Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 | #include <fenv.h>
#include "libm.h"
#if LDBL_MANT_DIG==64 && LDBL_MAX_EXP==16384
union ld80 {
long double x;
struct {
uint64_t m;
uint16_t e : 15;
uint16_t s : 1;
uint16_t pad;
} bits;
};
/* exact add, assumes exponent_x >= exponent_y */
static void add(long double *hi, long double *lo, long double x, long double y)
{
long double r;
r = x + y;
*hi = r;
r -= x;
*lo = y - r;
}
/* exact mul, assumes no over/underflow */
static void mul(long double *hi, long double *lo, long double x, long double y)
{
static const long double c = 1.0 + 0x1p32L;
long double cx, xh, xl, cy, yh, yl;
cx = c*x;
xh = (x - cx) + cx;
xl = x - xh;
cy = c*y;
yh = (y - cy) + cy;
yl = y - yh;
*hi = x*y;
*lo = (xh*yh - *hi) + xh*yl + xl*yh + xl*yl;
}
/*
assume (long double)(hi+lo) == hi
return an adjusted hi so that rounding it to double (or less) precision is correct
*/
static long double adjust(long double hi, long double lo)
{
union ld80 uhi, ulo;
if (lo == 0)
return hi;
uhi.x = hi;
if (uhi.bits.m & 0x3ff)
return hi;
ulo.x = lo;
if (uhi.bits.s == ulo.bits.s)
uhi.bits.m++;
else {
uhi.bits.m--;
/* handle underflow and take care of ld80 implicit msb */
if (uhi.bits.m == (uint64_t)-1/2) {
uhi.bits.m *= 2;
uhi.bits.e--;
}
}
return uhi.x;
}
/* adjusted add so the result is correct when rounded to double (or less) precision */
static long double dadd(long double x, long double y)
{
add(&x, &y, x, y);
return adjust(x, y);
}
/* adjusted mul so the result is correct when rounded to double (or less) precision */
static long double dmul(long double x, long double y)
{
mul(&x, &y, x, y);
return adjust(x, y);
}
static int getexp(long double x)
{
union ld80 u;
u.x = x;
return u.bits.e;
}
double fma(double x, double y, double z)
{
#pragma STDC FENV_ACCESS ON
long double hi, lo1, lo2, xy;
int round, ez, exy;
/* handle +-inf,nan */
if (!isfinite(x) || !isfinite(y))
return x*y + z;
if (!isfinite(z))
return z;
/* handle +-0 */
if (x == 0.0 || y == 0.0)
return x*y + z;
round = fegetround();
if (z == 0.0) {
if (round == FE_TONEAREST)
return dmul(x, y);
return x*y;
}
/* exact mul and add require nearest rounding */
/* spurious inexact exceptions may be raised */
fesetround(FE_TONEAREST);
mul(&xy, &lo1, x, y);
exy = getexp(xy);
ez = getexp(z);
if (ez > exy) {
add(&hi, &lo2, z, xy);
} else if (ez > exy - 12) {
add(&hi, &lo2, xy, z);
if (hi == 0) {
/*
xy + z is 0, but it should be calculated with the
original rounding mode so the sign is correct, if the
compiler does not support FENV_ACCESS ON it does not
know about the changed rounding mode and eliminates
the xy + z below without the volatile memory access
*/
volatile double z_;
fesetround(round);
z_ = z;
return (xy + z_) + lo1;
}
} else {
/*
ez <= exy - 12
the 12 extra bits (1guard, 11round+sticky) are needed so with
lo = dadd(lo1, lo2)
elo <= ehi - 11, and we use the last 10 bits in adjust so
dadd(hi, lo)
gives correct result when rounded to double
*/
hi = xy;
lo2 = z;
}
/*
the result is stored before return for correct precision and exceptions
one corner case is when the underflow flag should be raised because
the precise result is an inexact subnormal double, but the calculated
long double result is an exact subnormal double
(so rounding to double does not raise exceptions)
in nearest rounding mode dadd takes care of this: the last bit of the
result is adjusted so rounding sees an inexact value when it should
in non-nearest rounding mode fenv is used for the workaround
*/
fesetround(round);
if (round == FE_TONEAREST)
z = dadd(hi, dadd(lo1, lo2));
else {
#if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
int e = fetestexcept(FE_INEXACT);
feclearexcept(FE_INEXACT);
#endif
z = hi + (lo1 + lo2);
#if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
if (getexp(z) < 0x3fff-1022 && fetestexcept(FE_INEXACT))
feraiseexcept(FE_UNDERFLOW);
else if (e)
feraiseexcept(FE_INEXACT);
#endif
}
return z;
}
#else
/* origin: FreeBSD /usr/src/lib/msun/src/s_fma.c */
/*-
* Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* A struct dd represents a floating-point number with twice the precision
* of a double. We maintain the invariant that "hi" stores the 53 high-order
* bits of the result.
