Linux preempt-rt

Check our new training course

Real-Time Linux with PREEMPT_RT

Check our new training course
with Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
/*
 * omap-rng.c - RNG driver for TI OMAP CPU family
 *
 * Author: Deepak Saxena <dsaxena@plexity.net>
 *
 * Copyright 2005 (c) MontaVista Software, Inc.
 *
 * Mostly based on original driver:
 *
 * Copyright (C) 2005 Nokia Corporation
 * Author: Juha Yrjölä <juha.yrjola@nokia.com>
 *
 * This file is licensed under  the terms of the GNU General Public
 * License version 2. This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/random.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/hw_random.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_address.h>
#include <linux/interrupt.h>
#include <linux/clk.h>

#include <asm/io.h>

#define RNG_REG_STATUS_RDY			(1 << 0)

#define RNG_REG_INTACK_RDY_MASK			(1 << 0)
#define RNG_REG_INTACK_SHUTDOWN_OFLO_MASK	(1 << 1)
#define RNG_SHUTDOWN_OFLO_MASK			(1 << 1)

#define RNG_CONTROL_STARTUP_CYCLES_SHIFT	16
#define RNG_CONTROL_STARTUP_CYCLES_MASK		(0xffff << 16)
#define RNG_CONTROL_ENABLE_TRNG_SHIFT		10
#define RNG_CONTROL_ENABLE_TRNG_MASK		(1 << 10)

#define RNG_CONFIG_MAX_REFIL_CYCLES_SHIFT	16
#define RNG_CONFIG_MAX_REFIL_CYCLES_MASK	(0xffff << 16)
#define RNG_CONFIG_MIN_REFIL_CYCLES_SHIFT	0
#define RNG_CONFIG_MIN_REFIL_CYCLES_MASK	(0xff << 0)

#define RNG_CONTROL_STARTUP_CYCLES		0xff
#define RNG_CONFIG_MIN_REFIL_CYCLES		0x21
#define RNG_CONFIG_MAX_REFIL_CYCLES		0x22

#define RNG_ALARMCNT_ALARM_TH_SHIFT		0x0
#define RNG_ALARMCNT_ALARM_TH_MASK		(0xff << 0)
#define RNG_ALARMCNT_SHUTDOWN_TH_SHIFT		16
#define RNG_ALARMCNT_SHUTDOWN_TH_MASK		(0x1f << 16)
#define RNG_ALARM_THRESHOLD			0xff
#define RNG_SHUTDOWN_THRESHOLD			0x4

#define RNG_REG_FROENABLE_MASK			0xffffff
#define RNG_REG_FRODETUNE_MASK			0xffffff

#define OMAP2_RNG_OUTPUT_SIZE			0x4
#define OMAP4_RNG_OUTPUT_SIZE			0x8
#define EIP76_RNG_OUTPUT_SIZE			0x10

/*
 * EIP76 RNG takes approx. 700us to produce 16 bytes of output data
 * as per testing results. And to account for the lack of udelay()'s
 * reliability, we keep the timeout as 1000us.
 */
#define RNG_DATA_FILL_TIMEOUT			100

enum {
	RNG_OUTPUT_0_REG = 0,
	RNG_OUTPUT_1_REG,
	RNG_OUTPUT_2_REG,
	RNG_OUTPUT_3_REG,
	RNG_STATUS_REG,
	RNG_INTMASK_REG,
	RNG_INTACK_REG,
	RNG_CONTROL_REG,
	RNG_CONFIG_REG,
	RNG_ALARMCNT_REG,
	RNG_FROENABLE_REG,
	RNG_FRODETUNE_REG,
	RNG_ALARMMASK_REG,
	RNG_ALARMSTOP_REG,
	RNG_REV_REG,
	RNG_SYSCONFIG_REG,
};

static const u16 reg_map_omap2[] = {
	[RNG_OUTPUT_0_REG]	= 0x0,
	[RNG_STATUS_REG]	= 0x4,
	[RNG_CONFIG_REG]	= 0x28,
	[RNG_REV_REG]		= 0x3c,
	[RNG_SYSCONFIG_REG]	= 0x40,
};

