Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Keystone accumulator queue manager
 *
 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
 * Author:	Sandeep Nair <sandeep_n@ti.com>
 *		Cyril Chemparathy <cyril@ti.com>
 *		Santosh Shilimkar <santosh.shilimkar@ti.com>
 */

#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/soc/ti/knav_qmss.h>

#include "knav_qmss.h"

#define knav_range_offset_to_inst(kdev, range, q)	\
	(range->queue_base_inst + (q << kdev->inst_shift))

static void __knav_acc_notify(struct knav_range_info *range,
				struct knav_acc_channel *acc)
{
	struct knav_device *kdev = range->kdev;
	struct knav_queue_inst *inst;
	int range_base, queue;

	range_base = kdev->base_id + range->queue_base;

	if (range->flags & RANGE_MULTI_QUEUE) {
		for (queue = 0; queue < range->num_queues; queue++) {
			inst = knav_range_offset_to_inst(kdev, range,
								queue);
			if (inst->notify_needed) {
				inst->notify_needed = 0;
				dev_dbg(kdev->dev, "acc-irq: notifying %d\n",
					range_base + queue);
				knav_queue_notify(inst);
			}
		}
	} else {
		queue = acc->channel - range->acc_info.start_channel;
		inst = knav_range_offset_to_inst(kdev, range, queue);
		dev_dbg(kdev->dev, "acc-irq: notifying %d\n",
			range_base + queue);
		knav_queue_notify(inst);
	}
}

static int knav_acc_set_notify(struct knav_range_info *range,
				struct knav_queue_inst *kq,
				bool enabled)
{
	struct knav_pdsp_info *pdsp = range->acc_info.pdsp;
	struct knav_device *kdev = range->kdev;
	u32 mask, offset;

	/*
	 * when enabling, we need to re-trigger an interrupt if we
	 * have descriptors pending
	 */
	if (!enabled || atomic_read(&kq->desc_count) <= 0)
		return 0;

	kq->notify_needed = 1;
	atomic_inc(&kq->acc->retrigger_count);
	mask = BIT(kq->acc->channel % 32);
	offset = ACC_INTD_OFFSET_STATUS(kq->acc->channel);
	dev_dbg(kdev->dev, "setup-notify: re-triggering irq for %s\n",
		kq->acc->name);
	writel_relaxed(mask, pdsp->intd + offset);
	return 0;
}

static irqreturn_t knav_acc_int_handler(int irq, void *_instdata)
{
	struct knav_acc_channel *acc;
	struct knav_queue_inst *kq = NULL;
	struct knav_range_info *range;
	struct knav_pdsp_info *pdsp;
	struct knav_acc_info *info;
	struct knav_device *kdev;

	u32 *list, *list_cpu, val, idx, notifies;
	int range_base, channel, queue = 0;
	dma_addr_t list_dma;

	range = _instdata;
	info  = &range->acc_info;
	kdev  = range->kdev;
	pdsp  = range->acc_info.pdsp;
	acc   = range->acc;

	range_base = kdev->base_id + range->queue_base;
	if ((range->flags & RANGE_MULTI_QUEUE) == 0) {
		for (queue = 0; queue < range->num_irqs; queue++)
			if (range->irqs[queue].irq == irq)
				break;
		kq = knav_range_offset_to_inst(kdev, range, queue);
		acc += queue;
	}

	channel = acc->channel;
	list_dma = acc->list_dma[acc->list_index];
	list_cpu = acc->list_cpu[acc->list_index];
	dev_dbg(kdev->dev, "acc-irq: channel %d, list %d, virt %p, dma %pad\n",
		channel, acc->list_index, list_cpu, &list_dma);
	if (atomic_read(&acc->retrigger_count)) {
		atomic_dec(&acc->retrigger_count);
		__knav_acc_notify(range, acc);
		writel_relaxed(1, pdsp->intd + ACC_INTD_OFFSET_COUNT(channel));
		/* ack the interrupt */
		writel_relaxed(ACC_CHANNEL_INT_BASE + channel,
			       pdsp->intd + ACC_INTD_OFFSET_EOI);

