Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 | /*
* Copyright (c) 2017 Linaro Limited
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <kernel.h>
#include <device.h>
#include <string.h>
#include <flash.h>
#include <init.h>
#include <soc.h>
#include "flash_stm32.h"
#define STM32F4X_SECTOR_MASK ((u32_t) 0xFFFFFF07)
bool flash_stm32_valid_range(struct device *dev, off_t offset, u32_t len,
bool write)
{
ARG_UNUSED(write);
return flash_stm32_range_exists(dev, offset, len);
}
static int write_byte(struct device *dev, off_t offset, u8_t val)
{
struct stm32f4x_flash *regs = FLASH_STM32_REGS(dev);
u32_t tmp;
int rc;
/* if the control register is locked, do not fail silently */
if (regs->cr & FLASH_CR_LOCK) {
return -EIO;
}
rc = flash_stm32_wait_flash_idle(dev);
if (rc < 0) {
return rc;
}
regs->cr &= ~CR_PSIZE_MASK;
regs->cr |= FLASH_PSIZE_BYTE;
regs->cr |= FLASH_CR_PG;
/* flush the register write */
tmp = regs->cr;
*((u8_t *) offset + CONFIG_FLASH_BASE_ADDRESS) = val;
rc = flash_stm32_wait_flash_idle(dev);
regs->cr &= (~FLASH_CR_PG);
return rc;
}
static int erase_sector(struct device *dev, u32_t sector)
{
struct stm32f4x_flash *regs = FLASH_STM32_REGS(dev);
u32_t tmp;
int rc;
/* if the control register is locked, do not fail silently */
if (regs->cr & FLASH_CR_LOCK) {
return -EIO;
}
rc = flash_stm32_wait_flash_idle(dev);
if (rc < 0) {
return rc;
}
regs->cr &= STM32F4X_SECTOR_MASK;
regs->cr |= FLASH_CR_SER | (sector << 3);
regs->cr |= FLASH_CR_STRT;
/* flush the register write */
tmp = regs->cr;
rc = flash_stm32_wait_flash_idle(dev);
regs->cr &= ~(FLASH_CR_SER | FLASH_CR_SNB);
return rc;
}
int flash_stm32_block_erase_loop(struct device *dev, unsigned int offset,
unsigned int len)
{
struct flash_pages_info info;
u32_t start_sector, end_sector;
u32_t i;
int rc = 0;
rc = flash_get_page_info_by_offs(dev, offset, &info);
if (rc) {
return rc;
}
start_sector = info.index;
rc = flash_get_page_info_by_offs(dev, offset + len - 1, &info);
if (rc) {
return rc;
}
end_sector = info.index;
for (i = start_sector; i <= end_sector; i++) {
rc = erase_sector(dev, i);
if (rc < 0) {
break;
}
}
return rc;
}
int flash_stm32_write_range(struct device *dev, unsigned int offset,
const void *data, unsigned int len)
{
int i, rc = 0;
for (i = 0; i < len; i++, offset++) {
rc = write_byte(dev, offset, ((const u8_t *) data)[i]);
if (rc < 0) {
return rc;
}
}
return rc;
}
/*
* Different SoC flash layouts are specified in across various
* reference manuals, but the flash layout for a given number of
* sectors is consistent across these manuals, with one "gotcha". The
* number of sectors is given by the HAL as FLASH_SECTOR_TOTAL.
*
* The only "gotcha" is that when there are 24 sectors, they are split
* across 2 "banks" of 12 sectors each, with another set of small
* sectors (16 KB) in the second bank occurring after the large ones
* (128 KB) in the first. We could consider supporting this as two
* devices to make the layout cleaner, but this will do for now.
*/
#ifndef FLASH_SECTOR_TOTAL
#error "Unknown flash layout"
#else /* defined(FLASH_SECTOR_TOTAL) */
#if FLASH_SECTOR_TOTAL == 5
static const struct flash_pages_layout stm32f4_flash_layout[] = {
/* RM0401, table 5: STM32F410Tx, STM32F410Cx, STM32F410Rx */
{.pages_count = 4, .pages_size = KB(16)},
{.pages_count = 1, .pages_size = KB(64)},
};
#elif FLASH_SECTOR_TOTAL == 6
static const struct flash_pages_layout stm32f4_flash_layout[] = {
/* RM0368, table 5: STM32F401xC */
{.pages_count = 4, .pages_size = KB(16)},
{.pages_count = 1, .pages_size = KB(64)},
{.pages_count = 1, .pages_size = KB(128)},
};
#elif FLASH_SECTOR_TOTAL == 8
static const struct flash_pages_layout stm32f4_flash_layout[] = {
/*
* RM0368, table 5: STM32F401xE
* RM0383, table 4: STM32F411xE
* RM0390, table 4: STM32F446xx
*/
{.pages_count = 4, .pages_size = KB(16)},
{.pages_count = 1, .pages_size = KB(64)},
{.pages_count = 3, .pages_size = KB(128)},
};
#elif FLASH_SECTOR_TOTAL == 12
static const struct flash_pages_layout stm32f4_flash_layout[] = {
/*
* RM0090, table 5: STM32F405xx, STM32F415xx, STM32F407xx, STM32F417xx
* RM0402, table 5: STM32F412Zx, STM32F412Vx, STM32F412Rx, STM32F412Cx
*/
{.pages_count = 4, .pages_size = KB(16)},
{.pages_count = 1, .pages_size = KB(64)},
{.pages_count = 7, .pages_size = KB(128)},
};
#elif FLASH_SECTOR_TOTAL == 16
static const struct flash_pages_layout stm32f4_flash_layout[] = {
/* RM0430, table 5.: STM32F413xx, STM32F423xx */
{.pages_count = 4, .pages_size = KB(16)},
{.pages_count = 1, .pages_size = KB(64)},
{.pages_count = 11, .pages_size = KB(128)},
};
#elif FLASH_SECTOR_TOTAL == 24
static const struct flash_pages_layout stm32f4_flash_layout[] = {
/*
* RM0090, table 6: STM32F427xx, STM32F437xx, STM32F429xx, STM32F439xx
* RM0386, table 4: STM32F469xx, STM32F479xx
*/
{.pages_count = 4, .pages_size = KB(16)},
{.pages_count = 1, .pages_size = KB(64)},
{.pages_count = 7, .pages_size = KB(128)},
{.pages_count = 4, .pages_size = KB(16)},
{.pages_count = 1, .pages_size = KB(64)},
{.pages_count = 7, .pages_size = KB(128)},
};
#else
#error "Unknown flash layout"
#endif /* FLASH_SECTOR_TOTAL == 5 */
#endif/* !defined(FLASH_SECTOR_TOTAL) */
void flash_stm32_page_layout(struct device *dev,
const struct flash_pages_layout **layout,
size_t *layout_size)
{
ARG_UNUSED(dev);
*layout = stm32f4_flash_layout;
*layout_size = ARRAY_SIZE(stm32f4_flash_layout);
}
|