Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (c) 2012-2016, The Linux Foundation. All rights reserved.
 */

#include <linux/bitops.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/iio/iio.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/log2.h>

#include <dt-bindings/iio/qcom,spmi-vadc.h>

#include "qcom-vadc-common.h"

/* VADC register and bit definitions */
#define VADC_REVISION2				0x1
#define VADC_REVISION2_SUPPORTED_VADC		1

#define VADC_PERPH_TYPE				0x4
#define VADC_PERPH_TYPE_ADC			8

#define VADC_PERPH_SUBTYPE			0x5
#define VADC_PERPH_SUBTYPE_VADC			1

#define VADC_STATUS1				0x8
#define VADC_STATUS1_OP_MODE			4
#define VADC_STATUS1_REQ_STS			BIT(1)
#define VADC_STATUS1_EOC			BIT(0)
#define VADC_STATUS1_REQ_STS_EOC_MASK		0x3

#define VADC_MODE_CTL				0x40
#define VADC_OP_MODE_SHIFT			3
#define VADC_OP_MODE_NORMAL			0
#define VADC_AMUX_TRIM_EN			BIT(1)
#define VADC_ADC_TRIM_EN			BIT(0)

#define VADC_EN_CTL1				0x46
#define VADC_EN_CTL1_SET			BIT(7)

#define VADC_ADC_CH_SEL_CTL			0x48

#define VADC_ADC_DIG_PARAM			0x50
#define VADC_ADC_DIG_DEC_RATIO_SEL_SHIFT	2

#define VADC_HW_SETTLE_DELAY			0x51

#define VADC_CONV_REQ				0x52
#define VADC_CONV_REQ_SET			BIT(7)

#define VADC_FAST_AVG_CTL			0x5a
#define VADC_FAST_AVG_EN			0x5b
#define VADC_FAST_AVG_EN_SET			BIT(7)

#define VADC_ACCESS				0xd0
#define VADC_ACCESS_DATA			0xa5

#define VADC_PERH_RESET_CTL3			0xda
#define VADC_FOLLOW_WARM_RB			BIT(2)

#define VADC_DATA				0x60	/* 16 bits */

#define VADC_CHAN_MIN			VADC_USBIN
#define VADC_CHAN_MAX			VADC_LR_MUX3_BUF_PU1_PU2_XO_THERM

/**
 * struct vadc_channel_prop - VADC channel property.
 * @channel: channel number, refer to the channel list.
 * @calibration: calibration type.
 * @decimation: sampling rate supported for the channel.
 * @prescale: channel scaling performed on the input signal.
 * @hw_settle_time: the time between AMUX being configured and the
 *	start of conversion.
 * @avg_samples: ability to provide single result from the ADC
 *	that is an average of multiple measurements.
 * @scale_fn_type: Represents the scaling function to convert voltage
 *	physical units desired by the client for the channel.
 */
struct vadc_channel_prop {
	unsigned int channel;
	enum vadc_calibration calibration;
	unsigned int decimation;
	unsigned int prescale;
	unsigned int hw_settle_time;
	unsigned int avg_samples;
	enum vadc_scale_fn_type scale_fn_type;
};

/**
 * struct vadc_priv - VADC private structure.
 * @regmap: pointer to struct regmap.
 * @dev: pointer to struct device.
 * @base: base address for the ADC peripheral.
 * @nchannels: number of VADC channels.
 * @chan_props: array of VADC channel properties.
 * @iio_chans: array of IIO channels specification.
 * @are_ref_measured: are reference points measured.
 * @poll_eoc: use polling instead of interrupt.
 * @complete: VADC result notification after interrupt is received.
 * @graph: store parameters for calibration.
 * @lock: ADC lock for access to the peripheral.
 */
struct vadc_priv {
	struct regmap		 *regmap;
	struct device		 *dev;
	u16			 base;
	unsigned int		 nchannels;
	struct vadc_channel_prop *chan_props;
	struct iio_chan_spec	 *iio_chans;
	bool			 are_ref_measured;
	bool			 poll_eoc;
	struct completion	 complete;
	struct vadc_linear_graph graph[2];
	struct mutex		 lock;
};

static const struct vadc_prescale_ratio vadc_prescale_ratios[] = {
	{.num =  1, .den =  1},
	{.num =  1, .den =  3},
	{.num =  1, .den =  4},
	{.num =  1, .den =  6},
	{.num =  1, .den = 20},
	{.num =  1, .den =  8},
	{.num = 10, .den = 81},
	{.num =  1, .den = 10}
};