*/
struct dd {
double hi;
double lo;
};
/*
* Compute a+b exactly, returning the exact result in a struct dd. We assume
* that both a and b are finite, but make no assumptions about their relative
* magnitudes.
*/
static inline struct dd dd_add(double a, double b)
{
struct dd ret;
double s;
ret.hi = a + b;
s = ret.hi - a;
ret.lo = (a - (ret.hi - s)) + (b - s);
return (ret);
}
/*
* Compute a+b, with a small tweak: The least significant bit of the
* result is adjusted into a sticky bit summarizing all the bits that
* were lost to rounding. This adjustment negates the effects of double
* rounding when the result is added to another number with a higher
* exponent. For an explanation of round and sticky bits, see any reference
* on FPU design, e.g.,
*
* J. Coonen. An Implementation Guide to a Proposed Standard for
* Floating-Point Arithmetic. Computer, vol. 13, no. 1, Jan 1980.
*/
static inline double add_adjusted(double a, double b)
{
struct dd sum;
uint64_t hibits, lobits;
sum = dd_add(a, b);
if (sum.lo != 0) {
EXTRACT_WORD64(hibits, sum.hi);
if ((hibits & 1) == 0) {
/* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
EXTRACT_WORD64(lobits, sum.lo);
hibits += 1 - ((hibits ^ lobits) >> 62);
INSERT_WORD64(sum.hi, hibits);
}
}
return (sum.hi);
}
/*
* Compute ldexp(a+b, scale) with a single rounding error. It is assumed
* that the result will be subnormal, and care is taken to ensure that
* double rounding does not occur.
*/
static inline double add_and_denormalize(double a, double b, int scale)
{
struct dd sum;
uint64_t hibits, lobits;
int bits_lost;
sum = dd_add(a, b);
/*
* If we are losing at least two bits of accuracy to denormalization,
* then the first lost bit becomes a round bit, and we adjust the
* lowest bit of sum.hi to make it a sticky bit summarizing all the
* bits in sum.lo. With the sticky bit adjusted, the hardware will
* break any ties in the correct direction.
*
* If we are losing only one bit to denormalization, however, we must
* break the ties manually.
*/
if (sum.lo != 0) {
EXTRACT_WORD64(hibits, sum.hi);
bits_lost = -((int)(hibits >> 52) & 0x7ff) - scale + 1;
if (bits_lost != 1 ^ (int)(hibits & 1)) {
/* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
EXTRACT_WORD64(lobits, sum.lo);
hibits += 1 - (((hibits ^ lobits) >> 62) & 2);
INSERT_WORD64(sum.hi, hibits);
}
}
return scalbn(sum.hi, scale);
}
/*
* Compute a*b exactly, returning the exact result in a struct dd. We assume
* that both a and b are normalized, so no underflow or overflow will occur.
* The current rounding mode must be round-to-nearest.
*/
static inline struct dd dd_mul(double a, double b)
{
static const double split = 0x1p27 + 1.0;
struct dd ret;
double ha, hb, la, lb, p, q;
p = a * split;
ha = a - p;
ha += p;
la = a - ha;
p = b * split;
hb = b - p;
hb += p;
lb = b - hb;
p = ha * hb;
q = ha * lb + la * hb;
ret.hi = p + q;
ret.lo = p - ret.hi + q + la * lb;
return (ret);
}
/*
* Fused multiply-add: Compute x * y + z with a single rounding error.