static const u16 reg_map_omap4[] = {
	[RNG_OUTPUT_0_REG]	= 0x0,
	[RNG_OUTPUT_1_REG]	= 0x4,
	[RNG_STATUS_REG]	= 0x8,
	[RNG_INTMASK_REG]	= 0xc,
	[RNG_INTACK_REG]	= 0x10,
	[RNG_CONTROL_REG]	= 0x14,
	[RNG_CONFIG_REG]	= 0x18,
	[RNG_ALARMCNT_REG]	= 0x1c,
	[RNG_FROENABLE_REG]	= 0x20,
	[RNG_FRODETUNE_REG]	= 0x24,
	[RNG_ALARMMASK_REG]	= 0x28,
	[RNG_ALARMSTOP_REG]	= 0x2c,
	[RNG_REV_REG]		= 0x1FE0,
	[RNG_SYSCONFIG_REG]	= 0x1FE4,
};

static const u16 reg_map_eip76[] = {
	[RNG_OUTPUT_0_REG]	= 0x0,
	[RNG_OUTPUT_1_REG]	= 0x4,
	[RNG_OUTPUT_2_REG]	= 0x8,
	[RNG_OUTPUT_3_REG]	= 0xc,
	[RNG_STATUS_REG]	= 0x10,
	[RNG_INTACK_REG]	= 0x10,
	[RNG_CONTROL_REG]	= 0x14,
	[RNG_CONFIG_REG]	= 0x18,
	[RNG_ALARMCNT_REG]	= 0x1c,
	[RNG_FROENABLE_REG]	= 0x20,
	[RNG_FRODETUNE_REG]	= 0x24,
	[RNG_ALARMMASK_REG]	= 0x28,
	[RNG_ALARMSTOP_REG]	= 0x2c,
	[RNG_REV_REG]		= 0x7c,
};

struct omap_rng_dev;
/**
 * struct omap_rng_pdata - RNG IP block-specific data
 * @regs: Pointer to the register offsets structure.
 * @data_size: No. of bytes in RNG output.
 * @data_present: Callback to determine if data is available.
 * @init: Callback for IP specific initialization sequence.
 * @cleanup: Callback for IP specific cleanup sequence.
 */
struct omap_rng_pdata {
	u16	*regs;
	u32	data_size;
	u32	(*data_present)(struct omap_rng_dev *priv);
	int	(*init)(struct omap_rng_dev *priv);
	void	(*cleanup)(struct omap_rng_dev *priv);
};

struct omap_rng_dev {
	void __iomem			*base;
	struct device			*dev;
	const struct omap_rng_pdata	*pdata;
	struct hwrng rng;
	struct clk 			*clk;
	struct clk			*clk_reg;
};

static inline u32 omap_rng_read(struct omap_rng_dev *priv, u16 reg)
{
	return __raw_readl(priv->base + priv->pdata->regs[reg]);
}

static inline void omap_rng_write(struct omap_rng_dev *priv, u16 reg,
				      u32 val)
{
	__raw_writel(val, priv->base + priv->pdata->regs[reg]);
}


static int omap_rng_do_read(struct hwrng *rng, void *data, size_t max,
			    bool wait)
{
	struct omap_rng_dev *priv;
	int i, present;

	priv = (struct omap_rng_dev *)rng->priv;

	if (max < priv->pdata->data_size)
		return 0;

	for (i = 0; i < RNG_DATA_FILL_TIMEOUT; i++) {
		present = priv->pdata->data_present(priv);
		if (present || !wait)
			break;

		udelay(10);
	}
	if (!present)
		return 0;

	memcpy_fromio(data, priv->base + priv->pdata->regs[RNG_OUTPUT_0_REG],
		      priv->pdata->data_size);

	if (priv->pdata->regs[RNG_INTACK_REG])
		omap_rng_write(priv, RNG_INTACK_REG, RNG_REG_INTACK_RDY_MASK);

	return priv->pdata->data_size;
}

static int omap_rng_init(struct hwrng *rng)
{
	struct omap_rng_dev *priv;

	priv = (struct omap_rng_dev *)rng->priv;
	return priv->pdata->init(priv);
}

static void omap_rng_cleanup(struct hwrng *rng)
{
	struct omap_rng_dev *priv;