static int vadc_read(struct vadc_priv *vadc, u16 offset, u8 *data)
{
	return regmap_bulk_read(vadc->regmap, vadc->base + offset, data, 1);
}

static int vadc_write(struct vadc_priv *vadc, u16 offset, u8 data)
{
	return regmap_write(vadc->regmap, vadc->base + offset, data);
}

static int vadc_reset(struct vadc_priv *vadc)
{
	u8 data;
	int ret;

	ret = vadc_write(vadc, VADC_ACCESS, VADC_ACCESS_DATA);
	if (ret)
		return ret;

	ret = vadc_read(vadc, VADC_PERH_RESET_CTL3, &data);
	if (ret)
		return ret;

	ret = vadc_write(vadc, VADC_ACCESS, VADC_ACCESS_DATA);
	if (ret)
		return ret;

	data |= VADC_FOLLOW_WARM_RB;

	return vadc_write(vadc, VADC_PERH_RESET_CTL3, data);
}

static int vadc_set_state(struct vadc_priv *vadc, bool state)
{
	return vadc_write(vadc, VADC_EN_CTL1, state ? VADC_EN_CTL1_SET : 0);
}

static void vadc_show_status(struct vadc_priv *vadc)
{
	u8 mode, sta1, chan, dig, en, req;
	int ret;

	ret = vadc_read(vadc, VADC_MODE_CTL, &mode);
	if (ret)
		return;

	ret = vadc_read(vadc, VADC_ADC_DIG_PARAM, &dig);
	if (ret)
		return;

	ret = vadc_read(vadc, VADC_ADC_CH_SEL_CTL, &chan);
	if (ret)
		return;

	ret = vadc_read(vadc, VADC_CONV_REQ, &req);
	if (ret)
		return;

	ret = vadc_read(vadc, VADC_STATUS1, &sta1);
	if (ret)
		return;

	ret = vadc_read(vadc, VADC_EN_CTL1, &en);
	if (ret)
		return;

	dev_err(vadc->dev,
		"mode:%02x en:%02x chan:%02x dig:%02x req:%02x sta1:%02x\n",
		mode, en, chan, dig, req, sta1);
}

static int vadc_configure(struct vadc_priv *vadc,
			  struct vadc_channel_prop *prop)
{
	u8 decimation, mode_ctrl;
	int ret;

	/* Mode selection */
	mode_ctrl = (VADC_OP_MODE_NORMAL << VADC_OP_MODE_SHIFT) |
		     VADC_ADC_TRIM_EN | VADC_AMUX_TRIM_EN;
	ret = vadc_write(vadc, VADC_MODE_CTL, mode_ctrl);
	if (ret)
		return ret;

	/* Channel selection */
	ret = vadc_write(vadc, VADC_ADC_CH_SEL_CTL, prop->channel);
	if (ret)
		return ret;

	/* Digital parameter setup */
	decimation = prop->decimation << VADC_ADC_DIG_DEC_RATIO_SEL_SHIFT;
	ret = vadc_write(vadc, VADC_ADC_DIG_PARAM, decimation);
	if (ret)
		return ret;

	/* HW settle time delay */
	ret = vadc_write(vadc, VADC_HW_SETTLE_DELAY, prop->hw_settle_time);
	if (ret)
		return ret;

	ret = vadc_write(vadc, VADC_FAST_AVG_CTL, prop->avg_samples);
	if (ret)
		return ret;

	if (prop->avg_samples)
		ret = vadc_write(vadc, VADC_FAST_AVG_EN, VADC_FAST_AVG_EN_SET);
	else
		ret = vadc_write(vadc, VADC_FAST_AVG_EN, 0);

	return ret;
}

static int vadc_poll_wait_eoc(struct vadc_priv *vadc, unsigned int interval_us)
{
	unsigned int count, retry;
	u8 sta1;
	int ret;

	retry = interval_us / VADC_CONV_TIME_MIN_US;

	for (count = 0; count < retry; count++) {
		ret = vadc_read(vadc, VADC_STATUS1, &sta1);
		if (ret)
			return ret;

		sta1 &= VADC_STATUS1_REQ_STS_EOC_MASK;
		if (sta1 == VADC_STATUS1_EOC)
			return 0;

		usleep_range(VADC_CONV_TIME_MIN_US, VADC_CONV_TIME_MAX_US);
	}

	vadc_show_status(vadc);

	return -ETIMEDOUT;
}

static int vadc_read_result(struct vadc_priv *vadc, u16 *data)
{
	int ret;

	ret = regmap_bulk_read(vadc->regmap, vadc->base + VADC_DATA, data, 2);
	if (ret)
		return ret;