		return IRQ_HANDLED;
	}

	notifies = readl_relaxed(pdsp->intd + ACC_INTD_OFFSET_COUNT(channel));
	WARN_ON(!notifies);
	dma_sync_single_for_cpu(kdev->dev, list_dma, info->list_size,
				DMA_FROM_DEVICE);

	for (list = list_cpu; list < list_cpu + (info->list_size / sizeof(u32));
	     list += ACC_LIST_ENTRY_WORDS) {
		if (ACC_LIST_ENTRY_WORDS == 1) {
			dev_dbg(kdev->dev,
				"acc-irq: list %d, entry @%p, %08x\n",
				acc->list_index, list, list[0]);
		} else if (ACC_LIST_ENTRY_WORDS == 2) {
			dev_dbg(kdev->dev,
				"acc-irq: list %d, entry @%p, %08x %08x\n",
				acc->list_index, list, list[0], list[1]);
		} else if (ACC_LIST_ENTRY_WORDS == 4) {
			dev_dbg(kdev->dev,
				"acc-irq: list %d, entry @%p, %08x %08x %08x %08x\n",
				acc->list_index, list, list[0], list[1],
				list[2], list[3]);
		}

		val = list[ACC_LIST_ENTRY_DESC_IDX];
		if (!val)
			break;

		if (range->flags & RANGE_MULTI_QUEUE) {
			queue = list[ACC_LIST_ENTRY_QUEUE_IDX] >> 16;
			if (queue < range_base ||
			    queue >= range_base + range->num_queues) {
				dev_err(kdev->dev,
					"bad queue %d, expecting %d-%d\n",
					queue, range_base,
					range_base + range->num_queues);
				break;
			}
			queue -= range_base;
			kq = knav_range_offset_to_inst(kdev, range,
								queue);
		}

		if (atomic_inc_return(&kq->desc_count) >= ACC_DESCS_MAX) {
			atomic_dec(&kq->desc_count);
			dev_err(kdev->dev,
				"acc-irq: queue %d full, entry dropped\n",
				queue + range_base);
			continue;
		}

		idx = atomic_inc_return(&kq->desc_tail) & ACC_DESCS_MASK;
		kq->descs[idx] = val;
		kq->notify_needed = 1;
		dev_dbg(kdev->dev, "acc-irq: enqueue %08x at %d, queue %d\n",
			val, idx, queue + range_base);
	}

	__knav_acc_notify(range, acc);
	memset(list_cpu, 0, info->list_size);
	dma_sync_single_for_device(kdev->dev, list_dma, info->list_size,
				   DMA_TO_DEVICE);

	/* flip to the other list */
	acc->list_index ^= 1;

	/* reset the interrupt counter */
	writel_relaxed(1, pdsp->intd + ACC_INTD_OFFSET_COUNT(channel));

	/* ack the interrupt */
	writel_relaxed(ACC_CHANNEL_INT_BASE + channel,
		       pdsp->intd + ACC_INTD_OFFSET_EOI);

	return IRQ_HANDLED;
}

static int knav_range_setup_acc_irq(struct knav_range_info *range,
				int queue, bool enabled)
{
	struct knav_device *kdev = range->kdev;
	struct knav_acc_channel *acc;
	struct cpumask *cpu_mask;
	int ret = 0, irq;
	u32 old, new;

	if (range->flags & RANGE_MULTI_QUEUE) {
		acc = range->acc;
		irq = range->irqs[0].irq;
		cpu_mask = range->irqs[0].cpu_mask;
	} else {
		acc = range->acc + queue;
		irq = range->irqs[queue].irq;
		cpu_mask = range->irqs[queue].cpu_mask;
	}

	old = acc->open_mask;
	if (enabled)
		new = old | BIT(queue);
	else
		new = old & ~BIT(queue);
	acc->open_mask = new;

	dev_dbg(kdev->dev,
		"setup-acc-irq: open mask old %08x, new %08x, channel %s\n",
		old, new, acc->name);

	if (likely(new == old))
		return 0;

