// SPDX-License-Identifier: BSD-2-Clause
/*
* Copyright (c) 2016-2021, Linaro Limited
* Copyright (c) 2014, STMicroelectronics International N.V.
* Copyright (c) 2020-2021, Arm Limited
*/
#include <platform_config.h>
#include <arm.h>
#include <assert.h>
#include <config.h>
#include <io.h>
#include <keep.h>
#include <kernel/asan.h>
#include <kernel/boot.h>
#include <kernel/linker.h>
#include <kernel/lockdep.h>
#include <kernel/misc.h>
#include <kernel/panic.h>
#include <kernel/spinlock.h>
#include <kernel/spmc_sp_handler.h>
#include <kernel/tee_ta_manager.h>
#include <kernel/thread.h>
#include <kernel/thread_private.h>
#include <kernel/user_mode_ctx_struct.h>
#include <kernel/virtualization.h>
#include <mm/core_memprot.h>
#include <mm/mobj.h>
#include <mm/tee_mm.h>
#include <mm/tee_pager.h>
#include <mm/vm.h>
#include <smccc.h>
#include <sm/sm.h>
#include <trace.h>
#include <util.h>
#ifdef CFG_CORE_UNMAP_CORE_AT_EL0
static vaddr_t thread_user_kcode_va __nex_bss;
long thread_user_kcode_offset __nex_bss;
static size_t thread_user_kcode_size __nex_bss;
#endif
#if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \
defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64)
long thread_user_kdata_sp_offset __nex_bss;
static uint8_t thread_user_kdata_page[
ROUNDUP(sizeof(struct thread_core_local) * CFG_TEE_CORE_NB_CORE,
SMALL_PAGE_SIZE)]
__aligned(SMALL_PAGE_SIZE)
#ifndef CFG_VIRTUALIZATION
__section(".nozi.kdata_page");
#else
__section(".nex_nozi.kdata_page");
#endif
#endif
#ifdef ARM32
uint32_t __nostackcheck thread_get_exceptions(void)
{
uint32_t cpsr = read_cpsr();
return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL;
}
void __nostackcheck thread_set_exceptions(uint32_t exceptions)
{
uint32_t cpsr = read_cpsr();
/* Foreign interrupts must not be unmasked while holding a spinlock */
if (!(exceptions & THREAD_EXCP_FOREIGN_INTR))
assert_have_no_spinlock();
cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT);
cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT);
barrier();
write_cpsr(cpsr);
barrier();
}
#endif /*ARM32*/
#ifdef ARM64
uint32_t __nostackcheck thread_get_exceptions(void)
{
uint32_t daif = read_daif();
return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL;
}
void __nostackcheck thread_set_exceptions(uint32_t exceptions)
{
uint32_t daif = read_daif();
/* Foreign interrupts must not be unmasked while holding a spinlock */
if (!(exceptions & THREAD_EXCP_FOREIGN_INTR))
assert_have_no_spinlock();
daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT);
daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT);
barrier();
write_daif(daif);
barrier();
}
#endif /*ARM64*/
uint32_t __nostackcheck thread_mask_exceptions(uint32_t exceptions)
{
uint32_t state = thread_get_exceptions();
thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL));
return state;
}
void __nostackcheck thread_unmask_exceptions(uint32_t state)
{
thread_set_exceptions(state & THREAD_EXCP_ALL);
}
static void thread_lazy_save_ns_vfp(void)
{
#ifdef CFG_WITH_VFP
struct thread_ctx *thr = threads + thread_get_id();
thr->vfp_state.ns_saved = false;
vfp_lazy_save_state_init(&thr->vfp_state.ns);
#endif /*CFG_WITH_VFP*/
}
static void thread_lazy_restore_ns_vfp(void)
{
#ifdef CFG_WITH_VFP
struct thread_ctx *thr = threads + thread_get_id();
struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved);
if (tuv && tuv->lazy_saved && !tuv->saved) {
vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/);
tuv->saved = true;
}
vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved);
thr->vfp_state.ns_saved = false;
#endif /*CFG_WITH_VFP*/
}
#ifdef ARM32
static void init_regs(struct thread_ctx *thread, uint32_t a0, uint32_t a1,
uint32_t a2, uint32_t a3, uint32_t a4, uint32_t a5,
uint32_t a6, uint32_t a7, void *pc)
{
thread->regs.pc = (uint32_t)pc;
/*
* Stdcalls starts in SVC mode with masked foreign interrupts, masked
* Asynchronous abort and unmasked native interrupts.
