Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
// SPDX-License-Identifier: GPL-2.0
/*
 * Hantro VP8 codec driver
 *
 * Copyright (C) 2019 Rockchip Electronics Co., Ltd.
 *	ZhiChao Yu <zhichao.yu@rock-chips.com>
 *
 * Copyright (C) 2019 Google, Inc.
 *	Tomasz Figa <tfiga@chromium.org>
 */

#include <media/v4l2-mem2mem.h>
#include <media/vp8-ctrls.h>

#include "hantro_hw.h"
#include "hantro.h"
#include "hantro_g1_regs.h"

/* DCT partition base address regs */
static const struct hantro_reg vp8_dec_dct_base[8] = {
	{ G1_REG_ADDR_STR, 0, 0xffffffff },
	{ G1_REG_ADDR_REF(8), 0, 0xffffffff },
	{ G1_REG_ADDR_REF(9), 0, 0xffffffff },
	{ G1_REG_ADDR_REF(10), 0, 0xffffffff },
	{ G1_REG_ADDR_REF(11), 0, 0xffffffff },
	{ G1_REG_ADDR_REF(12), 0, 0xffffffff },
	{ G1_REG_ADDR_REF(14), 0, 0xffffffff },
	{ G1_REG_ADDR_REF(15), 0, 0xffffffff },
};

/* Loop filter level regs */
static const struct hantro_reg vp8_dec_lf_level[4] = {
	{ G1_REG_REF_PIC(2), 18, 0x3f },
	{ G1_REG_REF_PIC(2), 12, 0x3f },
	{ G1_REG_REF_PIC(2), 6, 0x3f },
	{ G1_REG_REF_PIC(2), 0, 0x3f },
};

/* Macroblock loop filter level adjustment regs */
static const struct hantro_reg vp8_dec_mb_adj[4] = {
	{ G1_REG_REF_PIC(0), 21, 0x7f },
	{ G1_REG_REF_PIC(0), 14, 0x7f },
	{ G1_REG_REF_PIC(0), 7, 0x7f },
	{ G1_REG_REF_PIC(0), 0, 0x7f },
};

/* Reference frame adjustment regs */
static const struct hantro_reg vp8_dec_ref_adj[4] = {
	{ G1_REG_REF_PIC(1), 21, 0x7f },
	{ G1_REG_REF_PIC(1), 14, 0x7f },
	{ G1_REG_REF_PIC(1), 7, 0x7f },
	{ G1_REG_REF_PIC(1), 0, 0x7f },
};

/* Quantizer */
static const struct hantro_reg vp8_dec_quant[4] = {
	{ G1_REG_REF_PIC(3), 11, 0x7ff },
	{ G1_REG_REF_PIC(3), 0, 0x7ff },
	{ G1_REG_BD_REF_PIC(4), 11, 0x7ff },
	{ G1_REG_BD_REF_PIC(4), 0, 0x7ff },
};

/* Quantizer delta regs */
static const struct hantro_reg vp8_dec_quant_delta[5] = {
	{ G1_REG_REF_PIC(3), 27, 0x1f },
	{ G1_REG_REF_PIC(3), 22, 0x1f },
	{ G1_REG_BD_REF_PIC(4), 27, 0x1f },
	{ G1_REG_BD_REF_PIC(4), 22, 0x1f },
	{ G1_REG_BD_P_REF_PIC, 27, 0x1f },
};

/* DCT partition start bits regs */
static const struct hantro_reg vp8_dec_dct_start_bits[8] = {
	{ G1_REG_DEC_CTRL2, 26, 0x3f }, { G1_REG_DEC_CTRL4, 26, 0x3f },
	{ G1_REG_DEC_CTRL4, 20, 0x3f }, { G1_REG_DEC_CTRL7, 24, 0x3f },
	{ G1_REG_DEC_CTRL7, 18, 0x3f }, { G1_REG_DEC_CTRL7, 12, 0x3f },
	{ G1_REG_DEC_CTRL7, 6, 0x3f },  { G1_REG_DEC_CTRL7, 0, 0x3f },
};

