-bit data bus, so generally the
     * CSIIMAG_PARA[IMAGE_WIDTH] is bytes number per line. When the CSICR3[ZERO_PACK_EN]
     * is enabled, CSIIMAG_PARA[IMAGE_WIDTH] is pixel number per line.
     *
     * NOTE: The CSIIMAG_PARA[IMAGE_WIDTH] setting code should be updated if the
     * driver is upgraded to support other data bus width.
     */
    if (4U == config->bytesPerPixel)
    {
        /* Enable zero pack. */
        base->CSICR3 |= CSI_CSICR3_ZERO_PACK_EN_MASK;
        /* Image parameter. */
        base->CSIIMAG_PARA = ((uint32_t)(config->width) << CSI_CSIIMAG_PARA_IMAGE_WIDTH_SHIFT) |
                             ((uint32_t)(config->height) << CSI_CSIIMAG_PARA_IMAGE_HEIGHT_SHIFT);
    }
    else
    {
        /* Image parameter. */
        base->CSIIMAG_PARA = ((uint32_t)(imgWidth_Bytes) << CSI_CSIIMAG_PARA_IMAGE_WIDTH_SHIFT) |
                             ((uint32_t)(config->height) << CSI_CSIIMAG_PARA_IMAGE_HEIGHT_SHIFT);
    }

    /* The CSI frame buffer bus is 8-byte width. */
    base->CSIFBUF_PARA = (uint32_t)((config->linePitch_Bytes - imgWidth_Bytes) / 8U)
                         << CSI_CSIFBUF_PARA_FBUF_STRIDE_SHIFT;

    /* Enable auto ECC. */
    base->CSICR3 |= CSI_CSICR3_ECC_AUTO_EN_MASK;

    /*
     * For better performance.
     * The DMA burst size could be set to 16 * 8 byte, 8 * 8 byte, or 4 * 8 byte,
     * choose the best burst size based on bytes per line.
     */
    if (!(imgWidth_Bytes % (8 * 16)))
    {
        base->CSICR2 = CSI_CSICR2_DMA_BURST_TYPE_RFF(3U);
        base->CSICR3 = (CSI->CSICR3 & ~CSI_CSICR3_RxFF_LEVEL_MASK) | ((2U << CSI_CSICR3_RxFF_LEVEL_SHIFT));
    }
    else if (!(imgWidth_Bytes % (8 * 8)))
    {
        base->CSICR2 = CSI_CSICR2_DMA_BURST_TYPE_RFF(2U);
        base->CSICR3 = (CSI->CSICR3 & ~CSI_CSICR3_RxFF_LEVEL_MASK) | ((1U << CSI_CSICR3_RxFF_LEVEL_SHIFT));
    }
    else
    {
        base->CSICR2 = CSI_CSICR2_DMA_BURST_TYPE_RFF(1U);
        base->CSICR3 = (CSI->CSICR3 & ~CSI_CSICR3_RxFF_LEVEL_MASK) | ((0U << CSI_CSICR3_RxFF_LEVEL_SHIFT));
    }

    CSI_ReflashFifoDma(base, kCSI_RxFifo);

    return kStatus_Success;
}

/*!
 * brief De-initialize the CSI.
 *
 * This function disables the CSI peripheral clock.
 *
 * param base CSI peripheral base address.
 */
void CSI_Deinit(CSI_Type *base)
{
    /* Disable transfer first. */
    CSI_Stop(base);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    uint32_t instance = CSI_GetInstance(base);
    CLOCK_DisableClock(s_csiClocks[instance]);
#endif
}

/*!
 * brief Reset the CSI.
 *
 * This function resets the CSI peripheral registers to default status.
 *
 * param base CSI peripheral base address.
 */
void CSI_Reset(CSI_Type *base)
{
    uint32_t csisr;

    /* Disable transfer first. */
    CSI_Stop(base);

    /* Disable DMA request. */
    base->CSICR3 = 0U;

    /* Reset the fame count. */
    base->CSICR3 |= CSI_CSICR3_FRMCNT_RST_MASK;
    while (base->CSICR3 & CSI_CSICR3_FRMCNT_RST_MASK)
    {
    }

    /* Clear the RX FIFO. */
    CSI_ClearFifo(base, kCSI_AllFifo);

    /* Reflash DMA. */
    CSI_ReflashFifoDma(base, kCSI_AllFifo);

    /* Clear the status. */
    csisr = base->CSISR;
    base->CSISR = csisr;

    /* Set the control registers to default value. */
    base->CSICR1 = CSI_CSICR1_HSYNC_POL_MASK | CSI_CSICR1_EXT_VSYNC_MASK;
    base->CSICR2 = 0U;
    base->CSICR3 = 0U;
#if defined(CSI_CSICR18_CSI_LCDIF_BUFFER_LINES)
    base->CSICR18 = CSI_CSICR18_AHB_HPROT(0x0DU) | CSI_CSICR18_CSI_LCDIF_BUFFER_LINES(0x02U);
#else
    base->CSICR18 = CSI_CSICR18_AHB_HPROT(0x0DU);
#endif
    base->CSIFBUF_PARA = 0U;
    base->CSIIMAG_PARA = 0U;
}

