Linux debugging

Check our new training course

Linux debugging, tracing, profiling & perf. analysis

Check our new training course
with Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
// SPDX-License-Identifier: BSD-2-Clause
/*
 * Copyright (c) 2015-2021, Linaro Limited
 */

#include <arm.h>
#include <assert.h>
#include <compiler.h>
#include <config.h>
#include <console.h>
#include <crypto/crypto.h>
#include <drivers/gic.h>
#include <initcall.h>
#include <inttypes.h>
#include <keep.h>
#include <kernel/asan.h>
#include <kernel/boot.h>
#include <kernel/linker.h>
#include <kernel/misc.h>
#include <kernel/panic.h>
#include <kernel/tee_misc.h>
#include <kernel/thread.h>
#include <kernel/tpm.h>
#include <libfdt.h>
#include <malloc.h>
#include <mm/core_memprot.h>
#include <mm/core_mmu.h>
#include <mm/fobj.h>
#include <mm/tee_mm.h>
#include <mm/tee_pager.h>
#include <sm/psci.h>
#include <stdio.h>
#include <trace.h>
#include <utee_defines.h>
#include <util.h>

#include <platform_config.h>

#if !defined(CFG_WITH_ARM_TRUSTED_FW)
#include <sm/sm.h>
#endif

#if defined(CFG_WITH_VFP)
#include <kernel/vfp.h>
#endif

/*
 * In this file we're using unsigned long to represent physical pointers as
 * they are received in a single register when OP-TEE is initially entered.
 * This limits 32-bit systems to only use make use of the lower 32 bits
 * of a physical address for initial parameters.
 *
 * 64-bit systems on the other hand can use full 64-bit physical pointers.
 */
#define PADDR_INVALID		ULONG_MAX

#if defined(CFG_BOOT_SECONDARY_REQUEST)
struct ns_entry_context {
	uintptr_t entry_point;
	uintptr_t context_id;
};
struct ns_entry_context ns_entry_contexts[CFG_TEE_CORE_NB_CORE];
static uint32_t spin_table[CFG_TEE_CORE_NB_CORE];
#endif

#ifdef CFG_BOOT_SYNC_CPU
/*
 * Array used when booting, to synchronize cpu.
 * When 0, the cpu has not started.
 * When 1, it has started
 */
uint32_t sem_cpu_sync[CFG_TEE_CORE_NB_CORE];
DECLARE_KEEP_PAGER(sem_cpu_sync);
#endif

#ifdef CFG_DT
struct dt_descriptor {
	void *blob;
#ifdef _CFG_USE_DTB_OVERLAY
	int frag_id;
#endif
};

static struct dt_descriptor external_dt __nex_bss;
#endif

#ifdef CFG_SECONDARY_INIT_CNTFRQ
static uint32_t cntfrq;
#endif

/* May be overridden in plat-$(PLATFORM)/main.c */
__weak void plat_primary_init_early(void)
{
}
DECLARE_KEEP_PAGER(plat_primary_init_early);

/* May be overridden in plat-$(PLATFORM)/main.c */
__weak void main_init_gic(void)
{
}

/* May be overridden in plat-$(PLATFORM)/main.c */
__weak void main_secondary_init_gic(void)
{
}

/* May be overridden in plat-$(PLATFORM)/main.c */
__weak unsigned long plat_get_aslr_seed(void)
{
	DMSG("Warning: no ASLR seed");

	return 0;
}

/*
 * This function is called as a guard after each smc call which is not
 * supposed to return.
 */
void __panic_at_smc_return(void)
{
	panic();
}

#if defined(CFG_WITH_ARM_TRUSTED_FW)
void init_sec_mon(unsigned long nsec_entry __maybe_unused)
{
	assert(nsec_entry == PADDR_INVALID);
	/* Do nothing as we don't have a secure monitor */
}
#else
/* May be overridden in plat-$(PLATFORM)/main.c */
__weak void init_sec_mon(unsigned long nsec_entry)
{
	struct sm_nsec_ctx *nsec_ctx;

	assert(nsec_entry != PADDR_INVALID);

	/* Initialize secure monitor */
	nsec_ctx = sm_get_nsec_ctx();
	nsec_ctx->mon_lr = nsec_entry;
	nsec_ctx->mon_spsr = CPSR_MODE_SVC | CPSR_I;
	if (nsec_entry & 1)
		nsec_ctx->mon_spsr |= CPSR_T;
}
#endif

#if defined(CFG_WITH_ARM_TRUSTED_FW)
static void init_vfp_nsec(void)
{
}
#else
static void init_vfp_nsec(void)
{
	/* Normal world can use CP10 and CP11 (SIMD/VFP) */
	write_nsacr(read_nsacr() | NSACR_CP10 | NSACR_CP11);
}
#endif

#if defined(CFG_WITH_VFP)

#ifdef ARM32
static void init_vfp_sec(void)
{
	uint32_t cpacr = read_cpacr();

	/*
	 * Enable Advanced SIMD functionality.
	 * Enable use of D16-D31 of the Floating-point Extension register
	 * file.
	 */
	cpacr &= ~(CPACR_ASEDIS | CPACR_D32DIS);
	/*
	 * Enable usage of CP10 and CP11 (SIMD/VFP) (both kernel and user
	 * mode.
	 */
	cpacr |= CPACR_CP(10, CPACR_CP_ACCESS_FULL);
	cpacr |= CPACR_CP(11, CPACR_CP_ACCESS_FULL);
	write_cpacr(cpacr);
}
#endif /* ARM32 */

#ifdef ARM64
static void init_vfp_sec(void)
{
	/* Not using VFP until thread_kernel_enable_vfp() */
	vfp_disable();
}
#endif /* ARM64 */