*/
thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E;
thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_A |
(THREAD_EXCP_FOREIGN_INTR << ARM32_CPSR_F_SHIFT);
/* Enable thumb mode if it's a thumb instruction */
if (thread->regs.pc & 1)
thread->regs.cpsr |= CPSR_T;
/* Reinitialize stack pointer */
thread->regs.svc_sp = thread->stack_va_end;
/*
* Copy arguments into context. This will make the
* arguments appear in r0-r7 when thread is started.
*/
thread->regs.r0 = a0;
thread->regs.r1 = a1;
thread->regs.r2 = a2;
thread->regs.r3 = a3;
thread->regs.r4 = a4;
thread->regs.r5 = a5;
thread->regs.r6 = a6;
thread->regs.r7 = a7;
}
#endif /*ARM32*/
#ifdef ARM64
static void init_regs(struct thread_ctx *thread, uint32_t a0, uint32_t a1,
uint32_t a2, uint32_t a3, uint32_t a4, uint32_t a5,
uint32_t a6, uint32_t a7, void *pc)
{
thread->regs.pc = (uint64_t)pc;
/*
* Stdcalls starts in SVC mode with masked foreign interrupts, masked
* Asynchronous abort and unmasked native interrupts.
*/
thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0,
THREAD_EXCP_FOREIGN_INTR | DAIFBIT_ABT);
/* Reinitialize stack pointer */
thread->regs.sp = thread->stack_va_end;
/*
* Copy arguments into context. This will make the
* arguments appear in x0-x7 when thread is started.
*/
thread->regs.x[0] = a0;
thread->regs.x[1] = a1;
thread->regs.x[2] = a2;
thread->regs.x[3] = a3;
thread->regs.x[4] = a4;
thread->regs.x[5] = a5;
thread->regs.x[6] = a6;
thread->regs.x[7] = a7;
/* Set up frame pointer as per the Aarch64 AAPCS */
thread->regs.x[29] = 0;
}
#endif /*ARM64*/
static void __thread_alloc_and_run(uint32_t a0, uint32_t a1, uint32_t a2,
uint32_t a3, uint32_t a4, uint32_t a5,
uint32_t a6, uint32_t a7,
void *pc)
{
size_t n;
struct thread_core_local *l = thread_get_core_local();
bool found_thread = false;
assert(l->curr_thread == THREAD_ID_INVALID);
thread_lock_global();
for (n = 0; n < CFG_NUM_THREADS; n++) {
if (threads[n].state == THREAD_STATE_FREE) {
threads[n].state = THREAD_STATE_ACTIVE;
found_thread = true;
break;
}
}
thread_unlock_global();
if (!found_thread)
return;
l->curr_thread = n;
threads[n].flags = 0;
init_regs(threads + n, a0, a1, a2, a3, a4, a5, a6, a7, pc);
thread_lazy_save_ns_vfp();
l->flags &= ~THREAD_CLF_TMP;
thread_resume(&threads[n].regs);
/*NOTREACHED*/
panic();
}
void thread_alloc_and_run(uint32_t a0, uint32_t a1, uint32_t a2, uint32_t a3,
uint32_t a4, uint32_t a5)
{
__thread_alloc_and_run(a0, a1, a2, a3, a4, a5, 0, 0,
thread_std_smc_entry);
}
#ifdef CFG_SECURE_PARTITION
void thread_sp_alloc_and_run(struct thread_smc_args *args __maybe_unused)
{
__thread_alloc_and_run(args->a0, args->a1, args->a2, args->a3, args->a4,
args->a5, args->a6, args->a7,
spmc_sp_thread_entry);
}
#endif
#ifdef ARM32
static void copy_a0_to_a3(struct thread_ctx_regs *regs, uint32_t a0,
uint32_t a1, uint32_t a2, uint32_t a3)
{
/*
* Update returned values from RPC, values will appear in
* r0-r3 when thread is resumed.
*/
regs->r0 = a0;
regs->r1 = a1;
regs->r2 = a2;
regs->r3 = a3;
}
#endif /*ARM32*/
#ifdef ARM64
static void copy_a0_to_a3(struct thread_ctx_regs *regs, uint32_t a0,
uint32_t a1, uint32_t a2, uint32_t a3)
{
/*
* Update returned values from RPC, values will appear in
* x0-x3 when thread is resumed.