	*data = clamp_t(u16, *data, VADC_MIN_ADC_CODE, VADC_MAX_ADC_CODE);

	return 0;
}

static struct vadc_channel_prop *vadc_get_channel(struct vadc_priv *vadc,
						  unsigned int num)
{
	unsigned int i;

	for (i = 0; i < vadc->nchannels; i++)
		if (vadc->chan_props[i].channel == num)
			return &vadc->chan_props[i];

	dev_dbg(vadc->dev, "no such channel %02x\n", num);

	return NULL;
}

static int vadc_do_conversion(struct vadc_priv *vadc,
			      struct vadc_channel_prop *prop, u16 *data)
{
	unsigned int timeout;
	int ret;

	mutex_lock(&vadc->lock);

	ret = vadc_configure(vadc, prop);
	if (ret)
		goto unlock;

	if (!vadc->poll_eoc)
		reinit_completion(&vadc->complete);

	ret = vadc_set_state(vadc, true);
	if (ret)
		goto unlock;

	ret = vadc_write(vadc, VADC_CONV_REQ, VADC_CONV_REQ_SET);
	if (ret)
		goto err_disable;

	timeout = BIT(prop->avg_samples) * VADC_CONV_TIME_MIN_US * 2;

	if (vadc->poll_eoc) {
		ret = vadc_poll_wait_eoc(vadc, timeout);
	} else {
		ret = wait_for_completion_timeout(&vadc->complete, timeout);
		if (!ret) {
			ret = -ETIMEDOUT;
			goto err_disable;
		}

		/* Double check conversion status */
		ret = vadc_poll_wait_eoc(vadc, VADC_CONV_TIME_MIN_US);
		if (ret)
			goto err_disable;
	}

	ret = vadc_read_result(vadc, data);

err_disable:
	vadc_set_state(vadc, false);
	if (ret)
		dev_err(vadc->dev, "conversion failed\n");
unlock:
	mutex_unlock(&vadc->lock);
	return ret;
}

static int vadc_measure_ref_points(struct vadc_priv *vadc)
{
	struct vadc_channel_prop *prop;
	u16 read_1, read_2;
	int ret;

	vadc->graph[VADC_CALIB_RATIOMETRIC].dx = VADC_RATIOMETRIC_RANGE;
	vadc->graph[VADC_CALIB_ABSOLUTE].dx = VADC_ABSOLUTE_RANGE_UV;

	prop = vadc_get_channel(vadc, VADC_REF_1250MV);
	ret = vadc_do_conversion(vadc, prop, &read_1);
	if (ret)
		goto err;

	/* Try with buffered 625mV channel first */
	prop = vadc_get_channel(vadc, VADC_SPARE1);
	if (!prop)
		prop = vadc_get_channel(vadc, VADC_REF_625MV);

	ret = vadc_do_conversion(vadc, prop, &read_2);
	if (ret)
		goto err;

	if (read_1 == read_2) {
		ret = -EINVAL;
		goto err;
	}

	vadc->graph[VADC_CALIB_ABSOLUTE].dy = read_1 - read_2;
	vadc->graph[VADC_CALIB_ABSOLUTE].gnd = read_2;

	/* Ratiometric calibration */
	prop = vadc_get_channel(vadc, VADC_VDD_VADC);
	ret = vadc_do_conversion(vadc, prop, &read_1);
	if (ret)
		goto err;

	prop = vadc_get_channel(vadc, VADC_GND_REF);
	ret = vadc_do_conversion(vadc, prop, &read_2);
	if (ret)
		goto err;

	if (read_1 == read_2) {
		ret = -EINVAL;
		goto err;
	}

	vadc->graph[VADC_CALIB_RATIOMETRIC].dy = read_1 - read_2;
	vadc->graph[VADC_CALIB_RATIOMETRIC].gnd = read_2;
err:
	if (ret)
		dev_err(vadc->dev, "measure reference points failed\n");

	return ret;
}

static int vadc_prescaling_from_dt(u32 num, u32 den)
{
	unsigned int pre;

	for (pre = 0; pre < ARRAY_SIZE(vadc_prescale_ratios); pre++)
		if (vadc_prescale_ratios[pre].num == num &&
		    vadc_prescale_ratios[pre].den == den)
			break;