/*!
 * brief Get the default configuration for to initialize the CSI.
 *
 * The default configuration value is:
 *
 * code
    config->width = 320U;
    config->height = 240U;
    config->polarityFlags = kCSI_HsyncActiveHigh | kCSI_DataLatchOnRisingEdge;
    config->bytesPerPixel = 2U;
    config->linePitch_Bytes = 320U * 2U;
    config->workMode = kCSI_GatedClockMode;
    config->dataBus = kCSI_DataBus8Bit;
    config->useExtVsync = true;
   endcode
 *
 * param config Pointer to the CSI configuration.
 */
void CSI_GetDefaultConfig(csi_config_t *config)
{
    assert(config);

    /* Initializes the configure structure to zero. */
    memset(config, 0, sizeof(*config));

    config->width = 320U;
    config->height = 240U;
    config->polarityFlags = kCSI_HsyncActiveHigh | kCSI_DataLatchOnRisingEdge;
    config->bytesPerPixel = 2U;
    config->linePitch_Bytes = 320U * 2U;
    config->workMode = kCSI_GatedClockMode;
    config->dataBus = kCSI_DataBus8Bit;
    config->useExtVsync = true;
}

/*!
 * brief Set the RX frame buffer address.
 *
 * param base CSI peripheral base address.
 * param index Buffer index.
 * param addr Frame buffer address to set.
 */
void CSI_SetRxBufferAddr(CSI_Type *base, uint8_t index, uint32_t addr)
{
    if (index)
    {
        base->CSIDMASA_FB2 = addr;
    }
    else
    {
        base->CSIDMASA_FB1 = addr;
    }
}

/*!
 * brief Clear the CSI FIFO.
 *
 * This function clears the CSI FIFO.
 *
 * param base CSI peripheral base address.
 * param fifo The FIFO to clear.
 */
void CSI_ClearFifo(CSI_Type *base, csi_fifo_t fifo)
{
    uint32_t cr1;
    uint32_t mask = 0U;

    /* The FIFO could only be cleared when CSICR1[FCC] = 0, so first clear the FCC. */
    cr1 = base->CSICR1;
    base->CSICR1 = (cr1 & ~CSI_CSICR1_FCC_MASK);

    if ((uint32_t)fifo & (uint32_t)kCSI_RxFifo)
    {
        mask |= CSI_CSICR1_CLR_RXFIFO_MASK;
    }

    if ((uint32_t)fifo & (uint32_t)kCSI_StatFifo)
    {
        mask |= CSI_CSICR1_CLR_STATFIFO_MASK;
    }

    base->CSICR1 = (cr1 & ~CSI_CSICR1_FCC_MASK) | mask;

    /* Wait clear completed. */
    while (base->CSICR1 & mask)
    {
    }

    /* Recover the FCC. */
    base->CSICR1 = cr1;
}

/*!
 * brief Reflash the CSI FIFO DMA.
 *
 * This function reflashes the CSI FIFO DMA.
 *
 * For RXFIFO, there are two frame buffers. When the CSI module started, it saves
 * the frames to frame buffer 0 then frame buffer 1, the two buffers will be
 * written by turns. After reflash DMA using this function, the CSI is reset to
 * save frame to buffer 0.
 *
 * param base CSI peripheral base address.
 * param fifo The FIFO DMA to reflash.
 */
void CSI_ReflashFifoDma(CSI_Type *base, csi_fifo_t fifo)
{
    uint32_t cr3 = 0U;

    if ((uint32_t)fifo & (uint32_t)kCSI_RxFifo)
    {
        cr3 |= CSI_CSICR3_DMA_REFLASH_RFF_MASK;
    }

    if ((uint32_t)fifo & (uint32_t)kCSI_StatFifo)
    {
        cr3 |= CSI_CSICR3_DMA_REFLASH_SFF_MASK;
    }

    base->CSICR3 |= cr3;

    /* Wait clear completed. */
    while (base->CSICR3 & cr3)
    {
    }
}

/*!
 * brief Enable or disable the CSI FIFO DMA request.
 *
 * param base CSI peripheral base address.
 * param fifo The FIFO DMA reques to enable or disable.
 * param enable True to enable, false to disable.
 */
void CSI_EnableFifoDmaRequest(CSI_Type *base, csi_fifo_t fifo, bool enable)
{
    uint32_t cr3 = 0U;

    if ((uint32_t)fifo & (uint32_t)kCSI_RxFifo)
    {
        cr3 |= CSI_CSICR3_DMA_REQ_EN_RFF_MASK;
    }

    if ((uint32_t)fifo & (uint32_t)kCSI_StatFifo)
    {
        cr3 |= CSI_CSICR3_DMA_REQ_EN_SFF_MASK;
    }

    if (enable)
    {
        base->CSICR3 |= cr3;
    }
    else
    {
        base->CSICR3 &= ~cr3;
    }
}