#else /* CFG_WITH_VFP */

static void init_vfp_sec(void)
{
	/* Not using VFP */
}
#endif

#ifdef CFG_SECONDARY_INIT_CNTFRQ
static void primary_save_cntfrq(void)
{
	assert(cntfrq == 0);

	/*
	 * CNTFRQ should be initialized on the primary CPU by a
	 * previous boot stage
	 */
	cntfrq = read_cntfrq();
}

static void secondary_init_cntfrq(void)
{
	assert(cntfrq != 0);
	write_cntfrq(cntfrq);
}
#else /* CFG_SECONDARY_INIT_CNTFRQ */
static void primary_save_cntfrq(void)
{
}

static void secondary_init_cntfrq(void)
{
}
#endif

#ifdef CFG_CORE_SANITIZE_KADDRESS
static void init_run_constructors(void)
{
	const vaddr_t *ctor;

	for (ctor = &__ctor_list; ctor < &__ctor_end; ctor++)
		((void (*)(void))(*ctor))();
}

static void init_asan(void)
{

	/*
	 * CFG_ASAN_SHADOW_OFFSET is also supplied as
	 * -fasan-shadow-offset=$(CFG_ASAN_SHADOW_OFFSET) to the compiler.
	 * Since all the needed values to calculate the value of
	 * CFG_ASAN_SHADOW_OFFSET isn't available in to make we need to
	 * calculate it in advance and hard code it into the platform
	 * conf.mk. Here where we have all the needed values we double
	 * check that the compiler is supplied the correct value.
	 */

#define __ASAN_SHADOW_START \
	ROUNDUP(TEE_RAM_VA_START + (TEE_RAM_VA_SIZE * 8) / 9 - 8, 8)
	assert(__ASAN_SHADOW_START == (vaddr_t)&__asan_shadow_start);
#define __CFG_ASAN_SHADOW_OFFSET \
	(__ASAN_SHADOW_START - (TEE_RAM_VA_START / 8))
	COMPILE_TIME_ASSERT(CFG_ASAN_SHADOW_OFFSET == __CFG_ASAN_SHADOW_OFFSET);
#undef __ASAN_SHADOW_START
#undef __CFG_ASAN_SHADOW_OFFSET

	/*
	 * Assign area covered by the shadow area, everything from start up
	 * to the beginning of the shadow area.
	 */
	asan_set_shadowed((void *)TEE_TEXT_VA_START, &__asan_shadow_start);

	/*
	 * Add access to areas that aren't opened automatically by a
	 * constructor.
	 */
	asan_tag_access(&__ctor_list, &__ctor_end);
	asan_tag_access(__rodata_start, __rodata_end);
#ifdef CFG_WITH_PAGER
	asan_tag_access(__pageable_start, __pageable_end);
#endif /*CFG_WITH_PAGER*/
	asan_tag_access(__nozi_start, __nozi_end);
	asan_tag_access(__exidx_start, __exidx_end);
	asan_tag_access(__extab_start, __extab_end);

	init_run_constructors();

	/* Everything is tagged correctly, let's start address sanitizing. */
	asan_start();
}
#else /*CFG_CORE_SANITIZE_KADDRESS*/
static void init_asan(void)
{
}
#endif /*CFG_CORE_SANITIZE_KADDRESS*/

#ifdef CFG_WITH_PAGER

#ifdef CFG_CORE_SANITIZE_KADDRESS
static void carve_out_asan_mem(tee_mm_pool_t *pool)
{
	const size_t s = pool->hi - pool->lo;
	tee_mm_entry_t *mm;
	paddr_t apa = ASAN_MAP_PA;
	size_t asz = ASAN_MAP_SZ;

	if (core_is_buffer_outside(apa, asz, pool->lo, s))
		return;

	/* Reserve the shadow area */
	if (!core_is_buffer_inside(apa, asz, pool->lo, s)) {
		if (apa < pool->lo) {
			/*
			 * ASAN buffer is overlapping with the beginning of
			 * the pool.
			 */
			asz -= pool->lo - apa;
			apa = pool->lo;
		} else {
			/*
			 * ASAN buffer is overlapping with the end of the
			 * pool.
			 */
			asz = pool->hi - apa;
		}
	}
	mm = tee_mm_alloc2(pool, apa, asz);
	assert(mm);
}
#else
static void carve_out_asan_mem(tee_mm_pool_t *pool __unused)
{
}
#endif

static void print_pager_pool_size(void)
{
	struct tee_pager_stats __maybe_unused stats;

	tee_pager_get_stats(&stats);
	IMSG("Pager pool size: %zukB",
		stats.npages_all * SMALL_PAGE_SIZE / 1024);
}

static void init_vcore(tee_mm_pool_t *mm_vcore)
{
	const vaddr_t begin = VCORE_START_VA;
	size_t size = TEE_RAM_VA_SIZE;

#ifdef CFG_CORE_SANITIZE_KADDRESS
	/* Carve out asan memory, flat maped after core memory */
	if (begin + size > ASAN_SHADOW_PA)
		size = ASAN_MAP_PA - begin;
#endif

	if (!tee_mm_init(mm_vcore, begin, size, SMALL_PAGE_SHIFT,
			 TEE_MM_POOL_NO_FLAGS))
		panic("tee_mm_vcore init failed");
}