*/
regs->x[0] = a0;
regs->x[1] = a1;
regs->x[2] = a2;
regs->x[3] = a3;
}
#endif /*ARM64*/
#ifdef ARM32
static bool is_from_user(uint32_t cpsr)
{
return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR;
}
#endif
#ifdef ARM64
static bool is_from_user(uint32_t cpsr)
{
if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT))
return true;
if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) ==
SPSR_64_MODE_EL0)
return true;
return false;
}
#endif
#ifdef CFG_SYSCALL_FTRACE
static void __noprof ftrace_suspend(void)
{
struct ts_session *s = TAILQ_FIRST(&thread_get_tsd()->sess_stack);
if (s && s->fbuf)
s->fbuf->syscall_trace_suspended = true;
}
static void __noprof ftrace_resume(void)
{
struct ts_session *s = TAILQ_FIRST(&thread_get_tsd()->sess_stack);
if (s && s->fbuf)
s->fbuf->syscall_trace_suspended = false;
}
#else
static void __noprof ftrace_suspend(void)
{
}
static void __noprof ftrace_resume(void)
{
}
#endif
static bool is_user_mode(struct thread_ctx_regs *regs)
{
return is_from_user((uint32_t)regs->cpsr);
}
void thread_resume_from_rpc(uint32_t thread_id, uint32_t a0, uint32_t a1,
uint32_t a2, uint32_t a3)
{
size_t n = thread_id;
struct thread_core_local *l = thread_get_core_local();
bool found_thread = false;
assert(l->curr_thread == THREAD_ID_INVALID);
thread_lock_global();
if (n < CFG_NUM_THREADS && threads[n].state == THREAD_STATE_SUSPENDED) {
threads[n].state = THREAD_STATE_ACTIVE;
found_thread = true;
}
thread_unlock_global();
if (!found_thread)
return;
l->curr_thread = n;
if (threads[n].have_user_map) {
core_mmu_set_user_map(&threads[n].user_map);
if (threads[n].flags & THREAD_FLAGS_EXIT_ON_FOREIGN_INTR)
tee_ta_ftrace_update_times_resume();
}
if (is_user_mode(&threads[n].regs))
tee_ta_update_session_utime_resume();
/*
* Return from RPC to request service of a foreign interrupt must not
* get parameters from non-secure world.
*/
if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) {
copy_a0_to_a3(&threads[n].regs, a0, a1, a2, a3);
threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN;
}
thread_lazy_save_ns_vfp();
if (threads[n].have_user_map)
ftrace_resume();
l->flags &= ~THREAD_CLF_TMP;
thread_resume(&threads[n].regs);
/*NOTREACHED*/
panic();
}
#ifdef ARM64
vaddr_t thread_get_saved_thread_sp(void)
{
struct thread_core_local *l = thread_get_core_local();
int ct = l->curr_thread;
assert(ct != THREAD_ID_INVALID);
return threads[ct].kern_sp;
}
#endif /*ARM64*/
#ifdef ARM32
bool thread_is_in_normal_mode(void)
{
return (read_cpsr() & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_SVC;
}
#endif
void thread_state_free(void)
{
struct thread_core_local *l = thread_get_core_local();
int ct = l->curr_thread;
assert(ct != THREAD_ID_INVALID);
thread_lazy_restore_ns_vfp();
tee_pager_release_phys(
(void *)(threads[ct].stack_va_end - STACK_THREAD_SIZE),
STACK_THREAD_SIZE);
thread_lock_global();
assert(threads[ct].state == THREAD_STATE_ACTIVE);
threads[ct].state = THREAD_STATE_FREE;
threads[ct].flags = 0;
l->curr_thread = THREAD_ID_INVALID;
if (IS_ENABLED(CFG_VIRTUALIZATION))
virt_unset_guest();
thread_unlock_global();
}
#ifdef CFG_WITH_PAGER
static void release_unused_kernel_stack(struct thread_ctx *thr,
uint32_t cpsr __maybe_unused)
{
#ifdef ARM64
/*
* If we're from user mode then thr->regs.sp is the saved user
* stack pointer and thr->kern_sp holds the last kernel stack
* pointer. But if we're from kernel mode then thr->kern_sp isn't
* up to date so we need to read from thr->regs.sp instead.
