Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 | /* Helper code for POSIX timer implementation on LinuxThreads. Copyright (C) 2000, 2001, 2002, 2004 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Kaz Kylheku <kaz@ashi.footprints.net>. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; see the file COPYING.LIB. If not, see <http://www.gnu.org/licenses/>. */ #include <assert.h> #include <errno.h> #include <pthread.h> #include <stddef.h> #include <stdlib.h> #include <string.h> #include <sysdep.h> #include <time.h> #include <unistd.h> #include <sys/syscall.h> #include "posix-timer.h" /* Number of threads used. */ #define THREAD_MAXNODES 16 /* Array containing the descriptors for the used threads. */ static struct thread_node thread_array[THREAD_MAXNODES]; /* Static array with the structures for all the timers. */ struct timer_node __timer_array[TIMER_MAX]; /* Global lock to protect operation on the lists. */ pthread_mutex_t __timer_mutex = PTHREAD_MUTEX_INITIALIZER; /* Variable to protext initialization. */ pthread_once_t __timer_init_once_control = PTHREAD_ONCE_INIT; /* Nonzero if initialization of timer implementation failed. */ int __timer_init_failed; /* Node for the thread used to deliver signals. */ struct thread_node __timer_signal_thread_rclk; /* Lists to keep free and used timers and threads. */ struct list_links timer_free_list; struct list_links thread_free_list; struct list_links thread_active_list; #ifdef __NR_rt_sigqueueinfo extern int __syscall_rt_sigqueueinfo (int, int, siginfo_t *); #endif /* List handling functions. */ static __inline__ void list_init (struct list_links *list) { list->next = list->prev = list; } static __inline__ void list_append (struct list_links *list, struct list_links *newp) { newp->prev = list->prev; newp->next = list; list->prev->next = newp; list->prev = newp; } static __inline__ void list_insbefore (struct list_links *list, struct list_links *newp) { list_append (list, newp); } /* * Like list_unlink_ip, except that calling it on a node that * is already unlinked is disastrous rather than a noop. */ static __inline__ void list_unlink (struct list_links *list) { struct list_links *lnext = list->next, *lprev = list->prev; lnext->prev = lprev; lprev->next = lnext; } static __inline__ struct list_links * list_first (struct list_links *list) { return list->next; } static __inline__ struct list_links * list_null (struct list_links *list) { return list; } static __inline__ struct list_links * list_next (struct list_links *list) { return list->next; } static __inline__ int list_isempty (struct list_links *list) { return list->next == list; } /* Functions build on top of the list functions. */ static __inline__ struct thread_node * thread_links2ptr (struct list_links *list) { return (struct thread_node *) ((char *) list - offsetof (struct thread_node, links)); } static __inline__ struct timer_node * timer_links2ptr (struct list_links *list) { return (struct timer_node *) ((char *) list - offsetof (struct timer_node, links)); } /* Initialize a newly allocated thread structure. */ static void thread_init (struct thread_node *thread, const pthread_attr_t *attr, clockid_t clock_id) { if (attr != NULL) thread->attr = *attr; else { pthread_attr_init (&thread->attr); pthread_attr_setdetachstate (&thread->attr, PTHREAD_CREATE_DETACHED); } thread->exists = 0; list_init (&thread->timer_queue); pthread_cond_init (&thread->cond, 0); thread->current_timer = 0; thread->captured = pthread_self (); thread->clock_id = clock_id; } /* Initialize the global lists, and acquire global resources. Error reporting is done by storing a non-zero value to the global variable timer_init_failed. */ static void init_module (void) { int i; list_init (&timer_free_list); list_init (&thread_free_list); list_init (&thread_active_list); for (i = 0; i < TIMER_MAX; ++i) { list_append (&timer_free_list, &__timer_array[i].links); __timer_array[i].inuse = TIMER_FREE; } for (i = 0; i < THREAD_MAXNODES; ++i) list_append (&thread_free_list, &thread_array[i].links); thread_init (&__timer_signal_thread_rclk, 0, CLOCK_REALTIME); } /* This is a handler executed in a child process after a fork() occurs. It reinitializes the module, resetting all of the data structures to their initial state. The mutex is initialized in case it was locked in the parent process. */ static void reinit_after_fork (void) { init_module (); pthread_mutex_init (&__timer_mutex, 0); } /* Called once form pthread_once in timer_init. This initializes the module and ensures that reinit_after_fork will be executed in any