/*!
 * brief Enables CSI interrupt requests.
 *
 * param base CSI peripheral base address.
 * param mask The interrupts to enable, pass in as OR'ed value of ref _csi_interrupt_enable.
 */
void CSI_EnableInterrupts(CSI_Type *base, uint32_t mask)
{
    base->CSICR1 |= (mask & CSI_CSICR1_INT_EN_MASK);
    base->CSICR3 |= (mask & CSI_CSICR3_INT_EN_MASK);
    base->CSICR18 |= ((mask & CSI_CSICR18_INT_EN_MASK) >> 6U);
}

/*!
 * brief Disable CSI interrupt requests.
 *
 * param base CSI peripheral base address.
 * param mask The interrupts to disable, pass in as OR'ed value of ref _csi_interrupt_enable.
 */
void CSI_DisableInterrupts(CSI_Type *base, uint32_t mask)
{
    base->CSICR1 &= ~(mask & CSI_CSICR1_INT_EN_MASK);
    base->CSICR3 &= ~(mask & CSI_CSICR3_INT_EN_MASK);
    base->CSICR18 &= ~((mask & CSI_CSICR18_INT_EN_MASK) >> 6U);
}

#if !CSI_DRIVER_FRAG_MODE
/*!
 * brief Initializes the CSI handle.
 *
 * This function initializes CSI handle, it should be called before any other
 * CSI transactional functions.
 *
 * param base CSI peripheral base address.
 * param handle Pointer to the handle structure.
 * param callback Callback function for CSI transfer.
 * param userData Callback function parameter.
 *
 * retval kStatus_Success Handle created successfully.
 */
status_t CSI_TransferCreateHandle(CSI_Type *base,
                                  csi_handle_t *handle,
                                  csi_transfer_callback_t callback,
                                  void *userData)
{
    assert(handle);
    uint32_t instance;

    memset(handle, 0, sizeof(*handle));

    /* Set the callback and user data. */
    handle->callback = callback;
    handle->userData = userData;

    /* Get instance from peripheral base address. */
    instance = CSI_GetInstance(base);

    /* Save the handle in global variables to support the double weak mechanism. */
    s_csiHandle[instance] = handle;

    s_csiIsr = CSI_TransferHandleIRQ;

    /* Enable interrupt. */
    EnableIRQ(s_csiIRQ[instance]);

    return kStatus_Success;
}

/*!
 * brief Start the transfer using transactional functions.
 *
 * When the empty frame buffers have been submit to CSI driver using function
 * ref CSI_TransferSubmitEmptyBuffer, user could call this function to start
 * the transfer. The incoming frame will be saved to the empty frame buffer,
 * and user could be optionally notified through callback function.
 *
 * param base CSI peripheral base address.
 * param handle Pointer to the handle structure.
 *
 * retval kStatus_Success Started successfully.
 * retval kStatus_CSI_NoEmptyBuffer Could not start because no empty frame buffer in queue.
 */
status_t CSI_TransferStart(CSI_Type *base, csi_handle_t *handle)
{
    assert(handle);

    uint32_t emptyBufferCount;

    emptyBufferCount = CSI_TransferGetEmptyBufferCount(base, handle);

    if (emptyBufferCount < 2U)
    {
        return kStatus_CSI_NoEmptyBuffer;
    }

    handle->nextBufferIdx = 0U;
    handle->activeBufferNum = 0U;

    /*
     * Write to memory from first completed frame.
     * DMA base addr switch at the edge of the first data of each frame, thus
     * if one frame is broken, it could be reset at the next frame.
     */
    base->CSICR18 = (base->CSICR18 & ~CSI_CSICR18_MASK_OPTION_MASK) | CSI_CSICR18_MASK_OPTION(0) |
                    CSI_CSICR18_BASEADDR_SWITCH_SEL_MASK | CSI_CSICR18_BASEADDR_SWITCH_EN_MASK;

    /* Load the frame buffer to CSI register, there are at least two empty buffers. */
    CSI_TransferLoadBufferToDevice(base, handle);
    CSI_TransferLoadBufferToDevice(base, handle);

    /* After reflash DMA, the CSI saves frame to frame buffer 0. */
    CSI_ReflashFifoDma(base, kCSI_RxFifo);

    handle->transferStarted = true;
    handle->transferOnGoing = true;

    CSI_EnableInterrupts(base, kCSI_RxBuffer1DmaDoneInterruptEnable | kCSI_RxBuffer0DmaDoneInterruptEnable);

    CSI_Start(base);

    return kStatus_Success;
}

/*!
 * brief Stop the transfer using transactional functions.
 *
 * The driver does not clean the full frame buffers in queue. In other words, after
 * calling this function, user still could get the full frame buffers in queue
 * using function ref CSI_TransferGetFullBuffer.
 *
 * param base CSI peripheral base address.
 * param handle Pointer to the handle structure.
 *
 * retval kStatus_Success Stoped successfully.
 */
status_t CSI_TransferStop(CSI_Type *base, csi_handle_t *handle)
{
    assert(handle);