*/
vaddr_t sp = is_from_user(cpsr) ? thr->kern_sp : thr->regs.sp;
#else
vaddr_t sp = thr->regs.svc_sp;
#endif
vaddr_t base = thr->stack_va_end - STACK_THREAD_SIZE;
size_t len = sp - base;
tee_pager_release_phys((void *)base, len);
}
#else
static void release_unused_kernel_stack(struct thread_ctx *thr __unused,
uint32_t cpsr __unused)
{
}
#endif
int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc)
{
struct thread_core_local *l = thread_get_core_local();
int ct = l->curr_thread;
assert(ct != THREAD_ID_INVALID);
if (core_mmu_user_mapping_is_active())
ftrace_suspend();
thread_check_canaries();
release_unused_kernel_stack(threads + ct, cpsr);
if (is_from_user(cpsr)) {
thread_user_save_vfp();
tee_ta_update_session_utime_suspend();
tee_ta_gprof_sample_pc(pc);
}
thread_lazy_restore_ns_vfp();
thread_lock_global();
assert(threads[ct].state == THREAD_STATE_ACTIVE);
threads[ct].flags |= flags;
threads[ct].regs.cpsr = cpsr;
threads[ct].regs.pc = pc;
threads[ct].state = THREAD_STATE_SUSPENDED;
threads[ct].have_user_map = core_mmu_user_mapping_is_active();
if (threads[ct].have_user_map) {
if (threads[ct].flags & THREAD_FLAGS_EXIT_ON_FOREIGN_INTR)
tee_ta_ftrace_update_times_suspend();
core_mmu_get_user_map(&threads[ct].user_map);
core_mmu_set_user_map(NULL);
}
l->curr_thread = THREAD_ID_INVALID;
if (IS_ENABLED(CFG_VIRTUALIZATION))
virt_unset_guest();
thread_unlock_global();
return ct;
}
bool thread_init_stack(uint32_t thread_id, vaddr_t sp)
{
if (thread_id >= CFG_NUM_THREADS)
return false;
threads[thread_id].stack_va_end = sp;
return true;
}
static void __maybe_unused
set_core_local_kcode_offset(struct thread_core_local *cls, long offset)
{
size_t n = 0;
for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++)
cls[n].kcode_offset = offset;
}
static void init_user_kcode(void)
{
#ifdef CFG_CORE_UNMAP_CORE_AT_EL0
vaddr_t v = (vaddr_t)thread_excp_vect;
vaddr_t ve = (vaddr_t)thread_excp_vect_end;
thread_user_kcode_va = ROUNDDOWN(v, CORE_MMU_USER_CODE_SIZE);
ve = ROUNDUP(ve, CORE_MMU_USER_CODE_SIZE);
thread_user_kcode_size = ve - thread_user_kcode_va;
core_mmu_get_user_va_range(&v, NULL);
thread_user_kcode_offset = thread_user_kcode_va - v;
set_core_local_kcode_offset(thread_core_local,
thread_user_kcode_offset);
#if defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64)
set_core_local_kcode_offset((void *)thread_user_kdata_page,
thread_user_kcode_offset);
/*
* When transitioning to EL0 subtract SP with this much to point to
* this special kdata page instead. SP is restored by add this much
* while transitioning back to EL1.