/* Precision filter tap regs */
static const struct hantro_reg vp8_dec_pred_bc_tap[8][4] = {
	{
		{ G1_REG_PRED_FLT, 22, 0x3ff },
		{ G1_REG_PRED_FLT, 12, 0x3ff },
		{ G1_REG_PRED_FLT, 2, 0x3ff },
		{ G1_REG_REF_PIC(4), 22, 0x3ff },
	},
	{
		{ G1_REG_REF_PIC(4), 12, 0x3ff },
		{ G1_REG_REF_PIC(4), 2, 0x3ff },
		{ G1_REG_REF_PIC(5), 22, 0x3ff },
		{ G1_REG_REF_PIC(5), 12, 0x3ff },
	},
	{
		{ G1_REG_REF_PIC(5), 2, 0x3ff },
		{ G1_REG_REF_PIC(6), 22, 0x3ff },
		{ G1_REG_REF_PIC(6), 12, 0x3ff },
		{ G1_REG_REF_PIC(6), 2, 0x3ff },
	},
	{
		{ G1_REG_REF_PIC(7), 22, 0x3ff },
		{ G1_REG_REF_PIC(7), 12, 0x3ff },
		{ G1_REG_REF_PIC(7), 2, 0x3ff },
		{ G1_REG_LT_REF, 22, 0x3ff },
	},
	{
		{ G1_REG_LT_REF, 12, 0x3ff },
		{ G1_REG_LT_REF, 2, 0x3ff },
		{ G1_REG_VALID_REF, 22, 0x3ff },
		{ G1_REG_VALID_REF, 12, 0x3ff },
	},
	{
		{ G1_REG_VALID_REF, 2, 0x3ff },
		{ G1_REG_BD_REF_PIC(0), 22, 0x3ff },
		{ G1_REG_BD_REF_PIC(0), 12, 0x3ff },
		{ G1_REG_BD_REF_PIC(0), 2, 0x3ff },
	},
	{
		{ G1_REG_BD_REF_PIC(1), 22, 0x3ff },
		{ G1_REG_BD_REF_PIC(1), 12, 0x3ff },
		{ G1_REG_BD_REF_PIC(1), 2, 0x3ff },
		{ G1_REG_BD_REF_PIC(2), 22, 0x3ff },
	},
	{
		{ G1_REG_BD_REF_PIC(2), 12, 0x3ff },
		{ G1_REG_BD_REF_PIC(2), 2, 0x3ff },
		{ G1_REG_BD_REF_PIC(3), 22, 0x3ff },
		{ G1_REG_BD_REF_PIC(3), 12, 0x3ff },
	},
};

/*
 * Set loop filters
 */
static void cfg_lf(struct hantro_ctx *ctx,
		   const struct v4l2_ctrl_vp8_frame_header *hdr)
{
	const struct v4l2_vp8_segment_header *seg = &hdr->segment_header;
	const struct v4l2_vp8_loopfilter_header *lf = &hdr->lf_header;
	struct hantro_dev *vpu = ctx->dev;
	unsigned int i;
	u32 reg;

	if (!(seg->flags & V4L2_VP8_SEGMENT_HEADER_FLAG_ENABLED)) {
		hantro_reg_write(vpu, &vp8_dec_lf_level[0], lf->level);
	} else if (seg->flags & V4L2_VP8_SEGMENT_HEADER_FLAG_DELTA_VALUE_MODE) {
		for (i = 0; i < 4; i++) {
			u32 lf_level = clamp(lf->level + seg->lf_update[i],
					     0, 63);

			hantro_reg_write(vpu, &vp8_dec_lf_level[i], lf_level);
		}
	} else {
		for (i = 0; i < 4; i++)
			hantro_reg_write(vpu, &vp8_dec_lf_level[i],
					 seg->lf_update[i]);
	}

	reg = G1_REG_REF_PIC_FILT_SHARPNESS(lf->sharpness_level);
	if (lf->flags & V4L2_VP8_LF_FILTER_TYPE_SIMPLE)
		reg |= G1_REG_REF_PIC_FILT_TYPE_E;
	vdpu_write_relaxed(vpu, reg, G1_REG_REF_PIC(0));

	if (lf->flags & V4L2_VP8_LF_HEADER_ADJ_ENABLE) {
		for (i = 0; i < 4; i++) {
			hantro_reg_write(vpu, &vp8_dec_mb_adj[i],
					 lf->mb_mode_delta[i]);
			hantro_reg_write(vpu, &vp8_dec_ref_adj[i],
					 lf->ref_frm_delta[i]);
		}
	}
}