	if (pre == ARRAY_SIZE(vadc_prescale_ratios))
		return -EINVAL;

	return pre;
}

static int vadc_hw_settle_time_from_dt(u32 value)
{
	if ((value <= 1000 && value % 100) || (value > 1000 && value % 2000))
		return -EINVAL;

	if (value <= 1000)
		value /= 100;
	else
		value = value / 2000 + 10;

	return value;
}

static int vadc_avg_samples_from_dt(u32 value)
{
	if (!is_power_of_2(value) || value > VADC_AVG_SAMPLES_MAX)
		return -EINVAL;

	return __ffs64(value);
}

static int vadc_read_raw(struct iio_dev *indio_dev,
			 struct iio_chan_spec const *chan, int *val, int *val2,
			 long mask)
{
	struct vadc_priv *vadc = iio_priv(indio_dev);
	struct vadc_channel_prop *prop;
	u16 adc_code;
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_PROCESSED:
		prop = &vadc->chan_props[chan->address];
		ret = vadc_do_conversion(vadc, prop, &adc_code);
		if (ret)
			break;

		ret = qcom_vadc_scale(prop->scale_fn_type,
				&vadc->graph[prop->calibration],
				&vadc_prescale_ratios[prop->prescale],
				(prop->calibration == VADC_CALIB_ABSOLUTE),
				adc_code, val);
		if (ret)
			break;

		return IIO_VAL_INT;
	case IIO_CHAN_INFO_RAW:
		prop = &vadc->chan_props[chan->address];
		ret = vadc_do_conversion(vadc, prop, &adc_code);
		if (ret)
			break;

		*val = (int)adc_code;
		return IIO_VAL_INT;
	default:
		ret = -EINVAL;
		break;
	}

	return ret;
}

static int vadc_of_xlate(struct iio_dev *indio_dev,
			 const struct of_phandle_args *iiospec)
{
	struct vadc_priv *vadc = iio_priv(indio_dev);
	unsigned int i;

	for (i = 0; i < vadc->nchannels; i++)
		if (vadc->iio_chans[i].channel == iiospec->args[0])
			return i;

	return -EINVAL;
}

static const struct iio_info vadc_info = {
	.read_raw = vadc_read_raw,
	.of_xlate = vadc_of_xlate,
};

struct vadc_channels {
	const char *datasheet_name;
	unsigned int prescale_index;
	enum iio_chan_type type;
	long info_mask;
	enum vadc_scale_fn_type scale_fn_type;
};

#define VADC_CHAN(_dname, _type, _mask, _pre, _scale)			\
	[VADC_##_dname] = {						\
		.datasheet_name = __stringify(_dname),			\
		.prescale_index = _pre,					\
		.type = _type,						\
		.info_mask = _mask,					\
		.scale_fn_type = _scale					\
	},								\

#define VADC_NO_CHAN(_dname, _type, _mask, _pre)			\
	[VADC_##_dname] = {						\
		.datasheet_name = __stringify(_dname),			\
		.prescale_index = _pre,					\
		.type = _type,						\
		.info_mask = _mask					\
	},

#define VADC_CHAN_TEMP(_dname, _pre, _scale)				\
	VADC_CHAN(_dname, IIO_TEMP,					\
		BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_PROCESSED),	\
		_pre, _scale)						\

#define VADC_CHAN_VOLT(_dname, _pre, _scale)				\
	VADC_CHAN(_dname, IIO_VOLTAGE,					\
		  BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_PROCESSED),\
		  _pre, _scale)						\

#define VADC_CHAN_NO_SCALE(_dname, _pre)				\
	VADC_NO_CHAN(_dname, IIO_VOLTAGE,				\
		  BIT(IIO_CHAN_INFO_RAW),				\
		  _pre)							\