*/
v += thread_user_kcode_size;
thread_user_kdata_sp_offset = (vaddr_t)thread_core_local - v;
#endif
#endif /*CFG_CORE_UNMAP_CORE_AT_EL0*/
}
void thread_init_primary(void)
{
/* Initialize canaries around the stacks */
thread_init_canaries();
init_user_kcode();
}
static uint32_t __maybe_unused get_midr_implementer(uint32_t midr)
{
return (midr >> MIDR_IMPLEMENTER_SHIFT) & MIDR_IMPLEMENTER_MASK;
}
static uint32_t __maybe_unused get_midr_primary_part(uint32_t midr)
{
return (midr >> MIDR_PRIMARY_PART_NUM_SHIFT) &
MIDR_PRIMARY_PART_NUM_MASK;
}
static uint32_t __maybe_unused get_midr_variant(uint32_t midr)
{
return (midr >> MIDR_VARIANT_SHIFT) & MIDR_VARIANT_MASK;
}
static uint32_t __maybe_unused get_midr_revision(uint32_t midr)
{
return (midr >> MIDR_REVISION_SHIFT) & MIDR_REVISION_MASK;
}
#ifdef ARM64
static bool probe_workaround_available(uint32_t wa_id)
{
int32_t r;
r = thread_smc(SMCCC_VERSION, 0, 0, 0);
if (r < 0)
return false;
if (r < 0x10001) /* compare with version 1.1 */
return false;
/* Version >= 1.1, so SMCCC_ARCH_FEATURES is available */
r = thread_smc(SMCCC_ARCH_FEATURES, wa_id, 0, 0);
return r >= 0;
}
static vaddr_t __maybe_unused select_vector_wa_spectre_v2(void)
{
if (probe_workaround_available(SMCCC_ARCH_WORKAROUND_1)) {
DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") available",
SMCCC_ARCH_WORKAROUND_1);
DMSG("SMC Workaround for CVE-2017-5715 used");
return (vaddr_t)thread_excp_vect_wa_spectre_v2;
}
DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") unavailable",
SMCCC_ARCH_WORKAROUND_1);
DMSG("SMC Workaround for CVE-2017-5715 not needed (if ARM-TF is up to date)");
return (vaddr_t)thread_excp_vect;
}
#else
static vaddr_t __maybe_unused select_vector_wa_spectre_v2(void)
{
return (vaddr_t)thread_excp_vect_wa_spectre_v2;
}
#endif
static vaddr_t __maybe_unused
select_vector_wa_spectre_bhb(uint8_t loop_count __maybe_unused)
{
/*
* Spectre-BHB has only been analyzed for AArch64 so far. For
* AArch32 fall back to the Spectre-V2 workaround which is likely
* to work even if perhaps a bit more expensive than a more
* optimized workaround.
*/
#ifdef ARM64
#ifdef CFG_CORE_UNMAP_CORE_AT_EL0
struct thread_core_local *cl = (void *)thread_user_kdata_page;
cl[get_core_pos()].bhb_loop_count = loop_count;
#endif
thread_get_core_local()->bhb_loop_count = loop_count;
DMSG("Spectre-BHB CVE-2022-23960 workaround enabled with \"K\" = %u",
loop_count);
return (vaddr_t)thread_excp_vect_wa_spectre_bhb;
#else
return select_vector_wa_spectre_v2();
#endif
}
static vaddr_t get_excp_vect(void)
{
#ifdef CFG_CORE_WORKAROUND_SPECTRE_BP_SEC
uint32_t midr = read_midr();
uint8_t vers = 0;
if (get_midr_implementer(midr) != MIDR_IMPLEMENTER_ARM)
return (vaddr_t)thread_excp_vect;
/*
* Variant rx, Revision py, for instance
* Variant 2 Revision 0 = r2p0 = 0x20
*/
vers = (get_midr_variant(midr) << 4) | get_midr_revision(midr);
/*
* Spectre-V2 (CVE-2017-5715) software workarounds covers what's
* needed for Spectre-BHB (CVE-2022-23960) too. The workaround for
* Spectre-V2 is more expensive than the one for Spectre-BHB so if
* possible select the workaround for Spectre-BHB.
*/
switch (get_midr_primary_part(midr)) {
#ifdef ARM32
/* Spectre-V2 */
case CORTEX_A8_PART_NUM:
case CORTEX_A9_PART_NUM:
case CORTEX_A17_PART_NUM:
#endif
/* Spectre-V2 */
case CORTEX_A57_PART_NUM:
case CORTEX_A73_PART_NUM:
case CORTEX_A75_PART_NUM:
return select_vector_wa_spectre_v2();
#ifdef ARM32
/* Spectre-V2 */
case CORTEX_A15_PART_NUM:
return (vaddr_t)thread_excp_vect_wa_a15_spectre_v2;
#endif
/*
* Spectre-V2 for vers < r1p0
* Spectre-BHB for vers >= r1p0
*/
case CORTEX_A72_PART_NUM:
if (vers < 0x10)
return select_vector_wa_spectre_v2();
return select_vector_wa_spectre_bhb(8);
/*
* Doing the more safe but expensive Spectre-V2 workaround for CPUs
* still being researched on the best mitigation sequence.
