Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 | /* origin: FreeBSD /usr/src/lib/msun/src/s_expm1.c */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* expm1(x) * Returns exp(x)-1, the exponential of x minus 1. * * Method * 1. Argument reduction: * Given x, find r and integer k such that * * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 * * Here a correction term c will be computed to compensate * the error in r when rounded to a floating-point number. * * 2. Approximating expm1(r) by a special rational function on * the interval [0,0.34658]: * Since * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... * we define R1(r*r) by * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) * That is, * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... * We use a special Remez algorithm on [0,0.347] to generate * a polynomial of degree 5 in r*r to approximate R1. The * maximum error of this polynomial approximation is bounded * by 2**-61. In other words, * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 * where Q1 = -1.6666666666666567384E-2, * Q2 = 3.9682539681370365873E-4, * Q3 = -9.9206344733435987357E-6, * Q4 = 2.5051361420808517002E-7, * Q5 = -6.2843505682382617102E-9; * z = r*r, * with error bounded by * | 5 | -61 * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 * | | * * expm1(r) = exp(r)-1 is then computed by the following * specific way which minimize the accumulation rounding error: * 2 3 * r r [ 3 - (R1 + R1*r/2) ] * expm1(r) = r + --- + --- * [--------------------] * 2 2 [ 6 - r*(3 - R1*r/2) ] * * To compensate the error in the argument reduction, we use * expm1(r+c) = expm1(r) + c + expm1(r)*c * ~ expm1(r) + c + r*c * Thus c+r*c will be added in as the correction terms for * expm1(r+c). Now rearrange the term to avoid optimization * screw up: * ( 2 2 ) * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) * ( ) * * = r - E * 3. Scale back to obtain expm1(x): * From step 1, we have * expm1(x) = either 2^k*[expm1(r)+1] - 1 * = or 2^k*[expm1(r) + (1-2^-k)] * 4. Implementation notes: * (A). To save one multiplication, we scale the coefficient Qi * to Qi*2^i, and replace z by (x^2)/2. * (B). To achieve maximum accuracy, we compute expm1(x) by * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf) * (ii) if k=0, return r-E * (iii) if k=-1, return 0.5*(r-E)-0.5 * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) * else return 1.0+2.0*(r-E); * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else * (vii) return 2^k(1-((E+2^-k)-r)) * * Special cases: * expm1(INF) is INF, expm1(NaN) is NaN; * expm1(-INF) is -1, and * for finite argument, only expm1(0)=0 is exact. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Misc. info. * For IEEE double * if x > 7.09782712893383973096e+02 then expm1(x) overflow * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ #include "libm.h" static const double o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ ln2_hi = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ ln2_lo = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ /* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */ Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */ Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */ Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */ Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */ Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */ double expm1(double x) { double_t y,hi,lo,c,t,e,hxs,hfx,r1,twopk; union {double f; uint64_t i;} u = {x}; uint32_t hx = u.i>>32 & 0x7fffffff; int k, sign = u.i>>63; /* filter out huge and non-finite argument */ if (hx >= 0x4043687A) { /* if |x|>=56*ln2 */ if (isnan(x)) return x; if (sign) return -1; if (x > o_threshold) { x *= 0x1p1023; return x; } } /* argument reduction */ if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ if (!sign) { hi = x - ln2_hi; lo = ln2_lo; k = 1; } else { hi = x + ln2_hi; lo = -ln2_lo; k = -1; } } else { k = invln2*x + (sign ? -0.5 : 0.5); t = k; hi = x - t*ln2_hi; /* t*ln2_hi is exact here */ lo = t*ln2_lo; } x = hi-lo; c = (hi-x)-lo; } else if (hx < 0x3c900000) { /* |x| < 2**-54, return x */ if (hx < 0x00100000) FORCE_EVAL((float)x); return x; } else k = 0; /* x is now in primary range */ hfx = 0.5*x; hxs = x*hfx; r1 = 1.0+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5)))); t = 3.0-r1*hfx; e = hxs*((r1-t)/(6.0 - x*t)); if (k == 0) /* c is 0 */ return x - (x*e-hxs); e = x*(e-c) - c; e -= hxs; /* exp(x) ~ 2^k (x_reduced - e + 1) */ if (k == -1) return 0.5*(x-e) - 0.5; if (k == 1) { if (x < -0.25) return -2.0*(e-(x+0.5)); return 1.0+2.0*(x-e); } u.i = (uint64_t)(0x3ff + k)<<52; /* 2^k */ twopk = u.f; if (k < 0 || k > 56) { /* suffice to return exp(x)-1 */ y = x - e + 1.0; if (k == 1024) y = y*2.0*0x1p1023; else y = y*twopk; return y - 1.0; } u.i = (uint64_t)(0x3ff - k)<<52; /* 2^-k */ if (k < 20) y = (x-e+(1-u.f))*twopk; else y = (x-(e+u.f)+1)*twopk; return y; } |