/*
 * The array represents all possible ADC channels found in the supported PMICs.
 * Every index in the array is equal to the channel number per datasheet. The
 * gaps in the array should be treated as reserved channels.
 */
static const struct vadc_channels vadc_chans[] = {
	VADC_CHAN_VOLT(USBIN, 4, SCALE_DEFAULT)
	VADC_CHAN_VOLT(DCIN, 4, SCALE_DEFAULT)
	VADC_CHAN_NO_SCALE(VCHG_SNS, 3)
	VADC_CHAN_NO_SCALE(SPARE1_03, 1)
	VADC_CHAN_NO_SCALE(USB_ID_MV, 1)
	VADC_CHAN_VOLT(VCOIN, 1, SCALE_DEFAULT)
	VADC_CHAN_NO_SCALE(VBAT_SNS, 1)
	VADC_CHAN_VOLT(VSYS, 1, SCALE_DEFAULT)
	VADC_CHAN_TEMP(DIE_TEMP, 0, SCALE_PMIC_THERM)
	VADC_CHAN_VOLT(REF_625MV, 0, SCALE_DEFAULT)
	VADC_CHAN_VOLT(REF_1250MV, 0, SCALE_DEFAULT)
	VADC_CHAN_NO_SCALE(CHG_TEMP, 0)
	VADC_CHAN_NO_SCALE(SPARE1, 0)
	VADC_CHAN_TEMP(SPARE2, 0, SCALE_PMI_CHG_TEMP)
	VADC_CHAN_VOLT(GND_REF, 0, SCALE_DEFAULT)
	VADC_CHAN_VOLT(VDD_VADC, 0, SCALE_DEFAULT)

	VADC_CHAN_NO_SCALE(P_MUX1_1_1, 0)
	VADC_CHAN_NO_SCALE(P_MUX2_1_1, 0)
	VADC_CHAN_NO_SCALE(P_MUX3_1_1, 0)
	VADC_CHAN_NO_SCALE(P_MUX4_1_1, 0)
	VADC_CHAN_NO_SCALE(P_MUX5_1_1, 0)
	VADC_CHAN_NO_SCALE(P_MUX6_1_1, 0)
	VADC_CHAN_NO_SCALE(P_MUX7_1_1, 0)
	VADC_CHAN_NO_SCALE(P_MUX8_1_1, 0)
	VADC_CHAN_NO_SCALE(P_MUX9_1_1, 0)
	VADC_CHAN_NO_SCALE(P_MUX10_1_1, 0)
	VADC_CHAN_NO_SCALE(P_MUX11_1_1, 0)
	VADC_CHAN_NO_SCALE(P_MUX12_1_1, 0)
	VADC_CHAN_NO_SCALE(P_MUX13_1_1, 0)
	VADC_CHAN_NO_SCALE(P_MUX14_1_1, 0)
	VADC_CHAN_NO_SCALE(P_MUX15_1_1, 0)
	VADC_CHAN_NO_SCALE(P_MUX16_1_1, 0)

	VADC_CHAN_NO_SCALE(P_MUX1_1_3, 1)
	VADC_CHAN_NO_SCALE(P_MUX2_1_3, 1)
	VADC_CHAN_NO_SCALE(P_MUX3_1_3, 1)
	VADC_CHAN_NO_SCALE(P_MUX4_1_3, 1)
	VADC_CHAN_NO_SCALE(P_MUX5_1_3, 1)
	VADC_CHAN_NO_SCALE(P_MUX6_1_3, 1)
	VADC_CHAN_NO_SCALE(P_MUX7_1_3, 1)
	VADC_CHAN_NO_SCALE(P_MUX8_1_3, 1)
	VADC_CHAN_NO_SCALE(P_MUX9_1_3, 1)
	VADC_CHAN_NO_SCALE(P_MUX10_1_3, 1)
	VADC_CHAN_NO_SCALE(P_MUX11_1_3, 1)
	VADC_CHAN_NO_SCALE(P_MUX12_1_3, 1)
	VADC_CHAN_NO_SCALE(P_MUX13_1_3, 1)
	VADC_CHAN_NO_SCALE(P_MUX14_1_3, 1)
	VADC_CHAN_NO_SCALE(P_MUX15_1_3, 1)
	VADC_CHAN_NO_SCALE(P_MUX16_1_3, 1)

	VADC_CHAN_NO_SCALE(LR_MUX1_BAT_THERM, 0)
	VADC_CHAN_NO_SCALE(LR_MUX2_BAT_ID, 0)
	VADC_CHAN_NO_SCALE(LR_MUX3_XO_THERM, 0)
	VADC_CHAN_NO_SCALE(LR_MUX4_AMUX_THM1, 0)
	VADC_CHAN_NO_SCALE(LR_MUX5_AMUX_THM2, 0)
	VADC_CHAN_NO_SCALE(LR_MUX6_AMUX_THM3, 0)
	VADC_CHAN_NO_SCALE(LR_MUX7_HW_ID, 0)
	VADC_CHAN_NO_SCALE(LR_MUX8_AMUX_THM4, 0)
	VADC_CHAN_NO_SCALE(LR_MUX9_AMUX_THM5, 0)
	VADC_CHAN_NO_SCALE(LR_MUX10_USB_ID, 0)
	VADC_CHAN_NO_SCALE(AMUX_PU1, 0)
	VADC_CHAN_NO_SCALE(AMUX_PU2, 0)
	VADC_CHAN_NO_SCALE(LR_MUX3_BUF_XO_THERM, 0)