/*
 * Set quantization parameters
 */
static void cfg_qp(struct hantro_ctx *ctx,
		   const struct v4l2_ctrl_vp8_frame_header *hdr)
{
	const struct v4l2_vp8_quantization_header *q = &hdr->quant_header;
	const struct v4l2_vp8_segment_header *seg = &hdr->segment_header;
	struct hantro_dev *vpu = ctx->dev;
	unsigned int i;

	if (!(seg->flags & V4L2_VP8_SEGMENT_HEADER_FLAG_ENABLED)) {
		hantro_reg_write(vpu, &vp8_dec_quant[0], q->y_ac_qi);
	} else if (seg->flags & V4L2_VP8_SEGMENT_HEADER_FLAG_DELTA_VALUE_MODE) {
		for (i = 0; i < 4; i++) {
			u32 quant = clamp(q->y_ac_qi + seg->quant_update[i],
					  0, 127);

			hantro_reg_write(vpu, &vp8_dec_quant[i], quant);
		}
	} else {
		for (i = 0; i < 4; i++)
			hantro_reg_write(vpu, &vp8_dec_quant[i],
					 seg->quant_update[i]);
	}

	hantro_reg_write(vpu, &vp8_dec_quant_delta[0], q->y_dc_delta);
	hantro_reg_write(vpu, &vp8_dec_quant_delta[1], q->y2_dc_delta);
	hantro_reg_write(vpu, &vp8_dec_quant_delta[2], q->y2_ac_delta);
	hantro_reg_write(vpu, &vp8_dec_quant_delta[3], q->uv_dc_delta);
	hantro_reg_write(vpu, &vp8_dec_quant_delta[4], q->uv_ac_delta);
}

/*
 * set control partition and DCT partition regs
 *
 * VP8 frame stream data layout:
 *
 *	                     first_part_size          parttion_sizes[0]
 *                              ^                     ^
 * src_dma                      |                     |
 * ^                   +--------+------+        +-----+-----+
 * |                   | control part  |        |           |
 * +--------+----------------+------------------+-----------+-----+-----------+
 * | tag 3B | extra 7B | hdr | mb_data | DCT sz | DCT part0 | ... | DCT partn |
 * +--------+-----------------------------------+-----------+-----+-----------+
 *                           |         |        |                             |
 *                           v         +----+---+                             v
 *                           mb_start       |                       src_dma_end
 *                                          v
 *                                       DCT size part
 *                                      (num_dct-1)*3B
 * Note:
 *   1. only key-frames have extra 7-bytes
 *   2. all offsets are base on src_dma
 *   3. number of DCT parts is 1, 2, 4 or 8
 *   4. the addresses set to the VPU must be 64-bits aligned
 */
static void cfg_parts(struct hantro_ctx *ctx,
		      const struct v4l2_ctrl_vp8_frame_header *hdr)
{
	struct hantro_dev *vpu = ctx->dev;
	struct vb2_v4l2_buffer *vb2_src;
	u32 first_part_offset = VP8_FRAME_IS_KEY_FRAME(hdr) ? 10 : 3;
	u32 mb_size, mb_offset_bytes, mb_offset_bits, mb_start_bits;
	u32 dct_size_part_size, dct_part_offset;
	struct hantro_reg reg;
	dma_addr_t src_dma;
	u32 dct_part_total_len = 0;
	u32 count = 0;
	unsigned int i;

	vb2_src = hantro_get_src_buf(ctx);
	src_dma = vb2_dma_contig_plane_dma_addr(&vb2_src->vb2_buf, 0);

