Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 | #include "pthread_impl.h"
void __pthread_testcancel(void);
int __pthread_mutex_lock(pthread_mutex_t *);
int __pthread_mutex_unlock(pthread_mutex_t *);
int __pthread_setcancelstate(int, int *);
/*
* struct waiter
*
* Waiter objects have automatic storage on the waiting thread, and
* are used in building a linked list representing waiters currently
* waiting on the condition variable or a group of waiters woken
* together by a broadcast or signal; in the case of signal, this is a
* degenerate list of one member.
*
* Waiter lists attached to the condition variable itself are
* protected by the lock on the cv. Detached waiter lists are never
* modified again, but can only be traversed in reverse order, and are
* protected by the "barrier" locks in each node, which are unlocked
* in turn to control wake order.
*
* Since process-shared cond var semantics do not necessarily allow
* one thread to see another's automatic storage (they may be in
* different processes), the waiter list is not used for the
* process-shared case, but the structure is still used to store data
* needed by the cancellation cleanup handler.
*/
struct waiter {
struct waiter *prev, *next;
volatile int state, barrier;
volatile int *notify;
};
/* Self-synchronized-destruction-safe lock functions */
static inline void lock(volatile int *l)
{
if (a_cas(l, 0, 1)) {
a_cas(l, 1, 2);
do __wait(l, 0, 2, 1);
while (a_cas(l, 0, 2));
}
}
static inline void unlock(volatile int *l)
{
if (a_swap(l, 0)==2)
__wake(l, 1, 1);
}
static inline void unlock_requeue(volatile int *l, volatile int *r, int w)
{
a_store(l, 0);
if (w) __wake(l, 1, 1);
else __syscall(SYS_futex, l, FUTEX_REQUEUE|128, 0, 1, r) != -ENOSYS
|| __syscall(SYS_futex, l, FUTEX_REQUEUE, 0, 1, r);
}
enum {
WAITING,
SIGNALED,
LEAVING,
};
int __pthread_cond_timedwait(pthread_cond_t *restrict c, pthread_mutex_t *restrict m, const struct timespec *restrict ts)
{
struct waiter node = { 0 };
int e, seq, clock = c->_c_clock, cs, shared=0, oldstate, tmp;
volatile int *fut;
if ((m->_m_type&15) && (m->_m_lock&INT_MAX) != __pthread_self()->tid)
return EPERM;
if (ts && ts->tv_nsec >= 1000000000UL)
return EINVAL;
__pthread_testcancel();
if (c->_c_shared) {
shared = 1;
fut = &c->_c_seq;
seq = c->_c_seq;
a_inc(&c->_c_waiters);
} else {
lock(&c->_c_lock);
seq = node.barrier = 2;
fut = &node.barrier;
node.state = WAITING;
node.next = c->_c_head;
c->_c_head = &node;
if (!c->_c_tail) c->_c_tail = &node;
else node.next->prev = &node;
unlock(&c->_c_lock);
}
__pthread_mutex_unlock(m);
__pthread_setcancelstate(PTHREAD_CANCEL_MASKED, &cs);
if (cs == PTHREAD_CANCEL_DISABLE) __pthread_setcancelstate(cs, 0);
do e = __timedwait_cp(fut, seq, clock, ts, !shared);
while (*fut==seq && (!e || e==EINTR));
if (e == EINTR) e = 0;
if (shared) {
/* Suppress cancellation if a signal was potentially
* consumed; this is a legitimate form of spurious
* wake even if not. */
if (e == ECANCELED && c->_c_seq != seq) e = 0;
if (a_fetch_add(&c->_c_waiters, -1) == -0x7fffffff)
__wake(&c->_c_waiters, 1, 0);
oldstate = WAITING;
goto relock;
}
oldstate = a_cas(&node.state, WAITING, LEAVING);
if (oldstate == WAITING) {
/* Access to cv object is valid because this waiter was not
* yet signaled and a new signal/broadcast cannot return
* after seeing a LEAVING waiter without getting notified
* via the futex notify below. */
lock(&c->_c_lock);
if (c->_c_head == &node) c->_c_head = node.next;
else if (node.prev) node.prev->next = node.next;
if (c->_c_tail == &node) c->_c_tail = node.prev;
else if (node.next) node.next->prev = node.prev;
unlock(&c->_c_lock);
if (node.notify) {
if (a_fetch_add(node.notify, -1)==1)
__wake(node.notify, 1, 1);
}
} else {
/* Lock barrier first to control wake order. */
lock(&node.barrier);
}
relock:
/* Errors locking the mutex override any existing error or
* cancellation, since the caller must see them to know the
* state of the mutex. */
if ((tmp = pthread_mutex_lock(m))) e = tmp;
if (oldstate == WAITING) goto done;
if (!node.next) a_inc(&m->_m_waiters);
/* Unlock the barrier that's holding back the next waiter, and
* either wake it or requeue it to the mutex. */
if (node.prev)
unlock_requeue(&node.prev->barrier, &m->_m_lock, m->_m_type & 128);
else
a_dec(&m->_m_waiters);
/* Since a signal was consumed, cancellation is not permitted. */
if (e == ECANCELED) e = 0;
done:
__pthread_setcancelstate(cs, 0);
if (e == ECANCELED) {
__pthread_testcancel();
__pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, 0);
}
return e;
}
int __private_cond_signal(pthread_cond_t *c, int n)
{
struct waiter *p, *first=0;
volatile int ref = 0;
int cur;
lock(&c->_c_lock);
for (p=c->_c_tail; n && p; p=p->prev) {
if (a_cas(&p->state, WAITING, SIGNALED) != WAITING) {
ref++;
p->notify = &ref;
} else {
n--;
if (!first) first=p;
}
}
/* Split the list, leaving any remainder on the cv. */
if (p) {
if (p->next) p->next->prev = 0;
p->next = 0;
} else {
c->_c_head = 0;
}
c->_c_tail = p;
unlock(&c->_c_lock);
/* Wait for any waiters in the LEAVING state to remove
* themselves from the list before returning or allowing
* signaled threads to proceed. */
while ((cur = ref)) __wait(&ref, 0, cur, 1);
/* Allow first signaled waiter, if any, to proceed. */
if (first) unlock(&first->barrier);
return 0;
}
weak_alias(__pthread_cond_timedwait, pthread_cond_timedwait);
|