	VADC_CHAN_NO_SCALE(LR_MUX1_PU1_BAT_THERM, 0)
	VADC_CHAN_NO_SCALE(LR_MUX2_PU1_BAT_ID, 0)
	VADC_CHAN_NO_SCALE(LR_MUX3_PU1_XO_THERM, 0)
	VADC_CHAN_TEMP(LR_MUX4_PU1_AMUX_THM1, 0, SCALE_THERM_100K_PULLUP)
	VADC_CHAN_TEMP(LR_MUX5_PU1_AMUX_THM2, 0, SCALE_THERM_100K_PULLUP)
	VADC_CHAN_TEMP(LR_MUX6_PU1_AMUX_THM3, 0, SCALE_THERM_100K_PULLUP)
	VADC_CHAN_NO_SCALE(LR_MUX7_PU1_AMUX_HW_ID, 0)
	VADC_CHAN_TEMP(LR_MUX8_PU1_AMUX_THM4, 0, SCALE_THERM_100K_PULLUP)
	VADC_CHAN_TEMP(LR_MUX9_PU1_AMUX_THM5, 0, SCALE_THERM_100K_PULLUP)
	VADC_CHAN_NO_SCALE(LR_MUX10_PU1_AMUX_USB_ID, 0)
	VADC_CHAN_TEMP(LR_MUX3_BUF_PU1_XO_THERM, 0, SCALE_XOTHERM)

	VADC_CHAN_NO_SCALE(LR_MUX1_PU2_BAT_THERM, 0)
	VADC_CHAN_NO_SCALE(LR_MUX2_PU2_BAT_ID, 0)
	VADC_CHAN_NO_SCALE(LR_MUX3_PU2_XO_THERM, 0)
	VADC_CHAN_NO_SCALE(LR_MUX4_PU2_AMUX_THM1, 0)
	VADC_CHAN_NO_SCALE(LR_MUX5_PU2_AMUX_THM2, 0)
	VADC_CHAN_NO_SCALE(LR_MUX6_PU2_AMUX_THM3, 0)
	VADC_CHAN_NO_SCALE(LR_MUX7_PU2_AMUX_HW_ID, 0)
	VADC_CHAN_NO_SCALE(LR_MUX8_PU2_AMUX_THM4, 0)
	VADC_CHAN_NO_SCALE(LR_MUX9_PU2_AMUX_THM5, 0)
	VADC_CHAN_NO_SCALE(LR_MUX10_PU2_AMUX_USB_ID, 0)
	VADC_CHAN_NO_SCALE(LR_MUX3_BUF_PU2_XO_THERM, 0)

	VADC_CHAN_NO_SCALE(LR_MUX1_PU1_PU2_BAT_THERM, 0)
	VADC_CHAN_NO_SCALE(LR_MUX2_PU1_PU2_BAT_ID, 0)
	VADC_CHAN_NO_SCALE(LR_MUX3_PU1_PU2_XO_THERM, 0)
	VADC_CHAN_NO_SCALE(LR_MUX4_PU1_PU2_AMUX_THM1, 0)
	VADC_CHAN_NO_SCALE(LR_MUX5_PU1_PU2_AMUX_THM2, 0)
	VADC_CHAN_NO_SCALE(LR_MUX6_PU1_PU2_AMUX_THM3, 0)
	VADC_CHAN_NO_SCALE(LR_MUX7_PU1_PU2_AMUX_HW_ID, 0)
	VADC_CHAN_NO_SCALE(LR_MUX8_PU1_PU2_AMUX_THM4, 0)
	VADC_CHAN_NO_SCALE(LR_MUX9_PU1_PU2_AMUX_THM5, 0)
	VADC_CHAN_NO_SCALE(LR_MUX10_PU1_PU2_AMUX_USB_ID, 0)
	VADC_CHAN_NO_SCALE(LR_MUX3_BUF_PU1_PU2_XO_THERM, 0)
};

static int vadc_get_dt_channel_data(struct device *dev,
				    struct vadc_channel_prop *prop,
				    struct device_node *node)
{
	const char *name = node->name;
	u32 chan, value, varr[2];
	int ret;

	ret = of_property_read_u32(node, "reg", &chan);
	if (ret) {
		dev_err(dev, "invalid channel number %s\n", name);
		return ret;
	}

	if (chan > VADC_CHAN_MAX || chan < VADC_CHAN_MIN) {
		dev_err(dev, "%s invalid channel number %d\n", name, chan);
		return -EINVAL;
	}