*/
case CORTEX_A65_PART_NUM:
case CORTEX_A65AE_PART_NUM:
case NEOVERSE_E1_PART_NUM:
return select_vector_wa_spectre_v2();
/* Spectre-BHB */
case CORTEX_A76_PART_NUM:
case CORTEX_A76AE_PART_NUM:
case CORTEX_A77_PART_NUM:
return select_vector_wa_spectre_bhb(24);
case CORTEX_A78_PART_NUM:
case CORTEX_A78AE_PART_NUM:
case CORTEX_A78C_PART_NUM:
case CORTEX_A710_PART_NUM:
case CORTEX_X1_PART_NUM:
case CORTEX_X2_PART_NUM:
return select_vector_wa_spectre_bhb(32);
case NEOVERSE_N1_PART_NUM:
return select_vector_wa_spectre_bhb(24);
case NEOVERSE_N2_PART_NUM:
case NEOVERSE_V1_PART_NUM:
return select_vector_wa_spectre_bhb(32);
default:
return (vaddr_t)thread_excp_vect;
}
#endif /*CFG_CORE_WORKAROUND_SPECTRE_BP_SEC*/
return (vaddr_t)thread_excp_vect;
}
void thread_init_per_cpu(void)
{
#ifdef ARM32
struct thread_core_local *l = thread_get_core_local();
#if !defined(CFG_WITH_ARM_TRUSTED_FW)
/* Initialize secure monitor */
sm_init(l->tmp_stack_va_end + STACK_TMP_OFFS);
#endif
thread_set_irq_sp(l->tmp_stack_va_end);
thread_set_fiq_sp(l->tmp_stack_va_end);
thread_set_abt_sp((vaddr_t)l);
thread_set_und_sp((vaddr_t)l);
#endif
thread_init_vbar(get_excp_vect());
#ifdef CFG_FTRACE_SUPPORT
/*
* Enable accesses to frequency register and physical counter
* register in EL0/PL0 required for timestamping during
* function tracing.
*/
write_cntkctl(read_cntkctl() | CNTKCTL_PL0PCTEN);
#endif
}
#ifdef CFG_WITH_VFP
uint32_t thread_kernel_enable_vfp(void)
{
uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
struct thread_ctx *thr = threads + thread_get_id();
struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
assert(!vfp_is_enabled());
if (!thr->vfp_state.ns_saved) {
vfp_lazy_save_state_final(&thr->vfp_state.ns,
true /*force_save*/);
thr->vfp_state.ns_saved = true;
} else if (thr->vfp_state.sec_lazy_saved &&
!thr->vfp_state.sec_saved) {
/*
* This happens when we're handling an abort while the
* thread was using the VFP state.
*/
vfp_lazy_save_state_final(&thr->vfp_state.sec,
false /*!force_save*/);
thr->vfp_state.sec_saved = true;
} else if (tuv && tuv->lazy_saved && !tuv->saved) {
/*
* This can happen either during syscall or abort
* processing (while processing a syscall).
*/
vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/);
tuv->saved = true;
}
vfp_enable();
return exceptions;
}
void thread_kernel_disable_vfp(uint32_t state)
{
uint32_t exceptions;
assert(vfp_is_enabled());
vfp_disable();
exceptions = thread_get_exceptions();
assert(exceptions & THREAD_EXCP_FOREIGN_INTR);
exceptions &= ~THREAD_EXCP_FOREIGN_INTR;
exceptions |= state & THREAD_EXCP_FOREIGN_INTR;
thread_set_exceptions(exceptions);
}
void thread_kernel_save_vfp(void)
{
struct thread_ctx *thr = threads + thread_get_id();
assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
if (vfp_is_enabled()) {
vfp_lazy_save_state_init(&thr->vfp_state.sec);
thr->vfp_state.sec_lazy_saved = true;
}
}
void thread_kernel_restore_vfp(void)
{
struct thread_ctx *thr = threads + thread_get_id();
assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
assert(!vfp_is_enabled());
if (thr->vfp_state.sec_lazy_saved) {
vfp_lazy_restore_state(&thr->vfp_state.sec,
thr->vfp_state.sec_saved);
thr->vfp_state.sec_saved = false;
thr->vfp_state.sec_lazy_saved = false;
}
}
void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp)
{
struct thread_ctx *thr = threads + thread_get_id();
struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
assert(!vfp_is_enabled());
if (!thr->vfp_state.ns_saved) {
vfp_lazy_save_state_final(&thr->vfp_state.ns,
true /*force_save*/);
thr->vfp_state.ns_saved = true;
} else if (tuv && uvfp != tuv) {
if (tuv->lazy_saved && !tuv->saved) {