    CSI_Stop(base);
    CSI_DisableInterrupts(base, kCSI_RxBuffer1DmaDoneInterruptEnable | kCSI_RxBuffer0DmaDoneInterruptEnable);

    handle->transferStarted = false;
    handle->transferOnGoing = false;

    /* Stoped, reset the state flags. */
    handle->queueDrvReadIdx = handle->queueDrvWriteIdx;
    handle->activeBufferNum = 0U;

    return kStatus_Success;
}

/*!
 * brief Submit empty frame buffer to queue.
 *
 * This function could be called before ref CSI_TransferStart or after ref
 * CSI_TransferStart. If there is no room in queue to store the empty frame
 * buffer, this function returns error.
 *
 * param base CSI peripheral base address.
 * param handle Pointer to the handle structure.
 * param frameBuffer Empty frame buffer to submit.
 *
 * retval kStatus_Success Started successfully.
 * retval kStatus_CSI_QueueFull Could not submit because there is no room in queue.
 */
status_t CSI_TransferSubmitEmptyBuffer(CSI_Type *base, csi_handle_t *handle, uint32_t frameBuffer)
{
    uint32_t csicr1;

    if (CSI_DRIVER_QUEUE_SIZE == CSI_TransferGetQueueDelta(handle->queueUserReadIdx, handle->queueUserWriteIdx))
    {
        return kStatus_CSI_QueueFull;
    }

    /* Disable the interrupt to protect the index information in handle. */
    csicr1 = base->CSICR1;

    base->CSICR1 = (csicr1 & ~(CSI_CSICR1_FB2_DMA_DONE_INTEN_MASK | CSI_CSICR1_FB1_DMA_DONE_INTEN_MASK));

    /* Save the empty frame buffer address to queue. */
    handle->frameBufferQueue[handle->queueUserWriteIdx] = frameBuffer;
    handle->queueUserWriteIdx = CSI_TransferIncreaseQueueIdx(handle->queueUserWriteIdx);

    /*
     * If transfer is ongoing and an active slot is available, Load the buffer
     * now to prevent buffer starvation during next TransferHandleIRQ event.
     */
    if (handle->transferOnGoing && handle->activeBufferNum < CSI_MAX_ACTIVE_FRAME_NUM) {
        CSI_TransferLoadBufferToDevice(base, handle);
    }

    base->CSICR1 = csicr1;

    if (handle->transferStarted)
    {
        /*
         * If user has started transfer using @ref CSI_TransferStart, and the CSI is
         * stopped due to no empty frame buffer in queue, then start the CSI.
         */
        if ((!handle->transferOnGoing) && (CSI_TransferGetEmptyBufferCount(base, handle) >= 2U))
        {
            handle->transferOnGoing = true;
            handle->nextBufferIdx = 0U;

            /* Load the frame buffers to CSI module. */
            CSI_TransferLoadBufferToDevice(base, handle);
            CSI_TransferLoadBufferToDevice(base, handle);
            CSI_ReflashFifoDma(base, kCSI_RxFifo);
            CSI_Start(base);
        }
    }

    return kStatus_Success;
}

/*!
 * brief Get one full frame buffer from queue.
 *
 * After the transfer started using function ref CSI_TransferStart, the incoming
 * frames will be saved to the empty frame buffers in queue. This function gets
 * the full-filled frame buffer from the queue. If there is no full frame buffer
 * in queue, this function returns error.
 *
 * param base CSI peripheral base address.
 * param handle Pointer to the handle structure.
 * param frameBuffer Full frame buffer.
 *
 * retval kStatus_Success Started successfully.
 * retval kStatus_CSI_NoFullBuffer There is no full frame buffer in queue.
 */
status_t CSI_TransferGetFullBuffer(CSI_Type *base, csi_handle_t *handle, uint32_t *frameBuffer)
{
    uint32_t csicr1;

    /* No full frame buffer. */
    if (handle->queueUserReadIdx == handle->queueDrvWriteIdx)
    {
        return kStatus_CSI_NoFullBuffer;
    }

    /* Disable the interrupt to protect the index information in handle. */
    csicr1 = base->CSICR1;

    base->CSICR1 = (csicr1 & ~(CSI_CSICR1_FB2_DMA_DONE_INTEN_MASK | CSI_CSICR1_FB1_DMA_DONE_INTEN_MASK));

    *frameBuffer = handle->frameBufferQueue[handle->queueUserReadIdx];

    handle->queueUserReadIdx = CSI_TransferIncreaseQueueIdx(handle->queueUserReadIdx);

    base->CSICR1 = csicr1;

    return kStatus_Success;
}

/*!
 * brief CSI IRQ handle function.
 *
 * This function handles the CSI IRQ request to work with CSI driver transactional
 * APIs.
 *
 * param base CSI peripheral base address.
 * param handle CSI handle pointer.
 */
void CSI_TransferHandleIRQ(CSI_Type *base, csi_handle_t *handle)
{
    uint32_t queueDrvWriteIdx;
    uint32_t csisr = base->CSISR;