	if (new && !old) {
		dev_dbg(kdev->dev,
			"setup-acc-irq: requesting %s for channel %s\n",
			acc->name, acc->name);
		ret = request_irq(irq, knav_acc_int_handler, 0, acc->name,
				  range);
		if (!ret && cpu_mask) {
			ret = irq_set_affinity_hint(irq, cpu_mask);
			if (ret) {
				dev_warn(range->kdev->dev,
					 "Failed to set IRQ affinity\n");
				return ret;
			}
		}
	}

	if (old && !new) {
		dev_dbg(kdev->dev, "setup-acc-irq: freeing %s for channel %s\n",
			acc->name, acc->name);
		ret = irq_set_affinity_hint(irq, NULL);
		if (ret)
			dev_warn(range->kdev->dev,
				 "Failed to set IRQ affinity\n");
		free_irq(irq, range);
	}

	return ret;
}

static const char *knav_acc_result_str(enum knav_acc_result result)
{
	static const char * const result_str[] = {
		[ACC_RET_IDLE]			= "idle",
		[ACC_RET_SUCCESS]		= "success",
		[ACC_RET_INVALID_COMMAND]	= "invalid command",
		[ACC_RET_INVALID_CHANNEL]	= "invalid channel",
		[ACC_RET_INACTIVE_CHANNEL]	= "inactive channel",
		[ACC_RET_ACTIVE_CHANNEL]	= "active channel",
		[ACC_RET_INVALID_QUEUE]		= "invalid queue",
		[ACC_RET_INVALID_RET]		= "invalid return code",
	};

	if (result >= ARRAY_SIZE(result_str))
		return result_str[ACC_RET_INVALID_RET];
	else
		return result_str[result];
}

static enum knav_acc_result
knav_acc_write(struct knav_device *kdev, struct knav_pdsp_info *pdsp,
		struct knav_reg_acc_command *cmd)
{
	u32 result;

	dev_dbg(kdev->dev, "acc command %08x %08x %08x %08x %08x\n",
		cmd->command, cmd->queue_mask, cmd->list_dma,
		cmd->queue_num, cmd->timer_config);

	writel_relaxed(cmd->timer_config, &pdsp->acc_command->timer_config);
	writel_relaxed(cmd->queue_num, &pdsp->acc_command->queue_num);
	writel_relaxed(cmd->list_dma, &pdsp->acc_command->list_dma);
	writel_relaxed(cmd->queue_mask, &pdsp->acc_command->queue_mask);
	writel_relaxed(cmd->command, &pdsp->acc_command->command);

	/* wait for the command to clear */
	do {
		result = readl_relaxed(&pdsp->acc_command->command);
	} while ((result >> 8) & 0xff);

	return (result >> 24) & 0xff;
}

static void knav_acc_setup_cmd(struct knav_device *kdev,
				struct knav_range_info *range,
				struct knav_reg_acc_command *cmd,
				int queue)
{
	struct knav_acc_info *info = &range->acc_info;
	struct knav_acc_channel *acc;
	int queue_base;
	u32 queue_mask;

	if (range->flags & RANGE_MULTI_QUEUE) {
		acc = range->acc;
		queue_base = range->queue_base;
		queue_mask = BIT(range->num_queues) - 1;
	} else {
		acc = range->acc + queue;
		queue_base = range->queue_base + queue;
		queue_mask = 0;
	}

	memset(cmd, 0, sizeof(*cmd));
	cmd->command    = acc->channel;
	cmd->queue_mask = queue_mask;
	cmd->list_dma   = (u32)acc->list_dma[0];
	cmd->queue_num  = info->list_entries << 16;
	cmd->queue_num |= queue_base;

	cmd->timer_config = ACC_LIST_ENTRY_TYPE << 18;
	if (range->flags & RANGE_MULTI_QUEUE)
		cmd->timer_config |= ACC_CFG_MULTI_QUEUE;
	cmd->timer_config |= info->pacing_mode << 16;
	cmd->timer_config |= info->timer_count;
}

static void knav_acc_stop(struct knav_device *kdev,
				struct knav_range_info *range,
				int queue)
{
	struct knav_reg_acc_command cmd;
	struct knav_acc_channel *acc;
	enum knav_acc_result result;