	/*
	 * Calculate control partition mb data info
	 * @first_part_header_bits:	bits offset of mb data from first
	 *				part start pos
	 * @mb_offset_bits:		bits offset of mb data from src_dma
	 *				base addr
	 * @mb_offset_byte:		bytes offset of mb data from src_dma
	 *				base addr
	 * @mb_start_bits:		bits offset of mb data from mb data
	 *				64bits alignment addr
	 */
	mb_offset_bits = first_part_offset * 8 +
			 hdr->first_part_header_bits + 8;
	mb_offset_bytes = mb_offset_bits / 8;
	mb_start_bits = mb_offset_bits -
			(mb_offset_bytes & (~DEC_8190_ALIGN_MASK)) * 8;
	mb_size = hdr->first_part_size -
		  (mb_offset_bytes - first_part_offset) +
		  (mb_offset_bytes & DEC_8190_ALIGN_MASK);

	/* Macroblock data aligned base addr */
	vdpu_write_relaxed(vpu, (mb_offset_bytes & (~DEC_8190_ALIGN_MASK))
				+ src_dma, G1_REG_ADDR_REF(13));

	/* Macroblock data start bits */
	reg.base = G1_REG_DEC_CTRL2;
	reg.mask = 0x3f;
	reg.shift = 18;
	hantro_reg_write(vpu, &reg, mb_start_bits);

	/* Macroblock aligned data length */
	reg.base = G1_REG_DEC_CTRL6;
	reg.mask = 0x3fffff;
	reg.shift = 0;
	hantro_reg_write(vpu, &reg, mb_size + 1);

	/*
	 * Calculate DCT partition info
	 * @dct_size_part_size: Containing sizes of DCT part, every DCT part
	 *			has 3 bytes to store its size, except the last
	 *			DCT part
	 * @dct_part_offset:	bytes offset of DCT parts from src_dma base addr
	 * @dct_part_total_len: total size of all DCT parts
	 */
	dct_size_part_size = (hdr->num_dct_parts - 1) * 3;
	dct_part_offset = first_part_offset + hdr->first_part_size;
	for (i = 0; i < hdr->num_dct_parts; i++)
		dct_part_total_len += hdr->dct_part_sizes[i];
	dct_part_total_len += dct_size_part_size;
	dct_part_total_len += (dct_part_offset & DEC_8190_ALIGN_MASK);

	/* Number of DCT partitions */
	reg.base = G1_REG_DEC_CTRL6;
	reg.mask = 0xf;
	reg.shift = 24;
	hantro_reg_write(vpu, &reg, hdr->num_dct_parts - 1);

	/* DCT partition length */
	vdpu_write_relaxed(vpu,
			   G1_REG_DEC_CTRL3_STREAM_LEN(dct_part_total_len),
			   G1_REG_DEC_CTRL3);

	/* DCT partitions base address */
	for (i = 0; i < hdr->num_dct_parts; i++) {
		u32 byte_offset = dct_part_offset + dct_size_part_size + count;
		u32 base_addr = byte_offset + src_dma;

		hantro_reg_write(vpu, &vp8_dec_dct_base[i],
				 base_addr & (~DEC_8190_ALIGN_MASK));

		hantro_reg_write(vpu, &vp8_dec_dct_start_bits[i],
				 (byte_offset & DEC_8190_ALIGN_MASK) * 8);

		count += hdr->dct_part_sizes[i];
	}
}

/*
 * prediction filter taps
 * normal 6-tap filters
 */
static void cfg_tap(struct hantro_ctx *ctx,
		    const struct v4l2_ctrl_vp8_frame_header *hdr)
{
	struct hantro_dev *vpu = ctx->dev;
	struct hantro_reg reg;
	u32 val = 0;
	int i, j;

	reg.base = G1_REG_BD_REF_PIC(3);
	reg.mask = 0xf;