    /* Clear the error flags. */
    base->CSISR = csisr;

    /*
     * If both frame buffer 0 and frame buffer 1 flags assert, driver does not
     * know which frame buffer ready just now, so reset the CSI transfer to
     * start from frame buffer 0.
     */
    if ((csisr & (CSI_CSISR_DMA_TSF_DONE_FB2_MASK | CSI_CSISR_DMA_TSF_DONE_FB1_MASK)) ==
        (CSI_CSISR_DMA_TSF_DONE_FB2_MASK | CSI_CSISR_DMA_TSF_DONE_FB1_MASK))
    {
        CSI_Stop(base);

        /* Reset the active buffers. */
        if (1 <= handle->activeBufferNum)
        {
            queueDrvWriteIdx = handle->queueDrvWriteIdx;

            base->CSIDMASA_FB1 = handle->frameBufferQueue[queueDrvWriteIdx];

            if (2U == handle->activeBufferNum)
            {
                queueDrvWriteIdx = CSI_TransferIncreaseQueueIdx(queueDrvWriteIdx);
                base->CSIDMASA_FB2 = handle->frameBufferQueue[queueDrvWriteIdx];
                handle->nextBufferIdx = 0U;
            }
            else
            {
                handle->nextBufferIdx = 1U;
            }
        }
        CSI_ReflashFifoDma(base, kCSI_RxFifo);
        CSI_Start(base);
    }
    else if (csisr & (CSI_CSISR_DMA_TSF_DONE_FB2_MASK | CSI_CSISR_DMA_TSF_DONE_FB1_MASK))
    {
        handle->queueDrvWriteIdx = CSI_TransferIncreaseQueueIdx(handle->queueDrvWriteIdx);

        handle->activeBufferNum--;

        if (handle->callback)
        {
            handle->callback(base, handle, kStatus_CSI_FrameDone, handle->userData);
        }

        /* No frame buffer to save incoming data, then stop the CSI module. */
        if (!(handle->activeBufferNum))
        {
            CSI_Stop(base);
            handle->transferOnGoing = false;
        }
        else
        {
            if (CSI_TransferGetEmptyBufferCount(base, handle))
            {
                CSI_TransferLoadBufferToDevice(base, handle);
            }
        }
    }
    else
    {
    }
}

#else /* CSI_DRIVER_FRAG_MODE */

#if defined(__CC_ARM) || defined(__ARMCC_VERSION)
__asm void CSI_ExtractYFromYUYV(void *datBase, const void *dmaBase, size_t count)
{
    /* clang-format off */
    push    {r4-r7, lr}
10
    LDMIA    R1!, {r3-r6}
    bfi      r7, r3, #0, #8  /* Y0 */
    bfi      ip, r5, #0, #8  /* Y4 */
    lsr      r3, r3, #16
    lsr      r5, r5, #16
    bfi      r7, r3, #8, #8  /* Y1 */
    bfi      ip, r5, #8, #8  /* Y5 */
    bfi      r7, r4, #16, #8 /* Y2 */
    bfi      ip, r6, #16, #8 /* Y6 */
    lsr      r4, r4, #16
    lsr      r6, r6, #16
    bfi      r7, r4, #24, #8 /* Y3 */
    bfi      ip, r6, #24, #8 /* Y7 */
    STMIA    r0!, {r7, ip}
    subs     r2, #8
    bne      %b10
    pop      {r4-r7, pc}
    /* clang-format on */
}

__asm void CSI_ExtractYFromUYVY(void *datBase, const void *dmaBase, size_t count)
{
    /* clang-format off */
    push    {r4-r7, lr}
10
    LDMIA    R1!, {r3-r6}
    lsr      r3, r3, #8
    lsr      r5, r5, #8
    bfi      r7, r3, #0, #8  /* Y0 */
    bfi      ip, r5, #0, #8  /* Y4 */
    lsr      r3, r3, #16
    lsr      r5, r5, #16
    bfi      r7, r3, #8, #8  /* Y1 */
    bfi      ip, r5, #8, #8  /* Y5 */
    lsr      r4, r4, #8
    lsr      r6, r6, #8
    bfi      r7, r4, #16, #8 /* Y2 */
    bfi      ip, r6, #16, #8 /* Y6 */
    lsr      r4, r4, #16
    lsr      r6, r6, #16
    bfi      r7, r4, #24, #8 /* Y3 */
    bfi      ip, r6, #24, #8 /* Y7 */
    STMIA    r0!, {r7, ip}
    subs     r2, #8
    bne      %b10
    pop      {r4-r7, pc}
    /* clang-format on */
}