/*
 * With CFG_CORE_ASLR=y the init part is relocated very early during boot.
 * The init part is also paged just as the rest of the normal paged code, with
 * the difference that it's preloaded during boot. When the backing store
 * is configured the entire paged binary is copied in place and then also
 * the init part. Since the init part has been relocated (references to
 * addresses updated to compensate for the new load address) this has to be
 * undone for the hashes of those pages to match with the original binary.
 *
 * If CFG_CORE_ASLR=n, nothing needs to be done as the code/ro pages are
 * unchanged.
 */
static void undo_init_relocation(uint8_t *paged_store __maybe_unused)
{
#ifdef CFG_CORE_ASLR
	unsigned long *ptr = NULL;
	const uint32_t *reloc = NULL;
	const uint32_t *reloc_end = NULL;
	unsigned long offs = boot_mmu_config.load_offset;
	const struct boot_embdata *embdata = (const void *)__init_end;
	vaddr_t addr_end = (vaddr_t)__init_end - offs - TEE_RAM_START;
	vaddr_t addr_start = (vaddr_t)__init_start - offs - TEE_RAM_START;

	reloc = (const void *)((vaddr_t)embdata + embdata->reloc_offset);
	reloc_end = reloc + embdata->reloc_len / sizeof(*reloc);

	for (; reloc < reloc_end; reloc++) {
		if (*reloc < addr_start)
			continue;
		if (*reloc >= addr_end)
			break;
		ptr = (void *)(paged_store + *reloc - addr_start);
		*ptr -= offs;
	}
#endif
}

static struct fobj *ro_paged_alloc(tee_mm_entry_t *mm, void *hashes,
				   void *store)
{
	const unsigned int num_pages = tee_mm_get_bytes(mm) / SMALL_PAGE_SIZE;
#ifdef CFG_CORE_ASLR
	unsigned int reloc_offs = (vaddr_t)__pageable_start - VCORE_START_VA;
	const struct boot_embdata *embdata = (const void *)__init_end;
	const void *reloc = __init_end + embdata->reloc_offset;

	return fobj_ro_reloc_paged_alloc(num_pages, hashes, reloc_offs,
					 reloc, embdata->reloc_len, store);
#else
	return fobj_ro_paged_alloc(num_pages, hashes, store);
#endif
}

static void init_runtime(unsigned long pageable_part)
{
	size_t n;
	size_t init_size = (size_t)(__init_end - __init_start);
	size_t pageable_start = (size_t)__pageable_start;
	size_t pageable_end = (size_t)__pageable_end;
	size_t pageable_size = pageable_end - pageable_start;
	size_t tzsram_end = TZSRAM_BASE + TZSRAM_SIZE;
	size_t hash_size = (pageable_size / SMALL_PAGE_SIZE) *
			   TEE_SHA256_HASH_SIZE;
	const struct boot_embdata *embdata = (const void *)__init_end;
	const void *tmp_hashes = NULL;
	tee_mm_entry_t *mm = NULL;
	struct fobj *fobj = NULL;
	uint8_t *paged_store = NULL;
	uint8_t *hashes = NULL;

	assert(pageable_size % SMALL_PAGE_SIZE == 0);
	assert(embdata->total_len >= embdata->hashes_offset +
				     embdata->hashes_len);
	assert(hash_size == embdata->hashes_len);

	tmp_hashes = __init_end + embdata->hashes_offset;

	init_asan();

	/* Add heap2 first as heap1 may be too small as initial bget pool */
	malloc_add_pool(__heap2_start, __heap2_end - __heap2_start);
	malloc_add_pool(__heap1_start, __heap1_end - __heap1_start);

	/*
	 * This needs to be initialized early to support address lookup
	 * in MEM_AREA_TEE_RAM
	 */
	tee_pager_early_init();

	hashes = malloc(hash_size);
	IMSG_RAW("\n");
	IMSG("Pager is enabled. Hashes: %zu bytes", hash_size);
	assert(hashes);
	asan_memcpy_unchecked(hashes, tmp_hashes, hash_size);

	/*
	 * Need tee_mm_sec_ddr initialized to be able to allocate secure
	 * DDR below.
	 */
	core_mmu_init_ta_ram();

	carve_out_asan_mem(&tee_mm_sec_ddr);

	mm = tee_mm_alloc(&tee_mm_sec_ddr, pageable_size);
	assert(mm);
	paged_store = phys_to_virt(tee_mm_get_smem(mm), MEM_AREA_TA_RAM,
				   pageable_size);
	/*
	 * Load pageable part in the dedicated allocated area:
	 * - Move pageable non-init part into pageable area. Note bootloader
	 *   may have loaded it anywhere in TA RAM hence use memmove().
	 * - Copy pageable init part from current location into pageable area.
	 */
	memmove(paged_store + init_size,
		phys_to_virt(pageable_part,
			     core_mmu_get_type_by_pa(pageable_part),
			     __pageable_part_end - __pageable_part_start),
		__pageable_part_end - __pageable_part_start);
	asan_memcpy_unchecked(paged_store, __init_start, init_size);
	/*
	 * Undo eventual relocation for the init part so the hash checks
	 * can pass.
	 */
	undo_init_relocation(paged_store);

	/* Check that hashes of what's in pageable area is OK */
	DMSG("Checking hashes of pageable area");
	for (n = 0; (n * SMALL_PAGE_SIZE) < pageable_size; n++) {
		const uint8_t *hash = hashes + n * TEE_SHA256_HASH_SIZE;
		const uint8_t *page = paged_store + n * SMALL_PAGE_SIZE;
		TEE_Result res;

		DMSG("hash pg_idx %zu hash %p page %p", n, hash, page);
		res = hash_sha256_check(hash, page, SMALL_PAGE_SIZE);
		if (res != TEE_SUCCESS) {
			EMSG("Hash failed for page %zu at %p: res 0x%x",
			     n, (void *)page, res);
			panic();
		}
	}

	/*
	 * Assert prepaged init sections are page aligned so that nothing
	 * trails uninited at the end of the premapped init area.
	 */
	assert(!(init_size & SMALL_PAGE_MASK));

	/*
	 * Initialize the virtual memory pool used for main_mmu_l2_ttb which
	 * is supplied to tee_pager_init() below.
	 */
	init_vcore(&tee_mm_vcore);