	acc = range->acc + queue;

	knav_acc_setup_cmd(kdev, range, &cmd, queue);
	cmd.command |= ACC_CMD_DISABLE_CHANNEL << 8;
	result = knav_acc_write(kdev, range->acc_info.pdsp, &cmd);

	dev_dbg(kdev->dev, "stopped acc channel %s, result %s\n",
		acc->name, knav_acc_result_str(result));
}

static enum knav_acc_result knav_acc_start(struct knav_device *kdev,
						struct knav_range_info *range,
						int queue)
{
	struct knav_reg_acc_command cmd;
	struct knav_acc_channel *acc;
	enum knav_acc_result result;

	acc = range->acc + queue;

	knav_acc_setup_cmd(kdev, range, &cmd, queue);
	cmd.command |= ACC_CMD_ENABLE_CHANNEL << 8;
	result = knav_acc_write(kdev, range->acc_info.pdsp, &cmd);

	dev_dbg(kdev->dev, "started acc channel %s, result %s\n",
		acc->name, knav_acc_result_str(result));

	return result;
}

static int knav_acc_init_range(struct knav_range_info *range)
{
	struct knav_device *kdev = range->kdev;
	struct knav_acc_channel *acc;
	enum knav_acc_result result;
	int queue;

	for (queue = 0; queue < range->num_queues; queue++) {
		acc = range->acc + queue;

		knav_acc_stop(kdev, range, queue);
		acc->list_index = 0;
		result = knav_acc_start(kdev, range, queue);

		if (result != ACC_RET_SUCCESS)
			return -EIO;

		if (range->flags & RANGE_MULTI_QUEUE)
			return 0;
	}
	return 0;
}

static int knav_acc_init_queue(struct knav_range_info *range,
				struct knav_queue_inst *kq)
{
	unsigned id = kq->id - range->queue_base;

	kq->descs = devm_kcalloc(range->kdev->dev,
				 ACC_DESCS_MAX, sizeof(u32), GFP_KERNEL);
	if (!kq->descs)
		return -ENOMEM;

	kq->acc = range->acc;
	if ((range->flags & RANGE_MULTI_QUEUE) == 0)
		kq->acc += id;
	return 0;
}

static int knav_acc_open_queue(struct knav_range_info *range,
				struct knav_queue_inst *inst, unsigned flags)
{
	unsigned id = inst->id - range->queue_base;

	return knav_range_setup_acc_irq(range, id, true);
}

static int knav_acc_close_queue(struct knav_range_info *range,
					struct knav_queue_inst *inst)
{
	unsigned id = inst->id - range->queue_base;

	return knav_range_setup_acc_irq(range, id, false);
}

static int knav_acc_free_range(struct knav_range_info *range)
{
	struct knav_device *kdev = range->kdev;
	struct knav_acc_channel *acc;
	struct knav_acc_info *info;
	int channel, channels;

	info = &range->acc_info;

	if (range->flags & RANGE_MULTI_QUEUE)
		channels = 1;
	else
		channels = range->num_queues;

	for (channel = 0; channel < channels; channel++) {
		acc = range->acc + channel;
		if (!acc->list_cpu[0])
			continue;
		dma_unmap_single(kdev->dev, acc->list_dma[0],
				 info->mem_size, DMA_BIDIRECTIONAL);
		free_pages_exact(acc->list_cpu[0], info->mem_size);
	}
	devm_kfree(range->kdev->dev, range->acc);
	return 0;
}

static struct knav_range_ops knav_acc_range_ops = {
	.set_notify	= knav_acc_set_notify,
	.init_queue	= knav_acc_init_queue,
	.open_queue	= knav_acc_open_queue,
	.close_queue	= knav_acc_close_queue,
	.init_range	= knav_acc_init_range,
	.free_range	= knav_acc_free_range,
};

