Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 | #include "pthread_impl.h"
#include <semaphore.h>
#include <unistd.h>
#include <dirent.h>
#include <string.h>
#include <ctype.h>
#include "futex.h"
#include "atomic.h"
#include "../dirent/__dirent.h"
static struct chain {
struct chain *next;
int tid;
sem_t target_sem, caller_sem;
} *volatile head;
static volatile int synccall_lock[2];
static volatile int target_tid;
static void (*callback)(void *), *context;
static volatile int dummy = 0;
weak_alias(dummy, __block_new_threads);
static void handler(int sig)
{
struct chain ch;
int old_errno = errno;
sem_init(&ch.target_sem, 0, 0);
sem_init(&ch.caller_sem, 0, 0);
ch.tid = __syscall(SYS_gettid);
do ch.next = head;
while (a_cas_p(&head, ch.next, &ch) != ch.next);
if (a_cas(&target_tid, ch.tid, 0) == (ch.tid | 0x80000000))
__syscall(SYS_futex, &target_tid, FUTEX_UNLOCK_PI|FUTEX_PRIVATE);
sem_wait(&ch.target_sem);
callback(context);
sem_post(&ch.caller_sem);
sem_wait(&ch.target_sem);
errno = old_errno;
}
void __synccall(void (*func)(void *), void *ctx)
{
sigset_t oldmask;
int cs, i, r, pid, self;;
DIR dir = {0};
struct dirent *de;
struct sigaction sa = { .sa_flags = 0, .sa_handler = handler };
struct chain *cp, *next;
struct timespec ts;
/* Blocking signals in two steps, first only app-level signals
* before taking the lock, then all signals after taking the lock,
* is necessary to achieve AS-safety. Blocking them all first would
* deadlock if multiple threads called __synccall. Waiting to block
* any until after the lock would allow re-entry in the same thread
* with the lock already held. */
__block_app_sigs(&oldmask);
LOCK(synccall_lock);
__block_all_sigs(0);
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &cs);
head = 0;
if (!libc.threaded) goto single_threaded;
callback = func;
context = ctx;
/* This atomic store ensures that any signaled threads will see the
* above stores, and prevents more than a bounded number of threads,
* those already in pthread_create, from creating new threads until
* the value is cleared to zero again. */
a_store(&__block_new_threads, 1);
/* Block even implementation-internal signals, so that nothing
* interrupts the SIGSYNCCALL handlers. The main possible source
* of trouble is asynchronous cancellation. */
memset(&sa.sa_mask, -1, sizeof sa.sa_mask);
__libc_sigaction(SIGSYNCCALL, &sa, 0);
pid = __syscall(SYS_getpid);
self = __syscall(SYS_gettid);
/* Since opendir is not AS-safe, the DIR needs to be setup manually
* in automatic storage. Thankfully this is easy. */
dir.fd = open("/proc/self/task", O_RDONLY|O_DIRECTORY|O_CLOEXEC);
if (dir.fd < 0) goto out;
/* Initially send one signal per counted thread. But since we can't
* synchronize with thread creation/exit here, there could be too
* few signals. This initial signaling is just an optimization, not
* part of the logic. */
for (i=libc.threads_minus_1; i; i--)
__syscall(SYS_kill, pid, SIGSYNCCALL);
/* Loop scanning the kernel-provided thread list until it shows no
* threads that have not already replied to the signal. */
for (;;) {
int miss_cnt = 0;
while ((de = readdir(&dir))) {
if (!isdigit(de->d_name[0])) continue;
int tid = atoi(de->d_name);
if (tid == self || !tid) continue;
/* Set the target thread as the PI futex owner before
* checking if it's in the list of caught threads. If it
* adds itself to the list after we check for it, then
* it will see its own tid in the PI futex and perform
* the unlock operation. */
a_store(&target_tid, tid);
/* Thread-already-caught is a success condition. */
for (cp = head; cp && cp->tid != tid; cp=cp->next);
if (cp) continue;
r = -__syscall(SYS_tgkill, pid, tid, SIGSYNCCALL);
/* Target thread exit is a success condition. */
if (r == ESRCH) continue;
/* The FUTEX_LOCK_PI operation is used to loan priority
* to the target thread, which otherwise may be unable
* to run. Timeout is necessary because there is a race
* condition where the tid may be reused by a different
* process. */
clock_gettime(CLOCK_REALTIME, &ts);
ts.tv_nsec += 10000000;
if (ts.tv_nsec >= 1000000000) {
ts.tv_sec++;
ts.tv_nsec -= 1000000000;
}
r = -__syscall(SYS_futex, &target_tid,
FUTEX_LOCK_PI|FUTEX_PRIVATE, 0, &ts);
/* Obtaining the lock means the thread responded. ESRCH
* means the target thread exited, which is okay too. */
if (!r || r == ESRCH) continue;
miss_cnt++;
}
if (!miss_cnt) break;
rewinddir(&dir);
}
close(dir.fd);
/* Serialize execution of callback in caught threads. */
for (cp=head; cp; cp=cp->next) {
sem_post(&cp->target_sem);
sem_wait(&cp->caller_sem);
}
sa.sa_handler = SIG_IGN;
__libc_sigaction(SIGSYNCCALL, &sa, 0);
single_threaded:
func(ctx);
/* Only release the caught threads once all threads, including the
* caller, have returned from the callback function. */
for (cp=head; cp; cp=next) {
next = cp->next;
sem_post(&cp->target_sem);
}
out:
a_store(&__block_new_threads, 0);
__wake(&__block_new_threads, -1, 1);
pthread_setcancelstate(cs, 0);
UNLOCK(synccall_lock);
__restore_sigs(&oldmask);
}
|