	/*
	 * Assign alias area for pager end of the small page block the rest
	 * of the binary is loaded into. We're taking more than needed, but
	 * we're guaranteed to not need more than the physical amount of
	 * TZSRAM.
	 */
	mm = tee_mm_alloc2(&tee_mm_vcore,
			   (vaddr_t)tee_mm_vcore.lo +
			   tee_mm_vcore.size - TZSRAM_SIZE,
			   TZSRAM_SIZE);
	assert(mm);
	tee_pager_set_alias_area(mm);

	/*
	 * Claim virtual memory which isn't paged.
	 * Linear memory (flat map core memory) ends there.
	 */
	mm = tee_mm_alloc2(&tee_mm_vcore, VCORE_UNPG_RX_PA,
			   (vaddr_t)(__pageable_start - VCORE_UNPG_RX_PA));
	assert(mm);

	/*
	 * Allocate virtual memory for the pageable area and let the pager
	 * take charge of all the pages already assigned to that memory.
	 */
	mm = tee_mm_alloc2(&tee_mm_vcore, (vaddr_t)__pageable_start,
			   pageable_size);
	assert(mm);
	fobj = ro_paged_alloc(mm, hashes, paged_store);
	assert(fobj);
	tee_pager_add_core_region(tee_mm_get_smem(mm), PAGED_REGION_TYPE_RO,
				  fobj);
	fobj_put(fobj);

	tee_pager_add_pages(pageable_start, init_size / SMALL_PAGE_SIZE, false);
	tee_pager_add_pages(pageable_start + init_size,
			    (pageable_size - init_size) / SMALL_PAGE_SIZE,
			    true);
	if (pageable_end < tzsram_end)
		tee_pager_add_pages(pageable_end, (tzsram_end - pageable_end) /
						   SMALL_PAGE_SIZE, true);

	/*
	 * There may be physical pages in TZSRAM before the core load address.
	 * These pages can be added to the physical pages pool of the pager.
	 * This setup may happen when a the secure bootloader runs in TZRAM
	 * and its memory can be reused by OP-TEE once boot stages complete.
	 */
	tee_pager_add_pages(tee_mm_vcore.lo,
			(VCORE_UNPG_RX_PA - tee_mm_vcore.lo) / SMALL_PAGE_SIZE,
			true);

	print_pager_pool_size();
}
#else

static void init_runtime(unsigned long pageable_part __unused)
{
	init_asan();

	/*
	 * By default whole OP-TEE uses malloc, so we need to initialize
	 * it early. But, when virtualization is enabled, malloc is used
	 * only by TEE runtime, so malloc should be initialized later, for
	 * every virtual partition separately. Core code uses nex_malloc
	 * instead.
	 */
#ifdef CFG_VIRTUALIZATION
	nex_malloc_add_pool(__nex_heap_start, __nex_heap_end -
					      __nex_heap_start);
#else
	malloc_add_pool(__heap1_start, __heap1_end - __heap1_start);
#endif

	IMSG_RAW("\n");
}
#endif

void *get_dt(void)
{
	void *fdt = get_embedded_dt();

	if (!fdt)
		fdt = get_external_dt();

	return fdt;
}

#if defined(CFG_EMBED_DTB)
void *get_embedded_dt(void)
{
	static bool checked;

	assert(cpu_mmu_enabled());

	if (!checked) {
		IMSG("Embedded DTB found");

		if (fdt_check_header(embedded_secure_dtb))
			panic("Invalid embedded DTB");

		checked = true;
	}

	return embedded_secure_dtb;
}
#else
void *get_embedded_dt(void)
{
	return NULL;
}
#endif /*CFG_EMBED_DTB*/

#if defined(CFG_DT)
void *get_external_dt(void)
{
	assert(cpu_mmu_enabled());
	return external_dt.blob;
}

static TEE_Result release_external_dt(void)
{
	int ret = 0;

	if (!external_dt.blob)
		return TEE_SUCCESS;

	ret = fdt_pack(external_dt.blob);
	if (ret < 0) {
		EMSG("Failed to pack Device Tree at 0x%" PRIxPA ": error %d",
		     virt_to_phys(external_dt.blob), ret);
		panic();
	}

	if (core_mmu_remove_mapping(MEM_AREA_EXT_DT, external_dt.blob,
				    CFG_DTB_MAX_SIZE))
		panic("Failed to remove temporary Device Tree mapping");

	/* External DTB no more reached, reset pointer to invalid */
	external_dt.blob = NULL;

	return TEE_SUCCESS;
}
boot_final(release_external_dt);

#ifdef _CFG_USE_DTB_OVERLAY
static int add_dt_overlay_fragment(struct dt_descriptor *dt, int ioffs)
{
	char frag[32];
	int offs;
	int ret;

	snprintf(frag, sizeof(frag), "fragment@%d", dt->frag_id);
	offs = fdt_add_subnode(dt->blob, ioffs, frag);
	if (offs < 0)
		return offs;

	dt->frag_id += 1;

	ret = fdt_setprop_string(dt->blob, offs, "target-path", "/");
	if (ret < 0)
		return -1;

	return fdt_add_subnode(dt->blob, offs, "__overlay__");
}

static int init_dt_overlay(struct dt_descriptor *dt, int __maybe_unused dt_size)
{
	int fragment;

	if (IS_ENABLED(CFG_EXTERNAL_DTB_OVERLAY)) {
		if (!fdt_check_header(dt->blob)) {
			fdt_for_each_subnode(fragment, dt->blob, 0)
				dt->frag_id += 1;
			return 0;
		}
	}

	return fdt_create_empty_tree(dt->blob, dt_size);
}
#else
static int add_dt_overlay_fragment(struct dt_descriptor *dt __unused, int offs)
{
	return offs;
}

static int init_dt_overlay(struct dt_descriptor *dt __unused,
			   int dt_size __unused)
{
	return 0;
}
#endif /* _CFG_USE_DTB_OVERLAY */

static int add_dt_path_subnode(struct dt_descriptor *dt, const char *path,
			       const char *subnode)
{
	int offs;

