Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 | /*
* The hashcode handling code below is heavily inspired in libiberty's
* hashtab code, but with most adaptation points and support for
* deleting elements removed.
*
* Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
* Contributed by Vladimir Makarov (vmakarov@cygnus.com).
*/
#ifndef INLINE_HASHTAB_H
# define INLINE_HASHTAB_H 1
static __always_inline unsigned long
higher_prime_number(unsigned long n)
{
/* These are primes that are near, but slightly smaller than, a power of two. */
static const unsigned long primes[] = {
7,
13,
31,
61,
127,
251,
509,
1021,
2039,
4093,
8191,
16381,
32749,
65521,
131071,
262139,
524287,
1048573,
2097143,
4194301,
8388593,
16777213,
33554393,
67108859,
134217689,
268435399,
536870909,
1073741789,
/* 4294967291 */
((unsigned long) 2147483647) + ((unsigned long) 2147483644),
};
const unsigned long *low = &primes[0];
const unsigned long *high = &primes[ARRAY_SIZE(primes)];
while (low != high) {
const unsigned long *mid = low + (high - low) / 2;
if (n > *mid)
low = mid + 1;
else
high = mid;
}
#if 0
/* If we've run out of primes, abort. */
if (n > *low) {
fprintf(stderr, "Cannot find prime bigger than %lu\n", n);
abort();
}
#endif
return *low;
}
struct funcdesc_ht
{
/* Table itself */
void **entries;
/* Current size (in entries) of the hash table */
size_t size;
/* Current number of elements */
size_t n_elements;
};
static __always_inline struct funcdesc_ht *
htab_create(void)
{
struct funcdesc_ht *ht = _dl_malloc(sizeof(*ht));
size_t ent_size;
if (!ht)
return NULL;
ht->size = 3;
ent_size = sizeof(void *) * ht->size;
ht->entries = _dl_malloc(ent_size);
if (!ht->entries)
return NULL;
ht->n_elements = 0;
_dl_memset(ht->entries, 0, ent_size);
return ht;
}
/*
* This is only called from _dl_loadaddr_unmap, so it's safe to call
* _dl_free(). See the discussion below.
*/
static __always_inline void
htab_delete(struct funcdesc_ht *htab)
{
size_t i;
for (i = htab->size - 1; i >= 0; i--)
if (htab->entries[i])
_dl_free(htab->entries[i]);
_dl_free(htab->entries);
_dl_free(htab);
}
/*
* Similar to htab_find_slot, but without several unwanted side effects:
* - Does not call htab->eq_f when it finds an existing entry.
* - Does not change the count of elements/searches/collisions in the
* hash table.
* This function also assumes there are no deleted entries in the table.
* HASH is the hash value for the element to be inserted.
*/
static __always_inline void **
find_empty_slot_for_expand(struct funcdesc_ht *htab, int hash)
{
size_t size = htab->size;
unsigned int index = hash % size;
void **slot = htab->entries + index;
int hash2;
if (!*slot)
return slot;
hash2 = 1 + hash % (size - 2);
for (;;) {
index += hash2;
if (index >= size)
index -= size;
slot = htab->entries + index;
if (!*slot)
return slot;
}
}
/*
* The following function changes size of memory allocated for the
* entries and repeatedly inserts the table elements. The occupancy
* of the table after the call will be about 50%. Naturally the hash
* table must already exist. Remember also that the place of the
* table entries is changed. If memory allocation failures are allowed,
* this function will return zero, indicating that the table could not be
* expanded. If all goes well, it will return a non-zero value.
*/
static __always_inline int
htab_expand(struct funcdesc_ht *htab, int (*hash_fn) (void *))
{
void **oentries;
void **olimit;
void **p;
void **nentries;
size_t nsize;
oentries = htab->entries;
olimit = oentries + htab->size;
/*
* Resize only when table after removal of unused elements is either
* too full or too empty.
*/
if (htab->n_elements * 2 > htab->size)
nsize = higher_prime_number(htab->n_elements * 2);
else
nsize = htab->size;
nentries = _dl_malloc(sizeof(*nentries) * nsize);
_dl_memset(nentries, 0, sizeof(*nentries) * nsize);
if (nentries == NULL)
return 0;
htab->entries = nentries;
htab->size = nsize;
p = oentries;
do {
if (*p)
*find_empty_slot_for_expand(htab, hash_fn(*p)) = *p;
p++;
} while (p < olimit);
#if 0
/*
* We can't tell whether this was allocated by the _dl_malloc()
* built into ld.so or malloc() in the main executable or libc,
* and calling free() for something that wasn't malloc()ed could
* do Very Bad Things (TM). Take the conservative approach
* here, potentially wasting as much memory as actually used by
* the hash table, even if multiple growths occur. That's not
* so bad as to require some overengineered solution that would
* enable us to keep track of how it was allocated.
*/
_dl_free(oentries);
#endif
return 1;
}
/*
* This function searches for a hash table slot containing an entry
* equal to the given element. To delete an entry, call this with
* INSERT = 0, then call htab_clear_slot on the slot returned (possibly
* after doing some checks). To insert an entry, call this with
* INSERT = 1, then write the value you want into the returned slot.
* When inserting an entry, NULL may be returned if memory allocation
* fails.
*/
static __always_inline void **
htab_find_slot(struct funcdesc_ht *htab, void *ptr, int insert,
int (*hash_fn)(void *), int (*eq_fn)(void *, void *))
{
unsigned int index;
int hash, hash2;
size_t size;
void **entry;
if (htab->size * 3 <= htab->n_elements * 4 &&
htab_expand(htab, hash_fn) == 0)
return NULL;
hash = hash_fn(ptr);
size = htab->size;
index = hash % size;
entry = &htab->entries[index];
if (!*entry)
goto empty_entry;
else if (eq_fn(*entry, ptr))
return entry;
hash2 = 1 + hash % (size - 2);
for (;;) {
index += hash2;
if (index >= size)
index -= size;
entry = &htab->entries[index];
if (!*entry)
goto empty_entry;
else if (eq_fn(*entry, ptr))
return entry;
}
empty_entry:
if (!insert)
return NULL;
htab->n_elements++;
return entry;
}
#endif
|