*
* We use scaling to avoid overflow/underflow, along with the
* canonical precision-doubling technique adapted from:
*
* Dekker, T. A Floating-Point Technique for Extending the
* Available Precision. Numer. Math. 18, 224-242 (1971).
*
* This algorithm is sensitive to the rounding precision. FPUs such
* as the i387 must be set in double-precision mode if variables are
* to be stored in FP registers in order to avoid incorrect results.
* This is the default on FreeBSD, but not on many other systems.
*
* Hardware instructions should be used on architectures that support it,
* since this implementation will likely be several times slower.
*/
double fma(double x, double y, double z)
{
#pragma STDC FENV_ACCESS ON
double xs, ys, zs, adj;
struct dd xy, r;
int oround;
int ex, ey, ez;
int spread;
/*
* Handle special cases. The order of operations and the particular
* return values here are crucial in handling special cases involving
* infinities, NaNs, overflows, and signed zeroes correctly.
*/
if (!isfinite(x) || !isfinite(y))
return (x * y + z);
if (!isfinite(z))
return (z);
if (x == 0.0 || y == 0.0)
return (x * y + z);
if (z == 0.0)
return (x * y);
xs = frexp(x, &ex);
ys = frexp(y, &ey);
zs = frexp(z, &ez);
oround = fegetround();
spread = ex + ey - ez;
/*
* If x * y and z are many orders of magnitude apart, the scaling
* will overflow, so we handle these cases specially. Rounding
* modes other than FE_TONEAREST are painful.
*/
if (spread < -DBL_MANT_DIG) {
#ifdef FE_INEXACT
feraiseexcept(FE_INEXACT);
#endif
#ifdef FE_UNDERFLOW
if (!isnormal(z))
feraiseexcept(FE_UNDERFLOW);
#endif
switch (oround) {
default: /* FE_TONEAREST */
return (z);
#ifdef FE_TOWARDZERO
case FE_TOWARDZERO:
if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
return (z);
else
return (nextafter(z, 0));
#endif
#ifdef FE_DOWNWARD
case FE_DOWNWARD:
if (x > 0.0 ^ y < 0.0)
return (z);
else
return (nextafter(z, -INFINITY));
#endif
#ifdef FE_UPWARD
case FE_UPWARD:
if (x > 0.0 ^ y < 0.0)
return (nextafter(z, INFINITY));
else
return (z);
#endif
}
}
if (spread <= DBL_MANT_DIG * 2)
zs = scalbn(zs, -spread);
else
zs = copysign(DBL_MIN, zs);
fesetround(FE_TONEAREST);
/*
* Basic approach for round-to-nearest:
*
* (xy.hi, xy.lo) = x * y (exact)
* (r.hi, r.lo) = xy.hi + z (exact)
* adj = xy.lo + r.lo (inexact; low bit is sticky)
* result = r.hi + adj (correctly rounded)
*/
xy = dd_mul(xs, ys);
r = dd_add(xy.hi, zs);
spread = ex + ey;
if (r.hi == 0.0) {
/*
* When the addends cancel to 0, ensure that the result has
* the correct sign.
*/
fesetround(oround);
volatile double vzs = zs; /* XXX gcc CSE bug workaround */
return xy.hi + vzs + scalbn(xy.lo, spread);
}
if (oround != FE_TONEAREST) {
/*
* There is no need to worry about double rounding in directed
* rounding modes.
* TODO: underflow is not raised properly, example in downward rounding:
* fma(0x1.000000001p-1000, 0x1.000000001p-30, -0x1p-1066)
*/
fesetround(oround);
adj = r.lo + xy.lo;
return scalbn(r.hi + adj, spread);
}
adj = add_adjusted(r.lo, xy.lo);
if (spread + ilogb(r.hi) > -1023)
return scalbn(r.hi + adj, spread);
else
return add_and_denormalize(r.hi, adj, spread);
}
#endif
|