	offs = fdt_path_offset(dt->blob, path);
	if (offs < 0)
		return -1;
	offs = add_dt_overlay_fragment(dt, offs);
	if (offs < 0)
		return -1;
	offs = fdt_add_subnode(dt->blob, offs, subnode);
	if (offs < 0)
		return -1;
	return offs;
}

static int add_optee_dt_node(struct dt_descriptor *dt)
{
	int offs;
	int ret;

	if (fdt_path_offset(dt->blob, "/firmware/optee") >= 0) {
		DMSG("OP-TEE Device Tree node already exists!");
		return 0;
	}

	offs = fdt_path_offset(dt->blob, "/firmware");
	if (offs < 0) {
		offs = add_dt_path_subnode(dt, "/", "firmware");
		if (offs < 0)
			return -1;
	}

	offs = fdt_add_subnode(dt->blob, offs, "optee");
	if (offs < 0)
		return -1;

	ret = fdt_setprop_string(dt->blob, offs, "compatible",
				 "linaro,optee-tz");
	if (ret < 0)
		return -1;
	ret = fdt_setprop_string(dt->blob, offs, "method", "smc");
	if (ret < 0)
		return -1;
	if (CFG_CORE_ASYNC_NOTIF_GIC_INTID) {
		/*
		 * The format of the interrupt property is defined by the
		 * binding of the interrupt domain root. In this case it's
		 * one Arm GIC v1, v2 or v3 so we must be compatible with
		 * these.
		 *
		 * An SPI type of interrupt is indicated with a 0 in the
		 * first cell.
		 *
		 * The interrupt number goes in the second cell where
		 * SPIs ranges from 0 to 987.
		 *
		 * Flags are passed in the third cell where a 1 means edge
		 * triggered.
		 */
		const uint32_t gic_spi = 0;
		const uint32_t irq_type_edge = 1;
		uint32_t val[] = {
			TEE_U32_TO_BIG_ENDIAN(gic_spi),
			TEE_U32_TO_BIG_ENDIAN(CFG_CORE_ASYNC_NOTIF_GIC_INTID -
					      GIC_SPI_BASE),
			TEE_U32_TO_BIG_ENDIAN(irq_type_edge),
		};

		ret = fdt_setprop(dt->blob, offs, "interrupts", val,
				  sizeof(val));
		if (ret < 0)
			return -1;
	}
	return 0;
}

#ifdef CFG_PSCI_ARM32
static int append_psci_compatible(void *fdt, int offs, const char *str)
{
	return fdt_appendprop(fdt, offs, "compatible", str, strlen(str) + 1);
}

static int dt_add_psci_node(struct dt_descriptor *dt)
{
	int offs;

	if (fdt_path_offset(dt->blob, "/psci") >= 0) {
		DMSG("PSCI Device Tree node already exists!");
		return 0;
	}

	offs = add_dt_path_subnode(dt, "/", "psci");
	if (offs < 0)
		return -1;
	if (append_psci_compatible(dt->blob, offs, "arm,psci-1.0"))
		return -1;
	if (append_psci_compatible(dt->blob, offs, "arm,psci-0.2"))
		return -1;
	if (append_psci_compatible(dt->blob, offs, "arm,psci"))
		return -1;
	if (fdt_setprop_string(dt->blob, offs, "method", "smc"))
		return -1;
	if (fdt_setprop_u32(dt->blob, offs, "cpu_suspend", PSCI_CPU_SUSPEND))
		return -1;
	if (fdt_setprop_u32(dt->blob, offs, "cpu_off", PSCI_CPU_OFF))
		return -1;
	if (fdt_setprop_u32(dt->blob, offs, "cpu_on", PSCI_CPU_ON))
		return -1;
	if (fdt_setprop_u32(dt->blob, offs, "sys_poweroff", PSCI_SYSTEM_OFF))
		return -1;
	if (fdt_setprop_u32(dt->blob, offs, "sys_reset", PSCI_SYSTEM_RESET))
		return -1;
	return 0;
}

static int check_node_compat_prefix(struct dt_descriptor *dt, int offs,
				    const char *prefix)
{
	const size_t prefix_len = strlen(prefix);
	size_t l;
	int plen;
	const char *prop;

	prop = fdt_getprop(dt->blob, offs, "compatible", &plen);
	if (!prop)
		return -1;

	while (plen > 0) {
		if (memcmp(prop, prefix, prefix_len) == 0)
			return 0; /* match */

		l = strlen(prop) + 1;
		prop += l;
		plen -= l;
	}

	return -1;
}

static int dt_add_psci_cpu_enable_methods(struct dt_descriptor *dt)
{
	int offs = 0;

	while (1) {
		offs = fdt_next_node(dt->blob, offs, NULL);
		if (offs < 0)
			break;
		if (fdt_getprop(dt->blob, offs, "enable-method", NULL))
			continue; /* already set */
		if (check_node_compat_prefix(dt, offs, "arm,cortex-a"))
			continue; /* no compatible */
		if (fdt_setprop_string(dt->blob, offs, "enable-method", "psci"))
			return -1;
		/* Need to restart scanning as offsets may have changed */
		offs = 0;
	}
	return 0;
}

static int config_psci(struct dt_descriptor *dt)
{
	if (dt_add_psci_node(dt))
		return -1;
	return dt_add_psci_cpu_enable_methods(dt);
}
#else
static int config_psci(struct dt_descriptor *dt __unused)
{
	return 0;
}
#endif /*CFG_PSCI_ARM32*/

static void set_dt_val(void *data, uint32_t cell_size, uint64_t val)
{
	if (cell_size == 1) {
		fdt32_t v = cpu_to_fdt32((uint32_t)val);

		memcpy(data, &v, sizeof(v));
	} else {
		fdt64_t v = cpu_to_fdt64(val);