#elif(defined(__GNUC__) || defined(__ICCARM__))
#if defined(__ICCARM__)
#pragma diag_suppress = Pe940
#endif
__attribute__((naked)) void CSI_ExtractYFromYUYV(void *datBase, const void *dmaBase, size_t count)
{
    /* clang-format off */
    __asm volatile(
        "    push    {r1-r7, r12, lr}  \n"
        "loop0:                        \n"
        "    ldmia   r1!, {r3-r6}      \n"
        "    bfi     r7, r3, #0, #8    \n" /* Y0 */
        "    bfi     r12, r5, #0, #8   \n" /* Y4 */
        "    lsr     r3, r3, #16       \n"
        "    lsr     r5, r5, #16       \n"
        "    bfi     r7, r3, #8, #8    \n" /* Y1 */
        "    bfi     r12, r5, #8, #8   \n" /* Y5 */
        "    bfi     r7, r4, #16, #8   \n" /* Y2 */
        "    bfi     r12, r6, #16, #8  \n" /* Y6 */
        "    lsr     r4, r4, #16       \n"
        "    lsr     r6, r6, #16       \n"
        "    bfi     r7, r4, #24, #8   \n" /* Y3 */
        "    bfi     r12, r6, #24, #8  \n" /* Y7 */
        "    stmia   r0!, {r7, r12}    \n"
        "    subs    r2, #8            \n"
        "    bne     loop0             \n"
        "    pop     {r1-r7, r12, pc}  \n");
    /* clang-format on */
}

__attribute__((naked)) void CSI_ExtractYFromUYVY(void *datBase, const void *dmaBase, size_t count)
{
    /* clang-format off */
    __asm volatile(
        "    push    {r1-r7, r12, lr}  \n"
        "loop1:                        \n"
        "    ldmia   r1!, {r3-r6}      \n"
        "    lsr     r3, r3, #8        \n"
        "    lsr     r5, r5, #8        \n"
        "    bfi     r7, r3, #0, #8    \n" /* Y0 */
        "    bfi     r12, r5, #0, #8   \n" /* Y4 */
        "    lsr     r3, r3, #16       \n"
        "    lsr     r5, r5, #16       \n"
        "    bfi     r7, r3, #8, #8    \n" /* Y1 */
        "    bfi     r12, r5, #8, #8   \n" /* Y5 */
        "    lsr     r4, r4, #8        \n"
        "    lsr     r6, r6, #8        \n"
        "    bfi     r7, r4, #16, #8   \n" /* Y2 */
        "    bfi     r12, r6, #16, #8  \n" /* Y6 */
        "    lsr     r4, r4, #16       \n"
        "    lsr     r6, r6, #16       \n"
        "    bfi     r7, r4, #24, #8   \n" /* Y3 */
        "    bfi     r12, r6, #24, #8  \n" /* Y7 */
        "    stmia   r0!, {r7, r12}    \n"
        "    subs    r2, #8            \n"
        "    bne     loop1             \n"
        "    pop     {r1-r7, r12, pc}  \n");
    /* clang-format on */
}
#if defined(__ICCARM__)
#pragma diag_default = Pe940
#endif
#else
#error Toolchain not supported.
#endif

static void CSI_MemCopy(void *pDest, const void *pSrc, size_t cnt)
{
    memcpy(pDest, pSrc, cnt);
}

/*!
 * brief Initialize the CSI to work in fragment mode.
 *
 * This function enables the CSI peripheral clock, and resets the CSI registers.
 *
 * param base CSI peripheral base address.
 */
void CSI_FragModeInit(CSI_Type *base)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    uint32_t instance = CSI_GetInstance(base);
    CLOCK_EnableClock(s_csiClocks[instance]);
#endif

    CSI_Reset(base);
}

/*!
 * brief De-initialize the CSI.
 *
 * This function disables the CSI peripheral clock.
 *
 * param base CSI peripheral base address.
 */
void CSI_FragModeDeinit(CSI_Type *base)
{
    CSI_Deinit(base);
}

/*!
 * brief Create handle for CSI work in fragment mode.
 *
 * param base CSI peripheral base address.
 * param handle Pointer to the transactional handle.
 * param config Pointer to the configuration structure.
 * param callback Callback function for CSI transfer.
 * param userData Callback function parameter.
 *
 * retval kStatus_Success Initialize successfully.
 * retval kStatus_InvalidArgument Initialize failed because of invalid argument.
 */
status_t CSI_FragModeCreateHandle(CSI_Type *base,
                                  csi_frag_handle_t *handle,
                                  const csi_frag_config_t *config,
                                  csi_frag_transfer_callback_t callback,
                                  void *userData)
{
    assert(config);
    uint32_t reg;
    uint32_t instance;
    uint32_t imgWidth_Bytes;

    imgWidth_Bytes = config->width * CSI_FRAG_INPUT_BYTES_PER_PIXEL;

    /* The image buffer line width should be multiple of 8-bytes. */
    if ((imgWidth_Bytes & 0x07) != 0)
    {
        return kStatus_InvalidArgument;
    }

    /* Camera frame height must be dividable by DMA buffer line. */
    if (config->height % config->dmaBufferLine != 0)
    {
        return kStatus_InvalidArgument;
    }

    memset(handle, 0, sizeof(*handle));
    handle->callback = callback;
    handle->userData = userData;
    handle->height = config->height;
    handle->width = config->width;
    handle->maxLinePerFrag = config->dmaBufferLine;
    handle->dmaBytePerLine = config->width * CSI_FRAG_INPUT_BYTES_PER_PIXEL;
    handle->isDmaBufferCachable = config->isDmaBufferCachable;