	priv = (struct omap_rng_dev *)rng->priv;
	priv->pdata->cleanup(priv);
}


static inline u32 omap2_rng_data_present(struct omap_rng_dev *priv)
{
	return omap_rng_read(priv, RNG_STATUS_REG) ? 0 : 1;
}

static int omap2_rng_init(struct omap_rng_dev *priv)
{
	omap_rng_write(priv, RNG_SYSCONFIG_REG, 0x1);
	return 0;
}

static void omap2_rng_cleanup(struct omap_rng_dev *priv)
{
	omap_rng_write(priv, RNG_SYSCONFIG_REG, 0x0);
}

static struct omap_rng_pdata omap2_rng_pdata = {
	.regs		= (u16 *)reg_map_omap2,
	.data_size	= OMAP2_RNG_OUTPUT_SIZE,
	.data_present	= omap2_rng_data_present,
	.init		= omap2_rng_init,
	.cleanup	= omap2_rng_cleanup,
};

static inline u32 omap4_rng_data_present(struct omap_rng_dev *priv)
{
	return omap_rng_read(priv, RNG_STATUS_REG) & RNG_REG_STATUS_RDY;
}

static int eip76_rng_init(struct omap_rng_dev *priv)
{
	u32 val;

	/* Return if RNG is already running. */
	if (omap_rng_read(priv, RNG_CONTROL_REG) & RNG_CONTROL_ENABLE_TRNG_MASK)
		return 0;

	/*  Number of 512 bit blocks of raw Noise Source output data that must
	 *  be processed by either the Conditioning Function or the
	 *  SP 800-90 DRBG ‘BC_DF’ functionality to yield a ‘full entropy’
	 *  output value.
	 */
	val = 0x5 << RNG_CONFIG_MIN_REFIL_CYCLES_SHIFT;

	/* Number of FRO samples that are XOR-ed together into one bit to be
	 * shifted into the main shift register
	 */
	val |= RNG_CONFIG_MAX_REFIL_CYCLES << RNG_CONFIG_MAX_REFIL_CYCLES_SHIFT;
	omap_rng_write(priv, RNG_CONFIG_REG, val);

	/* Enable all available FROs */
	omap_rng_write(priv, RNG_FRODETUNE_REG, 0x0);
	omap_rng_write(priv, RNG_FROENABLE_REG, RNG_REG_FROENABLE_MASK);

	/* Enable TRNG */
	val = RNG_CONTROL_ENABLE_TRNG_MASK;
	omap_rng_write(priv, RNG_CONTROL_REG, val);

	return 0;
}

static int omap4_rng_init(struct omap_rng_dev *priv)
{
	u32 val;

	/* Return if RNG is already running. */
	if (omap_rng_read(priv, RNG_CONTROL_REG) & RNG_CONTROL_ENABLE_TRNG_MASK)
		return 0;

	val = RNG_CONFIG_MIN_REFIL_CYCLES << RNG_CONFIG_MIN_REFIL_CYCLES_SHIFT;
	val |= RNG_CONFIG_MAX_REFIL_CYCLES << RNG_CONFIG_MAX_REFIL_CYCLES_SHIFT;
	omap_rng_write(priv, RNG_CONFIG_REG, val);

	omap_rng_write(priv, RNG_FRODETUNE_REG, 0x0);
	omap_rng_write(priv, RNG_FROENABLE_REG, RNG_REG_FROENABLE_MASK);
	val = RNG_ALARM_THRESHOLD << RNG_ALARMCNT_ALARM_TH_SHIFT;
	val |= RNG_SHUTDOWN_THRESHOLD << RNG_ALARMCNT_SHUTDOWN_TH_SHIFT;
	omap_rng_write(priv, RNG_ALARMCNT_REG, val);

	val = RNG_CONTROL_STARTUP_CYCLES << RNG_CONTROL_STARTUP_CYCLES_SHIFT;
	val |= RNG_CONTROL_ENABLE_TRNG_MASK;
	omap_rng_write(priv, RNG_CONTROL_REG, val);

	return 0;
}

static void omap4_rng_cleanup(struct omap_rng_dev *priv)
{
	int val;

	val = omap_rng_read(priv, RNG_CONTROL_REG);
	val &= ~RNG_CONTROL_ENABLE_TRNG_MASK;
	omap_rng_write(priv, RNG_CONTROL_REG, val);
}

static irqreturn_t omap4_rng_irq(int irq, void *dev_id)
{
	struct omap_rng_dev *priv = dev_id;
	u32 fro_detune, fro_enable;