/**
 * knav_init_acc_range: Initialise accumulator ranges
 *
 * @kdev:		qmss device
 * @node:		device node
 * @range:		qmms range information
 *
 * Return 0 on success or error
 */
int knav_init_acc_range(struct knav_device *kdev,
			struct device_node *node,
			struct knav_range_info *range)
{
	struct knav_acc_channel *acc;
	struct knav_pdsp_info *pdsp;
	struct knav_acc_info *info;
	int ret, channel, channels;
	int list_size, mem_size;
	dma_addr_t list_dma;
	void *list_mem;
	u32 config[5];

	range->flags |= RANGE_HAS_ACCUMULATOR;
	info = &range->acc_info;

	ret = of_property_read_u32_array(node, "accumulator", config, 5);
	if (ret)
		return ret;

	info->pdsp_id		= config[0];
	info->start_channel	= config[1];
	info->list_entries	= config[2];
	info->pacing_mode	= config[3];
	info->timer_count	= config[4] / ACC_DEFAULT_PERIOD;

	if (info->start_channel > ACC_MAX_CHANNEL) {
		dev_err(kdev->dev, "channel %d invalid for range %s\n",
			info->start_channel, range->name);
		return -EINVAL;
	}

	if (info->pacing_mode > 3) {
		dev_err(kdev->dev, "pacing mode %d invalid for range %s\n",
			info->pacing_mode, range->name);
		return -EINVAL;
	}

	pdsp = knav_find_pdsp(kdev, info->pdsp_id);
	if (!pdsp) {
		dev_err(kdev->dev, "pdsp id %d not found for range %s\n",
			info->pdsp_id, range->name);
		return -EINVAL;
	}

	if (!pdsp->started) {
		dev_err(kdev->dev, "pdsp id %d not started for range %s\n",
			info->pdsp_id, range->name);
		return -ENODEV;
	}

	info->pdsp = pdsp;
	channels = range->num_queues;
	if (of_get_property(node, "multi-queue", NULL)) {
		range->flags |= RANGE_MULTI_QUEUE;
		channels = 1;
		if (range->queue_base & (32 - 1)) {
			dev_err(kdev->dev,
				"misaligned multi-queue accumulator range %s\n",
				range->name);
			return -EINVAL;
		}
		if (range->num_queues > 32) {
			dev_err(kdev->dev,
				"too many queues in accumulator range %s\n",
				range->name);
			return -EINVAL;
		}
	}

	/* figure out list size */
	list_size  = info->list_entries;
	list_size *= ACC_LIST_ENTRY_WORDS * sizeof(u32);
	info->list_size = list_size;
	mem_size   = PAGE_ALIGN(list_size * 2);
	info->mem_size  = mem_size;
	range->acc = devm_kcalloc(kdev->dev, channels, sizeof(*range->acc),
				  GFP_KERNEL);
	if (!range->acc)
		return -ENOMEM;

	for (channel = 0; channel < channels; channel++) {
		acc = range->acc + channel;
		acc->channel = info->start_channel + channel;

		/* allocate memory for the two lists */
		list_mem = alloc_pages_exact(mem_size, GFP_KERNEL | GFP_DMA);
		if (!list_mem)
			return -ENOMEM;

		list_dma = dma_map_single(kdev->dev, list_mem, mem_size,
					  DMA_BIDIRECTIONAL);
		if (dma_mapping_error(kdev->dev, list_dma)) {
			free_pages_exact(list_mem, mem_size);
			return -ENOMEM;
		}

		memset(list_mem, 0, mem_size);
		dma_sync_single_for_device(kdev->dev, list_dma, mem_size,
					   DMA_TO_DEVICE);
		scnprintf(acc->name, sizeof(acc->name), "hwqueue-acc-%d",
			  acc->channel);
		acc->list_cpu[0] = list_mem;
		acc->list_cpu[1] = list_mem + list_size;
		acc->list_dma[0] = list_dma;
		acc->list_dma[1] = list_dma + list_size;
		dev_dbg(kdev->dev, "%s: channel %d, dma %pad, virt %8p\n",
			acc->name, acc->channel, &list_dma, list_mem);
	}

	range->ops = &knav_acc_range_ops;
	return 0;
}
EXPORT_SYMBOL_GPL(knav_init_acc_range);