    /* Get instance from peripheral base address. */
    instance = CSI_GetInstance(base);
    /* Save the handle in global variables to support the double weak mechanism. */
    s_csiHandle[instance] = handle;

    s_csiIsr = CSI_FragModeTransferHandleIRQ;

    EnableIRQ(s_csiIRQ[instance]);

    /* Configure CSICR1. CSICR1 has been reset to the default value, so could write it directly. */
    reg = ((uint32_t)config->workMode) | config->polarityFlags | CSI_CSICR1_FCC_MASK;

    if (config->useExtVsync)
    {
        reg |= CSI_CSICR1_EXT_VSYNC_MASK;
    }

    base->CSICR1 = reg;

    /* No stride. */
    base->CSIFBUF_PARA = 0;

    /* Enable auto ECC. */
    base->CSICR3 |= CSI_CSICR3_ECC_AUTO_EN_MASK;

    /*
     * For better performance.
     * The DMA burst size could be set to 16 * 8 byte, 8 * 8 byte, or 4 * 8 byte,
     * choose the best burst size based on bytes per line.
     */
    if (!(imgWidth_Bytes % (8 * 16)))
    {
        base->CSICR2 = CSI_CSICR2_DMA_BURST_TYPE_RFF(3U);
        base->CSICR3 = (CSI->CSICR3 & ~CSI_CSICR3_RxFF_LEVEL_MASK) | ((2U << CSI_CSICR3_RxFF_LEVEL_SHIFT));
    }
    else if (!(imgWidth_Bytes % (8 * 8)))
    {
        base->CSICR2 = CSI_CSICR2_DMA_BURST_TYPE_RFF(2U);
        base->CSICR3 = (CSI->CSICR3 & ~CSI_CSICR3_RxFF_LEVEL_MASK) | ((1U << CSI_CSICR3_RxFF_LEVEL_SHIFT));
    }
    else
    {
        base->CSICR2 = CSI_CSICR2_DMA_BURST_TYPE_RFF(1U);
        base->CSICR3 = (CSI->CSICR3 & ~CSI_CSICR3_RxFF_LEVEL_MASK) | ((0U << CSI_CSICR3_RxFF_LEVEL_SHIFT));
    }

    base->CSIDMASA_FB1 = config->dmaBufferAddr0;
    base->CSIDMASA_FB2 = config->dmaBufferAddr1;

    if (handle->isDmaBufferCachable)
    {
        DCACHE_CleanInvalidateByRange(config->dmaBufferAddr0,
                                      config->dmaBufferLine * config->width * CSI_FRAG_INPUT_BYTES_PER_PIXEL);
        DCACHE_CleanInvalidateByRange(config->dmaBufferAddr1,
                                      config->dmaBufferLine * config->width * CSI_FRAG_INPUT_BYTES_PER_PIXEL);
    }

    return kStatus_Success;
}

/*!
 * brief Start to capture a image.
 *
 * param base CSI peripheral base address.
 * param handle Pointer to the transactional handle.
 * param config Pointer to the capture configuration.
 *
 * retval kStatus_Success Initialize successfully.
 * retval kStatus_InvalidArgument Initialize failed because of invalid argument.
 */
status_t CSI_FragModeTransferCaptureImage(CSI_Type *base,
                                          csi_frag_handle_t *handle,
                                          const csi_frag_capture_config_t *config)
{
    assert(config);

    uint16_t windowWidth;

    /*
     * If no special window setting, capture full frame.
     * If capture window, then capture 1 one each fragment.
     */
    if (config->window != NULL)
    {
        handle->windowULX = config->window->windowULX;
        handle->windowULY = config->window->windowULY;
        handle->windowLRX = config->window->windowLRX;
        handle->windowLRY = config->window->windowLRY;
        handle->linePerFrag = 1;
    }
    else
    {
        handle->windowULX = 0;
        handle->windowULY = 0;
        handle->windowLRX = handle->width - 1;
        handle->windowLRY = handle->height - 1;
        handle->linePerFrag = handle->maxLinePerFrag;
    }

    windowWidth = handle->windowLRX - handle->windowULX + 1;

    if (config->outputGrayScale)
    {
        /* When output format is gray, the window width must be multiple value of 8. */
        if (windowWidth % 8 != 0)
        {
            return kStatus_InvalidArgument;
        }

        handle->datBytePerLine = windowWidth;
        if (handle->inputFormat == kCSI_FragInputYUYV)
        {
            handle->copyFunc = CSI_ExtractYFromYUYV;
        }
        else
        {
            handle->copyFunc = CSI_ExtractYFromUYVY;
        }
    }
    else
    {
        handle->datBytePerLine = windowWidth * CSI_FRAG_INPUT_BYTES_PER_PIXEL;
        handle->copyFunc = CSI_MemCopy;
    }

    handle->dmaCurLine = 0;
    handle->outputBuffer = (uint32_t)config->buffer;
    handle->datCurWriteAddr = (uint32_t)config->buffer;