	if ((hdr->version & 0x03) != 0)
		return; /* Tap filter not used. */

	for (i = 0; i < 8; i++) {
		val = (hantro_vp8_dec_mc_filter[i][0] << 2) |
		       hantro_vp8_dec_mc_filter[i][5];

		for (j = 0; j < 4; j++)
			hantro_reg_write(vpu, &vp8_dec_pred_bc_tap[i][j],
					 hantro_vp8_dec_mc_filter[i][j + 1]);

		switch (i) {
		case 2:
			reg.shift = 8;
			break;
		case 4:
			reg.shift = 4;
			break;
		case 6:
			reg.shift = 0;
			break;
		default:
			continue;
		}

		hantro_reg_write(vpu, &reg, val);
	}
}

static void cfg_ref(struct hantro_ctx *ctx,
		    const struct v4l2_ctrl_vp8_frame_header *hdr)
{
	struct hantro_dev *vpu = ctx->dev;
	struct vb2_v4l2_buffer *vb2_dst;
	dma_addr_t ref;

	vb2_dst = hantro_get_dst_buf(ctx);

	ref = hantro_get_ref(ctx, hdr->last_frame_ts);
	if (!ref)
		ref = vb2_dma_contig_plane_dma_addr(&vb2_dst->vb2_buf, 0);
	vdpu_write_relaxed(vpu, ref, G1_REG_ADDR_REF(0));

	ref = hantro_get_ref(ctx, hdr->golden_frame_ts);
	WARN_ON(!ref && hdr->golden_frame_ts);
	if (!ref)
		ref = vb2_dma_contig_plane_dma_addr(&vb2_dst->vb2_buf, 0);
	if (hdr->flags & V4L2_VP8_FRAME_HEADER_FLAG_SIGN_BIAS_GOLDEN)
		ref |= G1_REG_ADDR_REF_TOPC_E;
	vdpu_write_relaxed(vpu, ref, G1_REG_ADDR_REF(4));

	ref = hantro_get_ref(ctx, hdr->alt_frame_ts);
	WARN_ON(!ref && hdr->alt_frame_ts);
	if (!ref)
		ref = vb2_dma_contig_plane_dma_addr(&vb2_dst->vb2_buf, 0);
	if (hdr->flags & V4L2_VP8_FRAME_HEADER_FLAG_SIGN_BIAS_ALT)
		ref |= G1_REG_ADDR_REF_TOPC_E;
	vdpu_write_relaxed(vpu, ref, G1_REG_ADDR_REF(5));
}

static void cfg_buffers(struct hantro_ctx *ctx,
			const struct v4l2_ctrl_vp8_frame_header *hdr)
{
	const struct v4l2_vp8_segment_header *seg = &hdr->segment_header;
	struct hantro_dev *vpu = ctx->dev;
	struct vb2_v4l2_buffer *vb2_dst;
	dma_addr_t dst_dma;
	u32 reg;

	vb2_dst = hantro_get_dst_buf(ctx);

	/* Set probability table buffer address */
	vdpu_write_relaxed(vpu, ctx->vp8_dec.prob_tbl.dma,
			   G1_REG_ADDR_QTABLE);

	/* Set segment map address */
	reg = G1_REG_FWD_PIC1_SEGMENT_BASE(ctx->vp8_dec.segment_map.dma);
	if (seg->flags & V4L2_VP8_SEGMENT_HEADER_FLAG_ENABLED) {
		reg |= G1_REG_FWD_PIC1_SEGMENT_E;
		if (seg->flags & V4L2_VP8_SEGMENT_HEADER_FLAG_UPDATE_MAP)
			reg |= G1_REG_FWD_PIC1_SEGMENT_UPD_E;
	}
	vdpu_write_relaxed(vpu, reg, G1_REG_FWD_PIC(0));

	dst_dma = hantro_get_dec_buf_addr(ctx, &vb2_dst->vb2_buf);
	vdpu_write_relaxed(vpu, dst_dma, G1_REG_ADDR_DST);
}

void hantro_g1_vp8_dec_run(struct hantro_ctx *ctx)
{
	const struct v4l2_ctrl_vp8_frame_header *hdr;
	struct hantro_dev *vpu = ctx->dev;
	size_t height = ctx->dst_fmt.height;
	size_t width = ctx->dst_fmt.width;
	u32 mb_width, mb_height;
	u32 reg;

	hantro_start_prepare_run(ctx);

	hdr = hantro_get_ctrl(ctx, V4L2_CID_MPEG_VIDEO_VP8_FRAME_HEADER);
	if (WARN_ON(!hdr))
		return;