	/*
	 * Interrupt raised by a fro shutdown threshold, do the following:
	 * 1. Clear the alarm events.
	 * 2. De tune the FROs which are shutdown.
	 * 3. Re enable the shutdown FROs.
	 */
	omap_rng_write(priv, RNG_ALARMMASK_REG, 0x0);
	omap_rng_write(priv, RNG_ALARMSTOP_REG, 0x0);

	fro_enable = omap_rng_read(priv, RNG_FROENABLE_REG);
	fro_detune = ~fro_enable & RNG_REG_FRODETUNE_MASK;
	fro_detune = fro_detune | omap_rng_read(priv, RNG_FRODETUNE_REG);
	fro_enable = RNG_REG_FROENABLE_MASK;

	omap_rng_write(priv, RNG_FRODETUNE_REG, fro_detune);
	omap_rng_write(priv, RNG_FROENABLE_REG, fro_enable);

	omap_rng_write(priv, RNG_INTACK_REG, RNG_REG_INTACK_SHUTDOWN_OFLO_MASK);

	return IRQ_HANDLED;
}

static struct omap_rng_pdata omap4_rng_pdata = {
	.regs		= (u16 *)reg_map_omap4,
	.data_size	= OMAP4_RNG_OUTPUT_SIZE,
	.data_present	= omap4_rng_data_present,
	.init		= omap4_rng_init,
	.cleanup	= omap4_rng_cleanup,
};

static struct omap_rng_pdata eip76_rng_pdata = {
	.regs		= (u16 *)reg_map_eip76,
	.data_size	= EIP76_RNG_OUTPUT_SIZE,
	.data_present	= omap4_rng_data_present,
	.init		= eip76_rng_init,
	.cleanup	= omap4_rng_cleanup,
};

static const struct of_device_id omap_rng_of_match[] __maybe_unused = {
		{
			.compatible	= "ti,omap2-rng",
			.data		= &omap2_rng_pdata,
		},
		{
			.compatible	= "ti,omap4-rng",
			.data		= &omap4_rng_pdata,
		},
		{
			.compatible	= "inside-secure,safexcel-eip76",
			.data		= &eip76_rng_pdata,
		},
		{},
};
MODULE_DEVICE_TABLE(of, omap_rng_of_match);

static int of_get_omap_rng_device_details(struct omap_rng_dev *priv,
					  struct platform_device *pdev)
{
	const struct of_device_id *match;
	struct device *dev = &pdev->dev;
	int irq, err;

	match = of_match_device(of_match_ptr(omap_rng_of_match), dev);
	if (!match) {
		dev_err(dev, "no compatible OF match\n");
		return -EINVAL;
	}
	priv->pdata = match->data;

	if (of_device_is_compatible(dev->of_node, "ti,omap4-rng") ||
	    of_device_is_compatible(dev->of_node, "inside-secure,safexcel-eip76")) {
		irq = platform_get_irq(pdev, 0);
		if (irq < 0)
			return irq;

		err = devm_request_irq(dev, irq, omap4_rng_irq,
				       IRQF_TRIGGER_NONE, dev_name(dev), priv);
		if (err) {
			dev_err(dev, "unable to request irq %d, err = %d\n",
				irq, err);
			return err;
		}

		/*
		 * On OMAP4, enabling the shutdown_oflo interrupt is
		 * done in the interrupt mask register. There is no
		 * such register on EIP76, and it's enabled by the
		 * same bit in the control register
		 */
		if (priv->pdata->regs[RNG_INTMASK_REG])
			omap_rng_write(priv, RNG_INTMASK_REG,
				       RNG_SHUTDOWN_OFLO_MASK);
		else
			omap_rng_write(priv, RNG_CONTROL_REG,
				       RNG_SHUTDOWN_OFLO_MASK);
	}
	return 0;
}

static int get_omap_rng_device_details(struct omap_rng_dev *omap_rng)
{
	/* Only OMAP2/3 can be non-DT */
	omap_rng->pdata = &omap2_rng_pdata;
	return 0;
}