		memcpy(data, &v, sizeof(v));
	}
}

static int add_res_mem_dt_node(struct dt_descriptor *dt, const char *name,
			       paddr_t pa, size_t size)
{
	int offs = 0;
	int ret = 0;
	int addr_size = -1;
	int len_size = -1;
	bool found = true;
	char subnode_name[80] = { 0 };

	offs = fdt_path_offset(dt->blob, "/reserved-memory");

	if (offs < 0) {
		found = false;
		offs = 0;
	}

	if (IS_ENABLED(_CFG_USE_DTB_OVERLAY)) {
		len_size = sizeof(paddr_t) / sizeof(uint32_t);
		addr_size = sizeof(paddr_t) / sizeof(uint32_t);
	} else {
		len_size = fdt_size_cells(dt->blob, offs);
		if (len_size < 0)
			return -1;
		addr_size = fdt_address_cells(dt->blob, offs);
		if (addr_size < 0)
			return -1;
	}

	if (!found) {
		offs = add_dt_path_subnode(dt, "/", "reserved-memory");
		if (offs < 0)
			return -1;
		ret = fdt_setprop_cell(dt->blob, offs, "#address-cells",
				       addr_size);
		if (ret < 0)
			return -1;
		ret = fdt_setprop_cell(dt->blob, offs, "#size-cells", len_size);
		if (ret < 0)
			return -1;
		ret = fdt_setprop(dt->blob, offs, "ranges", NULL, 0);
		if (ret < 0)
			return -1;
	}

	ret = snprintf(subnode_name, sizeof(subnode_name),
		       "%s@%" PRIxPA, name, pa);
	if (ret < 0 || ret >= (int)sizeof(subnode_name))
		DMSG("truncated node \"%s@%" PRIxPA"\"", name, pa);
	offs = fdt_add_subnode(dt->blob, offs, subnode_name);
	if (offs >= 0) {
		uint32_t data[FDT_MAX_NCELLS * 2];

		set_dt_val(data, addr_size, pa);
		set_dt_val(data + addr_size, len_size, size);
		ret = fdt_setprop(dt->blob, offs, "reg", data,
				  sizeof(uint32_t) * (addr_size + len_size));
		if (ret < 0)
			return -1;
		ret = fdt_setprop(dt->blob, offs, "no-map", NULL, 0);
		if (ret < 0)
			return -1;
	} else {
		return -1;
	}
	return 0;
}

#ifdef CFG_CORE_DYN_SHM
static uint64_t get_dt_val_and_advance(const void *data, size_t *offs,
				       uint32_t cell_size)
{
	uint64_t rv = 0;

	if (cell_size == 1) {
		uint32_t v;

		memcpy(&v, (const uint8_t *)data + *offs, sizeof(v));
		*offs += sizeof(v);
		rv = fdt32_to_cpu(v);
	} else {
		uint64_t v;

		memcpy(&v, (const uint8_t *)data + *offs, sizeof(v));
		*offs += sizeof(v);
		rv = fdt64_to_cpu(v);
	}

	return rv;
}

/*
 * Find all non-secure memory from DT. Memory marked inaccessible by Secure
 * World is ignored since it could not be mapped to be used as dynamic shared
 * memory.
 */
static int get_nsec_memory_helper(void *fdt, struct core_mmu_phys_mem *mem)
{
	const uint8_t *prop = NULL;
	uint64_t a = 0;
	uint64_t l = 0;
	size_t prop_offs = 0;
	size_t prop_len = 0;
	int elems_total = 0;
	int addr_size = 0;
	int len_size = 0;
	int offs = 0;
	size_t n = 0;
	int len = 0;

	addr_size = fdt_address_cells(fdt, 0);
	if (addr_size < 0)
		return 0;

	len_size = fdt_size_cells(fdt, 0);
	if (len_size < 0)
		return 0;

	while (true) {
		offs = fdt_node_offset_by_prop_value(fdt, offs, "device_type",
						     "memory",
						     sizeof("memory"));
		if (offs < 0)
			break;

		if (_fdt_get_status(fdt, offs) != (DT_STATUS_OK_NSEC |
						   DT_STATUS_OK_SEC))
			continue;

		prop = fdt_getprop(fdt, offs, "reg", &len);
		if (!prop)
			continue;

		prop_len = len;
		for (n = 0, prop_offs = 0; prop_offs < prop_len; n++) {
			a = get_dt_val_and_advance(prop, &prop_offs, addr_size);
			if (prop_offs >= prop_len) {
				n--;
				break;
			}

			l = get_dt_val_and_advance(prop, &prop_offs, len_size);
			if (mem) {
				mem->type = MEM_AREA_DDR_OVERALL;
				mem->addr = a;
				mem->size = l;
				mem++;
			}
		}

		elems_total += n;
	}

	return elems_total;
}

static struct core_mmu_phys_mem *get_nsec_memory(void *fdt, size_t *nelems)
{
	struct core_mmu_phys_mem *mem = NULL;
	int elems_total = 0;

	elems_total = get_nsec_memory_helper(fdt, NULL);
	if (elems_total <= 0)
		return NULL;

	mem = nex_calloc(elems_total, sizeof(*mem));
	if (!mem)
		panic();

	elems_total = get_nsec_memory_helper(fdt, mem);
	assert(elems_total > 0);

	*nelems = elems_total;

	return mem;
}
#endif /*CFG_CORE_DYN_SHM*/

#ifdef CFG_CORE_RESERVED_SHM
static int mark_static_shm_as_reserved(struct dt_descriptor *dt)
{
	vaddr_t shm_start;
	vaddr_t shm_end;

	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &shm_start, &shm_end);
	if (shm_start != shm_end)
		return add_res_mem_dt_node(dt, "optee_shm",
					   virt_to_phys((void *)shm_start),
					   shm_end - shm_start);