	/* Reset segment_map buffer in keyframe */
	if (VP8_FRAME_IS_KEY_FRAME(hdr) && ctx->vp8_dec.segment_map.cpu)
		memset(ctx->vp8_dec.segment_map.cpu, 0,
		       ctx->vp8_dec.segment_map.size);

	hantro_vp8_prob_update(ctx, hdr);

	reg = G1_REG_CONFIG_DEC_TIMEOUT_E |
	      G1_REG_CONFIG_DEC_STRENDIAN_E |
	      G1_REG_CONFIG_DEC_INSWAP32_E |
	      G1_REG_CONFIG_DEC_STRSWAP32_E |
	      G1_REG_CONFIG_DEC_OUTSWAP32_E |
	      G1_REG_CONFIG_DEC_CLK_GATE_E |
	      G1_REG_CONFIG_DEC_IN_ENDIAN |
	      G1_REG_CONFIG_DEC_OUT_ENDIAN |
	      G1_REG_CONFIG_DEC_MAX_BURST(16);
	vdpu_write_relaxed(vpu, reg, G1_REG_CONFIG);

	reg = G1_REG_DEC_CTRL0_DEC_MODE(10);
	if (!VP8_FRAME_IS_KEY_FRAME(hdr))
		reg |= G1_REG_DEC_CTRL0_PIC_INTER_E;
	if (!(hdr->flags & V4L2_VP8_FRAME_HEADER_FLAG_MB_NO_SKIP_COEFF))
		reg |= G1_REG_DEC_CTRL0_SKIP_MODE;
	if (hdr->lf_header.level == 0)
		reg |= G1_REG_DEC_CTRL0_FILTERING_DIS;
	vdpu_write_relaxed(vpu, reg, G1_REG_DEC_CTRL0);

	/* Frame dimensions */
	mb_width = MB_WIDTH(width);
	mb_height = MB_HEIGHT(height);
	reg = G1_REG_DEC_CTRL1_PIC_MB_WIDTH(mb_width) |
	      G1_REG_DEC_CTRL1_PIC_MB_HEIGHT_P(mb_height) |
	      G1_REG_DEC_CTRL1_PIC_MB_W_EXT(mb_width >> 9) |
	      G1_REG_DEC_CTRL1_PIC_MB_H_EXT(mb_height >> 8);
	vdpu_write_relaxed(vpu, reg, G1_REG_DEC_CTRL1);

	/* Boolean decoder */
	reg = G1_REG_DEC_CTRL2_BOOLEAN_RANGE(hdr->coder_state.range)
		| G1_REG_DEC_CTRL2_BOOLEAN_VALUE(hdr->coder_state.value);
	vdpu_write_relaxed(vpu, reg, G1_REG_DEC_CTRL2);

	reg = 0;
	if (hdr->version != 3)
		reg |= G1_REG_DEC_CTRL4_VC1_HEIGHT_EXT;
	if (hdr->version & 0x3)
		reg |= G1_REG_DEC_CTRL4_BILIN_MC_E;
	vdpu_write_relaxed(vpu, reg, G1_REG_DEC_CTRL4);

	cfg_lf(ctx, hdr);
	cfg_qp(ctx, hdr);
	cfg_parts(ctx, hdr);
	cfg_tap(ctx, hdr);
	cfg_ref(ctx, hdr);
	cfg_buffers(ctx, hdr);

	hantro_end_prepare_run(ctx);

	vdpu_write(vpu, G1_REG_INTERRUPT_DEC_E, G1_REG_INTERRUPT);
}