child process. */ void __timer_init_once (void) { init_module (); pthread_atfork (0, 0, reinit_after_fork); } /* Deinitialize a thread that is about to be deallocated. */ static void thread_deinit (struct thread_node *thread) { assert (list_isempty (&thread->timer_queue)); pthread_cond_destroy (&thread->cond); } /* Allocate a thread structure from the global free list. Global mutex lock must be held by caller. The thread is moved to the active list. */ struct thread_node * __timer_thread_alloc (const pthread_attr_t *desired_attr, clockid_t clock_id) { struct list_links *node = list_first (&thread_free_list); if (node != list_null (&thread_free_list)) { struct thread_node *thread = thread_links2ptr (node); list_unlink (node); thread_init (thread, desired_attr, clock_id); list_append (&thread_active_list, node); return thread; } return 0; } /* Return a thread structure to the global free list. Global lock must be held by caller. */ void __timer_thread_dealloc (struct thread_node *thread) { thread_deinit (thread); list_unlink (&thread->links); list_append (&thread_free_list, &thread->links); } /* Each of our threads which terminates executes this cleanup handler. We never terminate threads ourselves; if a thread gets here it means that the evil application has killed it. If the thread has timers, these require servicing and so we must hire a replacement thread right away. We must also unblock another thread that may have been waiting for this thread to finish servicing a timer (see timer_delete()). */ static void thread_cleanup (void *val) { if (val != NULL) { struct thread_node *thread = val; /* How did the signal thread get killed? */ assert (thread != &__timer_signal_thread_rclk); pthread_mutex_lock (&__timer_mutex); thread->exists = 0; /* We are no longer processing a timer event. */ thread->current_timer = 0; if (list_isempty (&thread->timer_queue)) __timer_thread_dealloc (thread); else (void) __timer_thread_start (thread); pthread_mutex_unlock (&__timer_mutex); /* Unblock potentially blocked timer_delete(). */ pthread_cond_broadcast (&thread->cond); } } /* Handle a timer which is supposed to go off now. */ static void thread_expire_timer (struct thread_node *self, struct timer_node *timer) { self->current_timer = timer; /* Lets timer_delete know timer is running. */ pthread_mutex_unlock (&__timer_mutex); switch (__builtin_expect (timer->event.sigev_notify, SIGEV_SIGNAL)) { case SIGEV_NONE: break; case SIGEV_SIGNAL: #ifdef __NR_rt_sigqueueinfo { siginfo_t info; /* First, clear the siginfo_t structure, so that we don't pass our stack content to other tasks. */ memset (&info, 0, sizeof (siginfo_t)); /* We must pass the information about the data in a siginfo_t value. */ info.si_signo = timer->event.sigev_signo; info.si_code = SI_TIMER; info.si_pid = timer->creator_pid; info.si_uid = getuid (); info.si_value = timer->event.sigev_value; INLINE_SYSCALL (rt_sigqueueinfo, 3, info.si_pid, info.si_signo, &info); } #else if (pthread_kill (self->captured, timer->event.sigev_signo) != 0) { if (pthread_kill (self->id, timer->event.sigev_signo) != 0) abort (); } #endif break; case SIGEV_THREAD: timer->event.sigev_notify_function (timer->event.sigev_value); break; default: assert (! "unknown event"); break; } pthread_mutex_lock (&__timer_mutex); self->current_timer = 0; pthread_cond_broadcast (&self->cond); } /* Thread function; executed by each timer thread. The job of this function is to wait on the thread's timer queue and expire the timers in chronological order as close to their scheduled time as possible. */ static void __attribute__ ((noreturn)) thread_func (void *arg) { struct thread_node *self = arg; /* Register cleanup handler, in case rogue application terminates this thread. (This cannot happen to __timer_signal_thread, which doesn't invoke application callbacks). */ pthread_cleanup_push (thread_cleanup, self); pthread_mutex_lock (&__timer_mutex); while (1) { struct list_links *first; struct timer_node *timer = NULL; /* While the timer queue is not empty, inspect the first node. */ first = list_first (&self->timer_queue); if (first != list_null (&self->timer_queue)) { struct timespec now; timer = timer_links2ptr (first); /* This assumes that the elements of the list of one thread are all for the same clock. */ clock_gettime (timer->clock, &now); while (1) { /* If the timer is due or overdue, remove it from the queue. If it's a periodic timer, re-compute its new time and requeue it. Either way, perform the timer expiry. */ if (timespec_compare (&now, &timer->expirytime) < 0) break; list_unlink_ip (first); if (__builtin_expect (timer->value.it_interval.tv_sec, 0) != 0 || timer->value.it_interval.tv_nsec != 0) { timer->overrun_count = 0; timespec_add (&timer->expirytime, &timer->expirytime, &timer->value.it_interval); while (timespec_compare (&timer->expirytime, &now) < 0) { timespec_add (&timer->expirytime, &timer->expirytime, &timer->value.it_interval); if (timer->overrun_count < DELAYTIMER_MAX) ++timer->overrun_count; } __timer_thread_queue_timer (self, timer); } thread_expire_timer (self, timer); first = list_first (&self->timer_queue); if (first == list_null (&self->timer_queue)) break; timer = timer_links2ptr (first); } } /* If the queue is not empty, wait until the expiry time of the first node. Otherwise wait indefinitely. Insertions at the head of the queue must wake up the thread by broadcasting this condition variable. */ if (timer != NULL) pthread_cond_timedwait (&self->cond, &__timer_mutex, &timer->expirytime); else pthread_cond_wait (&self->cond, &__timer_mutex); } /* This macro will never be executed since the while loop loops forever - but we have to add it for proper nesting. */ pthread_cleanup_pop (1); } /* Enqueue a timer in wakeup order in the thread's timer queue. Returns 1 if the timer was inserted at the head of the queue, causing the queue's next wakeup time to change. */ int __timer_thread_queue_timer (struct thread_node *thread, struct timer_node *insert) { struct list_links *iter; int athead = 1; for (iter = list_first (&thread->timer_queue); iter != list_null (&thread->timer_queue); iter = list_next (iter)) { struct timer_node *timer = timer_links2ptr (iter); if (timespec_compare (&insert->expirytime, &timer->expirytime) < 0) break; athead = 0; } list_insbefore (iter, &insert->links); return athead; } /* Start a thread and associate it with the given thread node. Global lock must be held by caller. */ int __timer_thread_start (struct thread_node *thread) { int retval = 1; assert (!thread->exists); thread->exists = 1; if (pthread_create (&thread->id, &thread->attr, (void *(*) (void *)) thread_func, thread) != 0) { thread->exists = 0; retval = -1; } return retval; } void __timer_thread_wakeup (struct thread_node *thread) { pthread_cond_broadcast (&thread->cond); } /* Compare two pthread_attr_t thread attributes for exact equality. Returns 1 if they are equal, otherwise zero if they are not equal or contain illegal values. This version is LinuxThreads-specific for performance reason. One could use the access functions to get the values of all the fields of the attribute structure. */ static int thread_attr_compare (const pthread_attr_t *left, const pthread_attr_t *right) { return (left->__detachstate == right->__detachstate && left->__schedpolicy == right->__schedpolicy && left->__guardsize == right->__guardsize && (left->__schedparam.sched_priority == right->__schedparam.sched_priority) && left->__inheritsched == right->__inheritsched && left->__scope == right->__scope && left->__stacksize == right->__stacksize && left->__stackaddr_set == right->__stackaddr_set && (left->__stackaddr_set || left->__stackaddr == right->__stackaddr)); } /* Search the list of active threads and find one which has matching attributes. Global mutex lock must be held by caller. */ struct thread_node * __timer_thread_find_matching (const pthread_attr_t *desired_attr, clockid_t desired_clock_id) { struct list_links *iter = list_first (&thread_active_list); while (iter != list_null (&thread_active_list)) { struct thread_node *candidate = thread_links2ptr (iter); if (thread_attr_compare (desired_attr, &candidate->attr) && desired_clock_id == candidate->clock_id) return candidate; iter = list_next (iter); } return NULL; } /* Grab a free timer structure from the global free list. The global lock must be held by the caller. */ struct timer_node * __timer_alloc (void) { struct list_links *node = list_first (&timer_free_list); if (node != list_null (&timer_free_list)) { struct timer_node *timer = timer_links2ptr (node); list_unlink_ip (node); timer->inuse = TIMER_INUSE; timer->refcount = 1; return timer; } return NULL; } /* Return a timer structure to the global free list. The global lock must be held by the caller. */ void __timer_dealloc (struct timer_node *timer) { assert (timer->refcount == 0); timer->thread = NULL; /* Break association between timer and thread. */ timer->inuse = TIMER_FREE; list_append (&timer_free_list, &timer->links); } /* Thread cancellation handler which unlocks a mutex. */ void __timer_mutex_cancel_handler (void *arg) { pthread_mutex_unlock (arg); } |