	DMSG("No SHM configured");
	return -1;
}
#endif /*CFG_CORE_RESERVED_SHM*/

static void init_external_dt(unsigned long phys_dt)
{
	struct dt_descriptor *dt = &external_dt;
	void *fdt;
	int ret;

	if (!phys_dt) {
		/*
		 * No need to panic as we're not using the DT in OP-TEE
		 * yet, we're only adding some nodes for normal world use.
		 * This makes the switch to using DT easier as we can boot
		 * a newer OP-TEE with older boot loaders. Once we start to
		 * initialize devices based on DT we'll likely panic
		 * instead of returning here.
		 */
		IMSG("No non-secure external DT");
		return;
	}

	fdt = core_mmu_add_mapping(MEM_AREA_EXT_DT, phys_dt, CFG_DTB_MAX_SIZE);
	if (!fdt)
		panic("Failed to map external DTB");

	dt->blob = fdt;

	ret = init_dt_overlay(dt, CFG_DTB_MAX_SIZE);
	if (ret < 0) {
		EMSG("Device Tree Overlay init fail @ %#lx: error %d", phys_dt,
		     ret);
		panic();
	}

	ret = fdt_open_into(fdt, fdt, CFG_DTB_MAX_SIZE);
	if (ret < 0) {
		EMSG("Invalid Device Tree at %#lx: error %d", phys_dt, ret);
		panic();
	}

	IMSG("Non-secure external DT found");
}

static int mark_tzdram_as_reserved(struct dt_descriptor *dt)
{
	return add_res_mem_dt_node(dt, "optee_core", CFG_TZDRAM_START,
				   CFG_TZDRAM_SIZE);
}

static void update_external_dt(void)
{
	struct dt_descriptor *dt = &external_dt;

	if (!dt->blob)
		return;

	if (!IS_ENABLED(CFG_CORE_FFA) && add_optee_dt_node(dt))
		panic("Failed to add OP-TEE Device Tree node");

	if (config_psci(dt))
		panic("Failed to config PSCI");

#ifdef CFG_CORE_RESERVED_SHM
	if (mark_static_shm_as_reserved(dt))
		panic("Failed to config non-secure memory");
#endif

	if (mark_tzdram_as_reserved(dt))
		panic("Failed to config secure memory");
}
#else /*CFG_DT*/
void *get_external_dt(void)
{
	return NULL;
}

static void init_external_dt(unsigned long phys_dt __unused)
{
}

static void update_external_dt(void)
{
}

#ifdef CFG_CORE_DYN_SHM
static struct core_mmu_phys_mem *get_nsec_memory(void *fdt __unused,
						 size_t *nelems __unused)
{
	return NULL;
}
#endif /*CFG_CORE_DYN_SHM*/
#endif /*!CFG_DT*/

#ifdef CFG_CORE_DYN_SHM
static void discover_nsec_memory(void)
{
	struct core_mmu_phys_mem *mem;
	const struct core_mmu_phys_mem *mem_begin = NULL;
	const struct core_mmu_phys_mem *mem_end = NULL;
	size_t nelems;
	void *fdt = get_external_dt();

	if (fdt) {
		mem = get_nsec_memory(fdt, &nelems);
		if (mem) {
			core_mmu_set_discovered_nsec_ddr(mem, nelems);
			return;
		}

		DMSG("No non-secure memory found in FDT");
	}

	mem_begin = phys_ddr_overall_begin;
	mem_end = phys_ddr_overall_end;
	nelems = mem_end - mem_begin;
	if (nelems) {
		/*
		 * Platform cannot use both register_ddr() and the now
		 * deprecated register_dynamic_shm().
		 */
		assert(phys_ddr_overall_compat_begin ==
		       phys_ddr_overall_compat_end);
	} else {
		mem_begin = phys_ddr_overall_compat_begin;
		mem_end = phys_ddr_overall_compat_end;
		nelems = mem_end - mem_begin;
		if (!nelems)
			return;
		DMSG("Warning register_dynamic_shm() is deprecated, please use register_ddr() instead");
	}

	mem = nex_calloc(nelems, sizeof(*mem));
	if (!mem)
		panic();

	memcpy(mem, phys_ddr_overall_begin, sizeof(*mem) * nelems);
	core_mmu_set_discovered_nsec_ddr(mem, nelems);
}
#else /*CFG_CORE_DYN_SHM*/
static void discover_nsec_memory(void)
{
}
#endif /*!CFG_CORE_DYN_SHM*/

#ifdef CFG_VIRTUALIZATION
static TEE_Result virt_init_heap(void)
{
	/* We need to initialize pool for every virtual guest partition */
	malloc_add_pool(__heap1_start, __heap1_end - __heap1_start);

	return TEE_SUCCESS;
}
preinit_early(virt_init_heap);
#endif

void init_tee_runtime(void)
{
#ifndef CFG_WITH_PAGER
	/* Pager initializes TA RAM early */
	core_mmu_init_ta_ram();
#endif
	/*
	 * With virtualization we call this function when creating the
	 * OP-TEE partition instead.
	 */
	if (!IS_ENABLED(CFG_VIRTUALIZATION))
		call_preinitcalls();
	call_initcalls();
}

static void init_primary(unsigned long pageable_part, unsigned long nsec_entry)
{
	thread_init_core_local_stacks();
	/*
	 * Mask asynchronous exceptions before switch to the thread vector
	 * as the thread handler requires those to be masked while
	 * executing with the temporary stack. The thread subsystem also
	 * asserts that the foreign interrupts are blocked when using most of
	 * its functions.
	 */
	thread_set_exceptions(THREAD_EXCP_ALL);
	primary_save_cntfrq();
	init_vfp_sec();
	/*
	 * Pager: init_runtime() calls thread_kernel_enable_vfp() so we must
	 * set a current thread right now to avoid a chicken-and-egg problem
	 * (thread_init_boot_thread() sets the current thread but needs
	 * things set by init_runtime()).
	 */
	thread_get_core_local()->curr_thread = 0;
	init_runtime(pageable_part);

	if (IS_ENABLED(CFG_VIRTUALIZATION)) {
		/*
		 * Virtualization: We can't initialize threads right now because
		 * threads belong to "tee" part and will be initialized
		 * separately per each new virtual guest. So, we'll clear
		 * "curr_thread" and call it done.
		 */
		thread_get_core_local()->curr_thread = -1;
	} else {
		thread_init_boot_thread();
	}
	thread_init_primary();
	thread_init_per_cpu();
	init_sec_mon(nsec_entry);
}