    /* Image parameter. */
    base->CSIIMAG_PARA =
        ((uint32_t)(handle->width * CSI_FRAG_INPUT_BYTES_PER_PIXEL) << CSI_CSIIMAG_PARA_IMAGE_WIDTH_SHIFT) |
        ((uint32_t)(handle->linePerFrag) << CSI_CSIIMAG_PARA_IMAGE_HEIGHT_SHIFT);

    /*
     * Write to memory from first completed frame.
     * DMA base addr switch at dma transfer done.
     */
    base->CSICR18 = (base->CSICR18 & ~CSI_CSICR18_MASK_OPTION_MASK) | CSI_CSICR18_MASK_OPTION(0);

    CSI_EnableInterrupts(base, kCSI_StartOfFrameInterruptEnable | kCSI_RxBuffer1DmaDoneInterruptEnable |
                                   kCSI_RxBuffer0DmaDoneInterruptEnable);

    return kStatus_Success;
}

/*!
 * brief Abort image capture.
 *
 * Abort image capture initialized by ref CSI_FragModeTransferCaptureImage.
 *
 * param base CSI peripheral base address.
 * param handle Pointer to the transactional handle.
 */
void CSI_FragModeTransferAbortCaptureImage(CSI_Type *base, csi_frag_handle_t *handle)
{
    CSI_Stop(base);
    CSI_DisableInterrupts(base, kCSI_StartOfFrameInterruptEnable | kCSI_RxBuffer1DmaDoneInterruptEnable |
                                    kCSI_RxBuffer0DmaDoneInterruptEnable);
}

/*!
 * brief CSI IRQ handle function.
 *
 * This function handles the CSI IRQ request to work with CSI driver fragment mode
 * APIs.
 *
 * param base CSI peripheral base address.
 * param handle CSI handle pointer.
 */
void CSI_FragModeTransferHandleIRQ(CSI_Type *base, csi_frag_handle_t *handle)
{
    uint32_t csisr = base->CSISR;
    uint32_t dmaBufAddr;
    uint16_t line;

    /* Clear the error flags. */
    base->CSISR = csisr;

    /* Start of frame, clear the FIFO and start receiving. */
    if (csisr & kCSI_StartOfFrameFlag)
    {
        /* Reflash the DMA and enable RX DMA request. */
        base->CSICR3 |= (CSI_CSICR3_DMA_REFLASH_RFF_MASK | CSI_CSICR3_DMA_REQ_EN_RFF_MASK);
        CSI_Start(base);
        handle->dmaCurLine = 0;
        handle->datCurWriteAddr = handle->outputBuffer;
    }
    else if ((csisr & (CSI_CSISR_DMA_TSF_DONE_FB2_MASK | CSI_CSISR_DMA_TSF_DONE_FB1_MASK)) != 0)
    {
        if ((csisr & CSI_CSISR_DMA_TSF_DONE_FB1_MASK) == CSI_CSISR_DMA_TSF_DONE_FB1_MASK)
        {
            dmaBufAddr = base->CSIDMASA_FB1;
        }
        else
        {
            dmaBufAddr = base->CSIDMASA_FB2;
        }

        if (handle->isDmaBufferCachable)
        {
            DCACHE_InvalidateByRange(dmaBufAddr, handle->dmaBytePerLine * handle->linePerFrag);
        }

        /* Copy from DMA buffer to user data buffer. */
        dmaBufAddr += (handle->windowULX * CSI_FRAG_INPUT_BYTES_PER_PIXEL);

        for (line = 0; line < handle->linePerFrag; line++)
        {
            if (handle->dmaCurLine + line > handle->windowLRY)
            {
                /* out of window range */
                break;
            }
            else if (handle->dmaCurLine + line >= handle->windowULY)
            {
                handle->copyFunc((void *)(handle->datCurWriteAddr), (void const *)dmaBufAddr, handle->datBytePerLine);
                handle->datCurWriteAddr += handle->datBytePerLine;
                dmaBufAddr += handle->dmaBytePerLine;
            }
            else
            {
            }
        }

        handle->dmaCurLine += handle->linePerFrag;

        if (handle->dmaCurLine >= handle->height)
        {
            CSI_Stop(base);
            CSI_DisableInterrupts(base, kCSI_StartOfFrameInterruptEnable | kCSI_RxBuffer1DmaDoneInterruptEnable |
                                            kCSI_RxBuffer0DmaDoneInterruptEnable);

            /* Image captured. Stop the CSI. */
            if (handle->callback)
            {
                handle->callback(base, handle, kStatus_CSI_FrameDone, handle->userData);
            }
        }
    }
    else
    {
    }
}
#endif /* CSI_DRIVER_FRAG_MODE */

#if defined(CSI)
void CSI_DriverIRQHandler(void)
{
    s_csiIsr(CSI, s_csiHandle[0]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif

#if defined(CSI0)
void CSI0_DriverIRQHandler(void)
{
    s_csiIsr(CSI, s_csiHandle[0]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif