Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 | /* Copyright (C) 2002-2007, 2008 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@redhat.com>, 2002.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <assert.h>
#include <errno.h>
#include <time.h>
#include "pthreadP.h"
#include <lowlevellock.h>
#include <not-cancel.h>
#if defined(__UCLIBC_USE_TIME64__)
#include "internal/time64_helpers.h"
#endif
/* We need to build this function with optimization to avoid
* lll_timedlock erroring out with
* error: can't find a register in class ‘GENERAL_REGS’ while reloading ‘asm’
*/
int
#ifndef __OPTIMIZE__
attribute_optimize("Os")
#endif
pthread_mutex_timedlock (
pthread_mutex_t *mutex,
const struct timespec *abstime)
{
int oldval;
pid_t id = THREAD_GETMEM (THREAD_SELF, tid);
int result = 0;
/* We must not check ABSTIME here. If the thread does not block
abstime must not be checked for a valid value. */
switch (__builtin_expect (PTHREAD_MUTEX_TYPE (mutex),
PTHREAD_MUTEX_TIMED_NP))
{
/* Recursive mutex. */
case PTHREAD_MUTEX_RECURSIVE_NP:
/* Check whether we already hold the mutex. */
if (mutex->__data.__owner == id)
{
/* Just bump the counter. */
if (__builtin_expect (mutex->__data.__count + 1 == 0, 0))
/* Overflow of the counter. */
return EAGAIN;
++mutex->__data.__count;
goto out;
}
/* We have to get the mutex. */
result = lll_timedlock (mutex->__data.__lock, abstime,
PTHREAD_MUTEX_PSHARED (mutex));
if (result != 0)
goto out;
/* Only locked once so far. */
mutex->__data.__count = 1;
break;
/* Error checking mutex. */
case PTHREAD_MUTEX_ERRORCHECK_NP:
/* Check whether we already hold the mutex. */
if (__builtin_expect (mutex->__data.__owner == id, 0))
return EDEADLK;
/* FALLTHROUGH */
case PTHREAD_MUTEX_TIMED_NP:
simple:
/* Normal mutex. */
result = lll_timedlock (mutex->__data.__lock, abstime,
PTHREAD_MUTEX_PSHARED (mutex));
break;
case PTHREAD_MUTEX_ADAPTIVE_NP:
if (! __is_smp)
goto simple;
if (lll_trylock (mutex->__data.__lock) != 0)
{
int cnt = 0;
int max_cnt = MIN (MAX_ADAPTIVE_COUNT,
mutex->__data.__spins * 2 + 10);
do
{
if (cnt++ >= max_cnt)
{
result = lll_timedlock (mutex->__data.__lock, abstime,
PTHREAD_MUTEX_PSHARED (mutex));
break;
}
#ifdef BUSY_WAIT_NOP
BUSY_WAIT_NOP;
#endif
}
while (lll_trylock (mutex->__data.__lock) != 0);
mutex->__data.__spins += (cnt - mutex->__data.__spins) / 8;
}
break;
case PTHREAD_MUTEX_ROBUST_RECURSIVE_NP:
case PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP:
case PTHREAD_MUTEX_ROBUST_NORMAL_NP:
case PTHREAD_MUTEX_ROBUST_ADAPTIVE_NP:
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
&mutex->__data.__list.__next);
oldval = mutex->__data.__lock;
do
{
again:
if ((oldval & FUTEX_OWNER_DIED) != 0)
{
/* The previous owner died. Try locking the mutex. */
int newval = id | (oldval & FUTEX_WAITERS);
newval
= atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
newval, oldval);
if (newval != oldval)
{
oldval = newval;
goto again;
}
/* We got the mutex. */
mutex->__data.__count = 1;
/* But it is inconsistent unless marked otherwise. */
mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT;
ENQUEUE_MUTEX (mutex);
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
/* Note that we deliberately exit here. If we fall
through to the end of the function __nusers would be
incremented which is not correct because the old
owner has to be discounted. */
return EOWNERDEAD;
}
/* Check whether we already hold the mutex. */
if (__builtin_expect ((oldval & FUTEX_TID_MASK) == id, 0))
{
int kind = PTHREAD_MUTEX_TYPE (mutex);
if (kind == PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP)
{
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
NULL);
return EDEADLK;
}
if (kind == PTHREAD_MUTEX_ROBUST_RECURSIVE_NP)
{
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
NULL);
/* Just bump the counter. */
if (__builtin_expect (mutex->__data.__count + 1 == 0, 0))
/* Overflow of the counter. */
return EAGAIN;
++mutex->__data.__count;
return 0;
}
}
result = lll_robust_timedlock (mutex->__data.__lock, abstime, id,
PTHREAD_ROBUST_MUTEX_PSHARED (mutex));
if (__builtin_expect (mutex->__data.__owner
== PTHREAD_MUTEX_NOTRECOVERABLE, 0))
{
/* This mutex is now not recoverable. */
mutex->__data.__count = 0;
lll_unlock (mutex->__data.__lock,
PTHREAD_ROBUST_MUTEX_PSHARED (mutex));
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
return ENOTRECOVERABLE;
}
if (result == ETIMEDOUT || result == EINVAL)
goto out;
oldval = result;
}
while ((oldval & FUTEX_OWNER_DIED) != 0);
mutex->__data.__count = 1;
ENQUEUE_MUTEX (mutex);
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
break;
case PTHREAD_MUTEX_PI_RECURSIVE_NP:
case PTHREAD_MUTEX_PI_ERRORCHECK_NP:
case PTHREAD_MUTEX_PI_NORMAL_NP:
case PTHREAD_MUTEX_PI_ADAPTIVE_NP:
case PTHREAD_MUTEX_PI_ROBUST_RECURSIVE_NP:
case PTHREAD_MUTEX_PI_ROBUST_ERRORCHECK_NP:
case PTHREAD_MUTEX_PI_ROBUST_NORMAL_NP:
case PTHREAD_MUTEX_PI_ROBUST_ADAPTIVE_NP:
{
int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP;
int robust = mutex->__data.__kind & PTHREAD_MUTEX_ROBUST_NORMAL_NP;
if (robust)
/* Note: robust PI futexes are signaled by setting bit 0. */
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
(void *) (((uintptr_t) &mutex->__data.__list.__next)
| 1));
oldval = mutex->__data.__lock;
/* Check whether we already hold the mutex. */
if (__builtin_expect ((oldval & FUTEX_TID_MASK) == id, 0))
{
if (kind == PTHREAD_MUTEX_ERRORCHECK_NP)
{
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
return EDEADLK;
}
if (kind == PTHREAD_MUTEX_RECURSIVE_NP)
{
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
/* Just bump the counter. */
if (__builtin_expect (mutex->__data.__count + 1 == 0, 0))
/* Overflow of the counter. */
return EAGAIN;
++mutex->__data.__count;
return 0;
}
}
oldval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
id, 0);
if (oldval != 0)
{
/* The mutex is locked. The kernel will now take care of
everything. The timeout value must be a relative value.
Convert it. */
int private = (robust
? PTHREAD_ROBUST_MUTEX_PSHARED (mutex)
: PTHREAD_MUTEX_PSHARED (mutex));
INTERNAL_SYSCALL_DECL (__err);
#if defined(__UCLIBC_USE_TIME64__) && defined(__NR_futex_time64)
int e = INTERNAL_SYSCALL (futex_time64, __err, 4, &mutex->__data.__lock,
__lll_private_flag (FUTEX_LOCK_PI,
private), 1,
TO_TS64_P(abstime));
#else
int e = INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock,
__lll_private_flag (FUTEX_LOCK_PI,
private), 1,
abstime);
#endif
if (INTERNAL_SYSCALL_ERROR_P (e, __err))
{
if (INTERNAL_SYSCALL_ERRNO (e, __err) == ETIMEDOUT)
return ETIMEDOUT;
if (INTERNAL_SYSCALL_ERRNO (e, __err) == ESRCH
|| INTERNAL_SYSCALL_ERRNO (e, __err) == EDEADLK)
{
assert (INTERNAL_SYSCALL_ERRNO (e, __err) != EDEADLK
|| (kind != PTHREAD_MUTEX_ERRORCHECK_NP
&& kind != PTHREAD_MUTEX_RECURSIVE_NP));
/* ESRCH can happen only for non-robust PI mutexes where
the owner of the lock died. */
assert (INTERNAL_SYSCALL_ERRNO (e, __err) != ESRCH
|| !robust);
/* Delay the thread until the timeout is reached.
Then return ETIMEDOUT. */
struct timespec reltime;
#if defined(__UCLIBC_USE_TIME64__)
struct __ts64_struct __now64;
#endif
struct timespec now = {.tv_sec = 0, .tv_nsec = 0};
#if defined(__UCLIBC_USE_TIME64__) && defined(__NR_clock_gettime64)
int __r = INTERNAL_SYSCALL (clock_gettime64, __err, 2, CLOCK_REALTIME,
&__now64);
if (__r == 0) {
now.tv_sec = __now64.tv_sec;
now.tv_nsec = __now64.tv_nsec;
}
#else
INTERNAL_SYSCALL (clock_gettime, __err, 2, CLOCK_REALTIME,
&now);
#endif
reltime.tv_sec = abstime->tv_sec - now.tv_sec;
reltime.tv_nsec = abstime->tv_nsec - now.tv_nsec;
if (reltime.tv_nsec < 0)
{
reltime.tv_nsec += 1000000000;
--reltime.tv_sec;
}
if (reltime.tv_sec >= 0)
while (nanosleep_not_cancel (&reltime, &reltime) != 0)
continue;
return ETIMEDOUT;
}
return INTERNAL_SYSCALL_ERRNO (e, __err);
}
oldval = mutex->__data.__lock;
assert (robust || (oldval & FUTEX_OWNER_DIED) == 0);
}
if (__builtin_expect (oldval & FUTEX_OWNER_DIED, 0))
{
atomic_and (&mutex->__data.__lock, ~FUTEX_OWNER_DIED);
/* We got the mutex. */
mutex->__data.__count = 1;
/* But it is inconsistent unless marked otherwise. */
mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT;
ENQUEUE_MUTEX_PI (mutex);
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
/* Note that we deliberately exit here. If we fall
through to the end of the function __nusers would be
incremented which is not correct because the old owner
has to be discounted. */
return EOWNERDEAD;
}
if (robust
&& __builtin_expect (mutex->__data.__owner
== PTHREAD_MUTEX_NOTRECOVERABLE, 0))
{
/* This mutex is now not recoverable. */
mutex->__data.__count = 0;
INTERNAL_SYSCALL_DECL (__err);
#if defined(__UCLIBC_USE_TIME64__) && defined(__NR_futex_time64)
INTERNAL_SYSCALL (futex_time64, __err, 4, &mutex->__data.__lock,
__lll_private_flag (FUTEX_UNLOCK_PI,
PTHREAD_ROBUST_MUTEX_PSHARED (mutex)),
0, 0);
#else
INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock,
__lll_private_flag (FUTEX_UNLOCK_PI,
PTHREAD_ROBUST_MUTEX_PSHARED (mutex)),
0, 0);
#endif
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
return ENOTRECOVERABLE;
}
mutex->__data.__count = 1;
if (robust)
{
ENQUEUE_MUTEX_PI (mutex);
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
}
}
break;
case PTHREAD_MUTEX_PP_RECURSIVE_NP:
case PTHREAD_MUTEX_PP_ERRORCHECK_NP:
case PTHREAD_MUTEX_PP_NORMAL_NP:
case PTHREAD_MUTEX_PP_ADAPTIVE_NP:
{
int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP;
oldval = mutex->__data.__lock;
/* Check whether we already hold the mutex. */
if (mutex->__data.__owner == id)
{
if (kind == PTHREAD_MUTEX_ERRORCHECK_NP)
return EDEADLK;
if (kind == PTHREAD_MUTEX_RECURSIVE_NP)
{
/* Just bump the counter. */
if (__builtin_expect (mutex->__data.__count + 1 == 0, 0))
/* Overflow of the counter. */
return EAGAIN;
++mutex->__data.__count;
return 0;
}
}
int oldprio = -1, ceilval;
do
{
int ceiling = (oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK)
>> PTHREAD_MUTEX_PRIO_CEILING_SHIFT;
if (__pthread_current_priority () > ceiling)
{
result = EINVAL;
failpp:
if (oldprio != -1)
__pthread_tpp_change_priority (oldprio, -1);
return result;
}
result = __pthread_tpp_change_priority (oldprio, ceiling);
if (result)
return result;
ceilval = ceiling << PTHREAD_MUTEX_PRIO_CEILING_SHIFT;
oldprio = ceiling;
oldval
= atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
ceilval | 1, ceilval);
if (oldval == ceilval)
break;
do
{
oldval
= atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
ceilval | 2,
ceilval | 1);
if ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval)
break;
if (oldval != ceilval)
{
/* Reject invalid timeouts. */
if (abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000)
{
result = EINVAL;
goto failpp;
}
struct timeval tv;
struct timespec rt;
/* Get the current time. */
(void) gettimeofday (&tv, NULL);
/* Compute relative timeout. */
rt.tv_sec = abstime->tv_sec - tv.tv_sec;
rt.tv_nsec = abstime->tv_nsec - tv.tv_usec * 1000;
if (rt.tv_nsec < 0)
{
rt.tv_nsec += 1000000000;
--rt.tv_sec;
}
/* Already timed out? */
if (rt.tv_sec < 0)
{
result = ETIMEDOUT;
goto failpp;
}
lll_futex_timed_wait (&mutex->__data.__lock,
ceilval | 2, &rt,
PTHREAD_MUTEX_PSHARED (mutex));
}
}
while (atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
ceilval | 2, ceilval)
!= ceilval);
}
while ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval);
assert (mutex->__data.__owner == 0);
mutex->__data.__count = 1;
}
break;
default:
/* Correct code cannot set any other type. */
return EINVAL;
}
if (result == 0)
{
/* Record the ownership. */
mutex->__data.__owner = id;
++mutex->__data.__nusers;
}
out:
return result;
}
|