/*
 * Note: this function is weak just to make it possible to exclude it from
 * the unpaged area.
 */
void __weak boot_init_primary_late(unsigned long fdt)
{
	init_external_dt(fdt);
	tpm_map_log_area(get_external_dt());
	discover_nsec_memory();
	update_external_dt();
	configure_console_from_dt();

	IMSG("OP-TEE version: %s", core_v_str);
	if (IS_ENABLED(CFG_WARN_INSECURE)) {
		IMSG("WARNING: This OP-TEE configuration might be insecure!");
		IMSG("WARNING: Please check https://optee.readthedocs.io/en/latest/architecture/porting_guidelines.html");
	}
	IMSG("Primary CPU initializing");
#ifdef CFG_CORE_ASLR
	DMSG("Executing at offset %#lx with virtual load address %#"PRIxVA,
	     (unsigned long)boot_mmu_config.load_offset, VCORE_START_VA);
#endif

	main_init_gic();
	init_vfp_nsec();
	if (IS_ENABLED(CFG_VIRTUALIZATION)) {
		IMSG("Initializing virtualization support");
		core_mmu_init_virtualization();
	} else {
		init_tee_runtime();
	}
	call_finalcalls();
	IMSG("Primary CPU switching to normal world boot");
}

static void init_secondary_helper(unsigned long nsec_entry)
{
	IMSG("Secondary CPU %zu initializing", get_core_pos());

	/*
	 * Mask asynchronous exceptions before switch to the thread vector
	 * as the thread handler requires those to be masked while
	 * executing with the temporary stack. The thread subsystem also
	 * asserts that the foreign interrupts are blocked when using most of
	 * its functions.
	 */
	thread_set_exceptions(THREAD_EXCP_ALL);

	secondary_init_cntfrq();
	thread_init_per_cpu();
	init_sec_mon(nsec_entry);
	main_secondary_init_gic();
	init_vfp_sec();
	init_vfp_nsec();

	IMSG("Secondary CPU %zu switching to normal world boot", get_core_pos());
}

/*
 * Note: this function is weak just to make it possible to exclude it from
 * the unpaged area so that it lies in the init area.
 */
void __weak boot_init_primary_early(unsigned long pageable_part,
				    unsigned long nsec_entry __maybe_unused)
{
	unsigned long e = PADDR_INVALID;

#if !defined(CFG_WITH_ARM_TRUSTED_FW)
	e = nsec_entry;
#endif

	init_primary(pageable_part, e);
}

#if defined(CFG_WITH_ARM_TRUSTED_FW)
unsigned long boot_cpu_on_handler(unsigned long a0 __maybe_unused,
				  unsigned long a1 __unused)
{
	init_secondary_helper(PADDR_INVALID);
	return 0;
}
#else
void boot_init_secondary(unsigned long nsec_entry)
{
	init_secondary_helper(nsec_entry);
}
#endif

#if defined(CFG_BOOT_SECONDARY_REQUEST)
void boot_set_core_ns_entry(size_t core_idx, uintptr_t entry,
			    uintptr_t context_id)
{
	ns_entry_contexts[core_idx].entry_point = entry;
	ns_entry_contexts[core_idx].context_id = context_id;
	dsb_ishst();
}

int boot_core_release(size_t core_idx, paddr_t entry)
{
	if (!core_idx || core_idx >= CFG_TEE_CORE_NB_CORE)
		return -1;

	ns_entry_contexts[core_idx].entry_point = entry;
	dmb();
	spin_table[core_idx] = 1;
	dsb();
	sev();

	return 0;
}

/*
 * spin until secondary boot request, then returns with
 * the secondary core entry address.
 */
struct ns_entry_context *boot_core_hpen(void)
{
#ifdef CFG_PSCI_ARM32
	return &ns_entry_contexts[get_core_pos()];
#else
	do {
		wfe();
	} while (!spin_table[get_core_pos()]);
	dmb();
	return &ns_entry_contexts[get_core_pos()];
#endif
}
#endif

#if defined(CFG_CORE_ASLR)
#if defined(CFG_DT)
unsigned long __weak get_aslr_seed(void *fdt)
{
	int rc = fdt_check_header(fdt);
	const uint64_t *seed = NULL;
	int offs = 0;
	int len = 0;

	if (rc) {
		DMSG("Bad fdt: %d", rc);
		goto err;
	}

	offs =  fdt_path_offset(fdt, "/secure-chosen");
	if (offs < 0) {
		DMSG("Cannot find /secure-chosen");
		goto err;
	}
	seed = fdt_getprop(fdt, offs, "kaslr-seed", &len);
	if (!seed || len != sizeof(*seed)) {
		DMSG("Cannot find valid kaslr-seed");
		goto err;
	}

	return fdt64_to_cpu(*seed);

err:
	/* Try platform implementation */
	return plat_get_aslr_seed();
}
#else /*!CFG_DT*/
unsigned long __weak get_aslr_seed(void *fdt __unused)
{
	/* Try platform implementation */
	return plat_get_aslr_seed();
}
#endif /*!CFG_DT*/
#endif /*CFG_CORE_ASLR*/