vfp_lazy_save_state_final(&tuv->vfp,
false /*!force_save*/);
tuv->saved = true;
}
}
if (uvfp->lazy_saved)
vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved);
uvfp->lazy_saved = false;
uvfp->saved = false;
thr->vfp_state.uvfp = uvfp;
vfp_enable();
}
void thread_user_save_vfp(void)
{
struct thread_ctx *thr = threads + thread_get_id();
struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
if (!vfp_is_enabled())
return;
assert(tuv && !tuv->lazy_saved && !tuv->saved);
vfp_lazy_save_state_init(&tuv->vfp);
tuv->lazy_saved = true;
}
void thread_user_clear_vfp(struct user_mode_ctx *uctx)
{
struct thread_user_vfp_state *uvfp = &uctx->vfp;
struct thread_ctx *thr = threads + thread_get_id();
if (uvfp == thr->vfp_state.uvfp)
thr->vfp_state.uvfp = NULL;
uvfp->lazy_saved = false;
uvfp->saved = false;
}
#endif /*CFG_WITH_VFP*/
#ifdef ARM32
static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
{
uint32_t s;
if (!is_32bit)
return false;
s = read_cpsr();
s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2);
s |= CPSR_MODE_USR;
if (entry_func & 1)
s |= CPSR_T;
*spsr = s;
return true;
}
#endif
#ifdef ARM64
static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
{
uint32_t s;
if (is_32bit) {
s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT);
s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT;
s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT;
} else {
s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT);
}
*spsr = s;
return true;
}
#endif
static void set_ctx_regs(struct thread_ctx_regs *regs, unsigned long a0,
unsigned long a1, unsigned long a2, unsigned long a3,
unsigned long user_sp, unsigned long entry_func,
uint32_t spsr,
struct thread_pauth_keys *keys __maybe_unused)
{
/*
* First clear all registers to avoid leaking information from
* other TAs or even the Core itself.
*/
*regs = (struct thread_ctx_regs){ };
#ifdef ARM32
regs->r0 = a0;
regs->r1 = a1;
regs->r2 = a2;
regs->r3 = a3;
regs->usr_sp = user_sp;
regs->pc = entry_func;
regs->cpsr = spsr;
#endif
#ifdef ARM64
regs->x[0] = a0;
regs->x[1] = a1;
regs->x[2] = a2;
regs->x[3] = a3;
regs->sp = user_sp;
regs->pc = entry_func;
regs->cpsr = spsr;
regs->x[13] = user_sp; /* Used when running TA in Aarch32 */
regs->sp = user_sp; /* Used when running TA in Aarch64 */
#ifdef CFG_TA_PAUTH
assert(keys);
regs->apiakey_hi = keys->hi;
regs->apiakey_lo = keys->lo;
#endif
/* Set frame pointer (user stack can't be unwound past this point) */
regs->x[29] = 0;
#endif
}
static struct thread_pauth_keys *thread_get_pauth_keys(void)
{
#if defined(CFG_TA_PAUTH)
struct ts_session *s = ts_get_current_session();
/* Only user TA's support the PAUTH keys */
struct user_ta_ctx *utc = to_user_ta_ctx(s->ctx);
return &utc->uctx.keys;
#else
return NULL;
#endif
}
uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1,
unsigned long a2, unsigned long a3, unsigned long user_sp,
unsigned long entry_func, bool is_32bit,
uint32_t *exit_status0, uint32_t *exit_status1)
{
uint32_t spsr = 0;
uint32_t exceptions = 0;
uint32_t rc = 0;
struct thread_ctx_regs *regs = NULL;
struct thread_pauth_keys *keys = NULL;
tee_ta_update_session_utime_resume();
keys = thread_get_pauth_keys();
/* Derive SPSR from current CPSR/PSTATE readout. */
if (!get_spsr(is_32bit, entry_func, &spsr)) {
*exit_status0 = 1; /* panic */
*exit_status1 = 0xbadbadba;
return 0;
}
exceptions = thread_mask_exceptions(THREAD_EXCP_ALL);
/*
* We're using the per thread location of saved context registers
* for temporary storage. Now that exceptions are masked they will
* not be used for any thing else until they are eventually
* unmasked when user mode has been entered.