	/* the channel has DT description */
	prop->channel = chan;

	ret = of_property_read_u32(node, "qcom,decimation", &value);
	if (!ret) {
		ret = qcom_vadc_decimation_from_dt(value);
		if (ret < 0) {
			dev_err(dev, "%02x invalid decimation %d\n",
				chan, value);
			return ret;
		}
		prop->decimation = ret;
	} else {
		prop->decimation = VADC_DEF_DECIMATION;
	}

	ret = of_property_read_u32_array(node, "qcom,pre-scaling", varr, 2);
	if (!ret) {
		ret = vadc_prescaling_from_dt(varr[0], varr[1]);
		if (ret < 0) {
			dev_err(dev, "%02x invalid pre-scaling <%d %d>\n",
				chan, varr[0], varr[1]);
			return ret;
		}
		prop->prescale = ret;
	} else {
		prop->prescale = vadc_chans[prop->channel].prescale_index;
	}

	ret = of_property_read_u32(node, "qcom,hw-settle-time", &value);
	if (!ret) {
		ret = vadc_hw_settle_time_from_dt(value);
		if (ret < 0) {
			dev_err(dev, "%02x invalid hw-settle-time %d us\n",
				chan, value);
			return ret;
		}
		prop->hw_settle_time = ret;
	} else {
		prop->hw_settle_time = VADC_DEF_HW_SETTLE_TIME;
	}

	ret = of_property_read_u32(node, "qcom,avg-samples", &value);
	if (!ret) {
		ret = vadc_avg_samples_from_dt(value);
		if (ret < 0) {
			dev_err(dev, "%02x invalid avg-samples %d\n",
				chan, value);
			return ret;
		}
		prop->avg_samples = ret;
	} else {
		prop->avg_samples = VADC_DEF_AVG_SAMPLES;
	}

	if (of_property_read_bool(node, "qcom,ratiometric"))
		prop->calibration = VADC_CALIB_RATIOMETRIC;
	else
		prop->calibration = VADC_CALIB_ABSOLUTE;

	dev_dbg(dev, "%02x name %s\n", chan, name);

	return 0;
}

static int vadc_get_dt_data(struct vadc_priv *vadc, struct device_node *node)
{
	const struct vadc_channels *vadc_chan;
	struct iio_chan_spec *iio_chan;
	struct vadc_channel_prop prop;
	struct device_node *child;
	unsigned int index = 0;
	int ret;

	vadc->nchannels = of_get_available_child_count(node);
	if (!vadc->nchannels)
		return -EINVAL;

	vadc->iio_chans = devm_kcalloc(vadc->dev, vadc->nchannels,
				       sizeof(*vadc->iio_chans), GFP_KERNEL);
	if (!vadc->iio_chans)
		return -ENOMEM;

	vadc->chan_props = devm_kcalloc(vadc->dev, vadc->nchannels,
					sizeof(*vadc->chan_props), GFP_KERNEL);
	if (!vadc->chan_props)
		return -ENOMEM;

	iio_chan = vadc->iio_chans;

	for_each_available_child_of_node(node, child) {
		ret = vadc_get_dt_channel_data(vadc->dev, &prop, child);
		if (ret) {
			of_node_put(child);
			return ret;
		}

		prop.scale_fn_type = vadc_chans[prop.channel].scale_fn_type;
		vadc->chan_props[index] = prop;

		vadc_chan = &vadc_chans[prop.channel];

		iio_chan->channel = prop.channel;
		iio_chan->datasheet_name = vadc_chan->datasheet_name;
		iio_chan->info_mask_separate = vadc_chan->info_mask;
		iio_chan->type = vadc_chan->type;
		iio_chan->indexed = 1;
		iio_chan->address = index++;

		iio_chan++;
	}

	/* These channels are mandatory, they are used as reference points */
	if (!vadc_get_channel(vadc, VADC_REF_1250MV)) {
		dev_err(vadc->dev, "Please define 1.25V channel\n");
		return -ENODEV;
	}