static int omap_rng_probe(struct platform_device *pdev)
{
	struct omap_rng_dev *priv;
	struct device *dev = &pdev->dev;
	int ret;

	priv = devm_kzalloc(dev, sizeof(struct omap_rng_dev), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

	priv->rng.read = omap_rng_do_read;
	priv->rng.init = omap_rng_init;
	priv->rng.cleanup = omap_rng_cleanup;
	priv->rng.quality = 900;

	priv->rng.priv = (unsigned long)priv;
	platform_set_drvdata(pdev, priv);
	priv->dev = dev;

	priv->base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(priv->base)) {
		ret = PTR_ERR(priv->base);
		goto err_ioremap;
	}

	priv->rng.name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
	if (!priv->rng.name) {
		ret = -ENOMEM;
		goto err_ioremap;
	}

	pm_runtime_enable(&pdev->dev);
	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		dev_err(&pdev->dev, "Failed to runtime_get device: %d\n", ret);
		pm_runtime_put_noidle(&pdev->dev);
		goto err_ioremap;
	}

	priv->clk = devm_clk_get(&pdev->dev, NULL);
	if (PTR_ERR(priv->clk) == -EPROBE_DEFER)
		return -EPROBE_DEFER;
	if (!IS_ERR(priv->clk)) {
		ret = clk_prepare_enable(priv->clk);
		if (ret) {
			dev_err(&pdev->dev,
				"Unable to enable the clk: %d\n", ret);
			goto err_register;
		}
	}

	priv->clk_reg = devm_clk_get(&pdev->dev, "reg");
	if (PTR_ERR(priv->clk_reg) == -EPROBE_DEFER)
		return -EPROBE_DEFER;
	if (!IS_ERR(priv->clk_reg)) {
		ret = clk_prepare_enable(priv->clk_reg);
		if (ret) {
			dev_err(&pdev->dev,
				"Unable to enable the register clk: %d\n",
				ret);
			goto err_register;
		}
	}

	ret = (dev->of_node) ? of_get_omap_rng_device_details(priv, pdev) :
				get_omap_rng_device_details(priv);
	if (ret)
		goto err_register;

	ret = devm_hwrng_register(&pdev->dev, &priv->rng);
	if (ret)
		goto err_register;

	dev_info(&pdev->dev, "Random Number Generator ver. %02x\n",
		 omap_rng_read(priv, RNG_REV_REG));

	return 0;

err_register:
	priv->base = NULL;
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);

	clk_disable_unprepare(priv->clk_reg);
	clk_disable_unprepare(priv->clk);
err_ioremap:
	dev_err(dev, "initialization failed.\n");
	return ret;
}

static int omap_rng_remove(struct platform_device *pdev)
{
	struct omap_rng_dev *priv = platform_get_drvdata(pdev);


	priv->pdata->cleanup(priv);

	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);

	clk_disable_unprepare(priv->clk);
	clk_disable_unprepare(priv->clk_reg);

	return 0;
}

static int __maybe_unused omap_rng_suspend(struct device *dev)
{
	struct omap_rng_dev *priv = dev_get_drvdata(dev);

	priv->pdata->cleanup(priv);
	pm_runtime_put_sync(dev);

	return 0;
}

static int __maybe_unused omap_rng_resume(struct device *dev)
{
	struct omap_rng_dev *priv = dev_get_drvdata(dev);
	int ret;

	ret = pm_runtime_get_sync(dev);
	if (ret < 0) {
		dev_err(dev, "Failed to runtime_get device: %d\n", ret);
		pm_runtime_put_noidle(dev);
		return ret;
	}

	priv->pdata->init(priv);

	return 0;
}

static SIMPLE_DEV_PM_OPS(omap_rng_pm, omap_rng_suspend, omap_rng_resume);

static struct platform_driver omap_rng_driver = {
	.driver = {
		.name		= "omap_rng",
		.pm		= &omap_rng_pm,
		.of_match_table = of_match_ptr(omap_rng_of_match),
	},
	.probe		= omap_rng_probe,
	.remove		= omap_rng_remove,
};

module_platform_driver(omap_rng_driver);
MODULE_ALIAS("platform:omap_rng");
MODULE_AUTHOR("Deepak Saxena (and others)");
MODULE_LICENSE("GPL");