*/
regs = thread_get_ctx_regs();
set_ctx_regs(regs, a0, a1, a2, a3, user_sp, entry_func, spsr, keys);
rc = __thread_enter_user_mode(regs, exit_status0, exit_status1);
thread_unmask_exceptions(exceptions);
return rc;
}
#ifdef CFG_CORE_UNMAP_CORE_AT_EL0
void thread_get_user_kcode(struct mobj **mobj, size_t *offset,
vaddr_t *va, size_t *sz)
{
core_mmu_get_user_va_range(va, NULL);
*mobj = mobj_tee_ram_rx;
*sz = thread_user_kcode_size;
*offset = thread_user_kcode_va - (vaddr_t)mobj_get_va(*mobj, 0, *sz);
}
#endif
#if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \
defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64)
void thread_get_user_kdata(struct mobj **mobj, size_t *offset,
vaddr_t *va, size_t *sz)
{
vaddr_t v;
core_mmu_get_user_va_range(&v, NULL);
*va = v + thread_user_kcode_size;
*mobj = mobj_tee_ram_rw;
*sz = sizeof(thread_user_kdata_page);
*offset = (vaddr_t)thread_user_kdata_page -
(vaddr_t)mobj_get_va(*mobj, 0, *sz);
}
#endif
static void setup_unwind_user_mode(struct thread_svc_regs *regs)
{
#ifdef ARM32
regs->lr = (uintptr_t)thread_unwind_user_mode;
regs->spsr = read_cpsr();
#endif
#ifdef ARM64
regs->elr = (uintptr_t)thread_unwind_user_mode;
regs->spsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0, 0);
regs->spsr |= read_daif();
/*
* Regs is the value of stack pointer before calling the SVC
* handler. By the addition matches for the reserved space at the
* beginning of el0_sync_svc(). This prepares the stack when
* returning to thread_unwind_user_mode instead of a normal
* exception return.
*/
regs->sp_el0 = (uint64_t)(regs + 1);
#endif
}
static void gprof_set_status(struct ts_session *s __maybe_unused,
enum ts_gprof_status status __maybe_unused)
{
#ifdef CFG_TA_GPROF_SUPPORT
if (s->ctx->ops->gprof_set_status)
s->ctx->ops->gprof_set_status(status);
#endif
}
/*
* Note: this function is weak just to make it possible to exclude it from
* the unpaged area.
*/
void __weak thread_svc_handler(struct thread_svc_regs *regs)
{
struct ts_session *sess = NULL;
uint32_t state = 0;
/* Enable native interrupts */
state = thread_get_exceptions();
thread_unmask_exceptions(state & ~THREAD_EXCP_NATIVE_INTR);
thread_user_save_vfp();
sess = ts_get_current_session();
/*
* User mode service has just entered kernel mode, suspend gprof
* collection until we're about to switch back again.
*/
gprof_set_status(sess, TS_GPROF_SUSPEND);
/* Restore foreign interrupts which are disabled on exception entry */
thread_restore_foreign_intr();
assert(sess && sess->handle_svc);
if (sess->handle_svc(regs)) {
/* We're about to switch back to user mode */
gprof_set_status(sess, TS_GPROF_RESUME);
} else {
/* We're returning from __thread_enter_user_mode() */
setup_unwind_user_mode(regs);
}
}
#ifdef CFG_WITH_ARM_TRUSTED_FW
/*
* These five functions are __weak to allow platforms to override them if
* needed.
*/
unsigned long __weak thread_cpu_off_handler(unsigned long a0 __unused,
unsigned long a1 __unused)
{
return 0;
}
DECLARE_KEEP_PAGER(thread_cpu_off_handler);
unsigned long __weak thread_cpu_suspend_handler(unsigned long a0 __unused,
unsigned long a1 __unused)
{
return 0;
}
DECLARE_KEEP_PAGER(thread_cpu_suspend_handler);
unsigned long __weak thread_cpu_resume_handler(unsigned long a0 __unused,
unsigned long a1 __unused)
{
return 0;
}
DECLARE_KEEP_PAGER(thread_cpu_resume_handler);
unsigned long __weak thread_system_off_handler(unsigned long a0 __unused,
unsigned long a1 __unused)
{
return 0;
}
DECLARE_KEEP_PAGER(thread_system_off_handler);
unsigned long __weak thread_system_reset_handler(unsigned long a0 __unused,
unsigned long a1 __unused)
{
return 0;
}
DECLARE_KEEP_PAGER(thread_system_reset_handler);
#endif /*CFG_WITH_ARM_TRUSTED_FW*/