	if (!vadc_get_channel(vadc, VADC_REF_625MV)) {
		dev_err(vadc->dev, "Please define 0.625V channel\n");
		return -ENODEV;
	}

	if (!vadc_get_channel(vadc, VADC_VDD_VADC)) {
		dev_err(vadc->dev, "Please define VDD channel\n");
		return -ENODEV;
	}

	if (!vadc_get_channel(vadc, VADC_GND_REF)) {
		dev_err(vadc->dev, "Please define GND channel\n");
		return -ENODEV;
	}

	return 0;
}

static irqreturn_t vadc_isr(int irq, void *dev_id)
{
	struct vadc_priv *vadc = dev_id;

	complete(&vadc->complete);

	return IRQ_HANDLED;
}

static int vadc_check_revision(struct vadc_priv *vadc)
{
	u8 val;
	int ret;

	ret = vadc_read(vadc, VADC_PERPH_TYPE, &val);
	if (ret)
		return ret;

	if (val < VADC_PERPH_TYPE_ADC) {
		dev_err(vadc->dev, "%d is not ADC\n", val);
		return -ENODEV;
	}

	ret = vadc_read(vadc, VADC_PERPH_SUBTYPE, &val);
	if (ret)
		return ret;

	if (val < VADC_PERPH_SUBTYPE_VADC) {
		dev_err(vadc->dev, "%d is not VADC\n", val);
		return -ENODEV;
	}

	ret = vadc_read(vadc, VADC_REVISION2, &val);
	if (ret)
		return ret;

	if (val < VADC_REVISION2_SUPPORTED_VADC) {
		dev_err(vadc->dev, "revision %d not supported\n", val);
		return -ENODEV;
	}

	return 0;
}

static int vadc_probe(struct platform_device *pdev)
{
	struct device_node *node = pdev->dev.of_node;
	struct device *dev = &pdev->dev;
	struct iio_dev *indio_dev;
	struct vadc_priv *vadc;
	struct regmap *regmap;
	int ret, irq_eoc;
	u32 reg;

	regmap = dev_get_regmap(dev->parent, NULL);
	if (!regmap)
		return -ENODEV;

	ret = of_property_read_u32(node, "reg", &reg);
	if (ret < 0)
		return ret;

	indio_dev = devm_iio_device_alloc(dev, sizeof(*vadc));
	if (!indio_dev)
		return -ENOMEM;

	vadc = iio_priv(indio_dev);
	vadc->regmap = regmap;
	vadc->dev = dev;
	vadc->base = reg;
	vadc->are_ref_measured = false;
	init_completion(&vadc->complete);
	mutex_init(&vadc->lock);

	ret = vadc_check_revision(vadc);
	if (ret)
		return ret;

	ret = vadc_get_dt_data(vadc, node);
	if (ret)
		return ret;

	irq_eoc = platform_get_irq(pdev, 0);
	if (irq_eoc < 0) {
		if (irq_eoc == -EPROBE_DEFER || irq_eoc == -EINVAL)
			return irq_eoc;
		vadc->poll_eoc = true;
	} else {
		ret = devm_request_irq(dev, irq_eoc, vadc_isr, 0,
				       "spmi-vadc", vadc);
		if (ret)
			return ret;
	}

	ret = vadc_reset(vadc);
	if (ret) {
		dev_err(dev, "reset failed\n");
		return ret;
	}

	ret = vadc_measure_ref_points(vadc);
	if (ret)
		return ret;

	indio_dev->name = pdev->name;
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->info = &vadc_info;
	indio_dev->channels = vadc->iio_chans;
	indio_dev->num_channels = vadc->nchannels;

	return devm_iio_device_register(dev, indio_dev);
}

static const struct of_device_id vadc_match_table[] = {
	{ .compatible = "qcom,spmi-vadc" },
	{ }
};
MODULE_DEVICE_TABLE(of, vadc_match_table);

static struct platform_driver vadc_driver = {
	.driver = {
		   .name = "qcom-spmi-vadc",
		   .of_match_table = vadc_match_table,
	},
	.probe = vadc_probe,
};
module_platform_driver(vadc_driver);

MODULE_ALIAS("platform:qcom-spmi-vadc");
MODULE_DESCRIPTION("Qualcomm SPMI PMIC voltage ADC driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Stanimir Varbanov <svarbanov@mm-sol.com>");
MODULE_AUTHOR("Ivan T. Ivanov <iivanov@mm-sol.com>");