Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
// SPDX-License-Identifier: GPL-2.0
/*
 * Marvell NAND flash controller driver
 *
 * Copyright (C) 2017 Marvell
 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
 *
 *
 * This NAND controller driver handles two versions of the hardware,
 * one is called NFCv1 and is available on PXA SoCs and the other is
 * called NFCv2 and is available on Armada SoCs.
 *
 * The main visible difference is that NFCv1 only has Hamming ECC
 * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA
 * is not used with NFCv2.
 *
 * The ECC layouts are depicted in details in Marvell AN-379, but here
 * is a brief description.
 *
 * When using Hamming, the data is split in 512B chunks (either 1, 2
 * or 4) and each chunk will have its own ECC "digest" of 6B at the
 * beginning of the OOB area and eventually the remaining free OOB
 * bytes (also called "spare" bytes in the driver). This engine
 * corrects up to 1 bit per chunk and detects reliably an error if
 * there are at most 2 bitflips. Here is the page layout used by the
 * controller when Hamming is chosen:
 *
 * +-------------------------------------------------------------+
 * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes |
 * +-------------------------------------------------------------+
 *
 * When using the BCH engine, there are N identical (data + free OOB +
 * ECC) sections and potentially an extra one to deal with
 * configurations where the chosen (data + free OOB + ECC) sizes do
 * not align with the page (data + OOB) size. ECC bytes are always
 * 30B per ECC chunk. Here is the page layout used by the controller
 * when BCH is chosen:
 *
 * +-----------------------------------------
 * | Data 1 | Free OOB bytes 1 | ECC 1 | ...
 * +-----------------------------------------
 *
 *      -------------------------------------------
 *       ... | Data N | Free OOB bytes N | ECC N |
 *      -------------------------------------------
 *
 *           --------------------------------------------+
 *            Last Data | Last Free OOB bytes | Last ECC |
 *           --------------------------------------------+
 *
 * In both cases, the layout seen by the user is always: all data
 * first, then all free OOB bytes and finally all ECC bytes. With BCH,
 * ECC bytes are 30B long and are padded with 0xFF to align on 32
 * bytes.
 *
 * The controller has certain limitations that are handled by the
 * driver:
 *   - It can only read 2k at a time. To overcome this limitation, the
 *     driver issues data cycles on the bus, without issuing new
 *     CMD + ADDR cycles. The Marvell term is "naked" operations.
 *   - The ECC strength in BCH mode cannot be tuned. It is fixed 16
 *     bits. What can be tuned is the ECC block size as long as it
 *     stays between 512B and 2kiB. It's usually chosen based on the
 *     chip ECC requirements. For instance, using 2kiB ECC chunks
 *     provides 4b/512B correctability.
 *   - The controller will always treat data bytes, free OOB bytes
 *     and ECC bytes in that order, no matter what the real layout is
 *     (which is usually all data then all OOB bytes). The
 *     marvell_nfc_layouts array below contains the currently
 *     supported layouts.
 *   - Because of these weird layouts, the Bad Block Markers can be
 *     located in data section. In this case, the NAND_BBT_NO_OOB_BBM
 *     option must be set to prevent scanning/writing bad block
 *     markers.
 */

#include <linux/module.h>
#include <linux/clk.h>
#include <linux/mtd/rawnand.h>
#include <linux/of_platform.h>
#include <linux/iopoll.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <asm/unaligned.h>

#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/dma/pxa-dma.h>
#include <linux/platform_data/mtd-nand-pxa3xx.h>

/* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
#define FIFO_DEPTH		8
#define FIFO_REP(x)		(x / sizeof(u32))
#define BCH_SEQ_READS		(32 / FIFO_DEPTH)
/* NFC does not support transfers of larger chunks at a time */
#define MAX_CHUNK_SIZE		2112
/* NFCv1 cannot read more that 7 bytes of ID */
#define NFCV1_READID_LEN	7
/* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
#define POLL_PERIOD		0
#define POLL_TIMEOUT		100000
/* Interrupt maximum wait period in ms */
#define IRQ_TIMEOUT		1000
/* Latency in clock cycles between SoC pins and NFC logic */
#define MIN_RD_DEL_CNT		3
/* Maximum number of contiguous address cycles */
#define MAX_ADDRESS_CYC_NFCV1	5
#define MAX_ADDRESS_CYC_NFCV2	7
/* System control registers/bits to enable the NAND controller on some SoCs */
#define GENCONF_SOC_DEVICE_MUX	0x208
#define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
#define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
#define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
#define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
#define GENCONF_CLK_GATING_CTRL	0x220
#define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
#define GENCONF_ND_CLK_CTRL	0x700
#define GENCONF_ND_CLK_CTRL_EN	BIT(0)

/* NAND controller data flash control register */
#define NDCR			0x00
#define NDCR_ALL_INT		GENMASK(11, 0)
#define NDCR_CS1_CMDDM		BIT(7)
#define NDCR_CS0_CMDDM		BIT(8)
#define NDCR_RDYM		BIT(11)
#define NDCR_ND_ARB_EN		BIT(12)
#define NDCR_RA_START		BIT(15)
#define NDCR_RD_ID_CNT(x)	(min_t(unsigned int, x, 0x7) << 16)
#define NDCR_PAGE_SZ(x)		(x >= 2048 ? BIT(24) : 0)
#define NDCR_DWIDTH_M		BIT(26)
#define NDCR_DWIDTH_C		BIT(27)
#define NDCR_ND_RUN		BIT(28)
#define NDCR_DMA_EN		BIT(29)
#define NDCR_ECC_EN		BIT(30)
#define NDCR_SPARE_EN		BIT(31)
#define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
				    NDCR_DWIDTH_M | NDCR_DWIDTH_C))

/* NAND interface timing parameter 0 register */
#define NDTR0			0x04
#define NDTR0_TRP(x)		((min_t(unsigned int, x, 0xF) & 0x7) << 0)
#define NDTR0_TRH(x)		(min_t(unsigned int, x, 0x7) << 3)
#define NDTR0_ETRP(x)		((min_t(unsigned int, x, 0xF) & 0x8) << 3)
#define NDTR0_SEL_NRE_EDGE	BIT(7)
#define NDTR0_TWP(x)		(min_t(unsigned int, x, 0x7) << 8)
#define NDTR0_TWH(x)		(min_t(unsigned int, x, 0x7) << 11)
#define NDTR0_TCS(x)		(min_t(unsigned int, x, 0x7) << 16)
#define NDTR0_TCH(x)		(min_t(unsigned int, x, 0x7) << 19)
#define NDTR0_RD_CNT_DEL(x)	(min_t(unsigned int, x, 0xF) << 22)
#define NDTR0_SELCNTR		BIT(26)
#define NDTR0_TADL(x)		(min_t(unsigned int, x, 0x1F) << 27)

/* NAND interface timing parameter 1 register */
#define NDTR1			0x0C
#define NDTR1_TAR(x)		(min_t(unsigned int, x, 0xF) << 0)
#define NDTR1_TWHR(x)		(min_t(unsigned int, x, 0xF) << 4)
#define NDTR1_TRHW(x)		(min_t(unsigned int, x / 16, 0x3) << 8)
#define NDTR1_PRESCALE		BIT(14)
#define NDTR1_WAIT_MODE		BIT(15)
#define NDTR1_TR(x)		(min_t(unsigned int, x, 0xFFFF) << 16)

/* NAND controller status register */
#define NDSR			0x14
#define NDSR_WRCMDREQ		BIT(0)
#define NDSR_RDDREQ		BIT(1)
#define NDSR_WRDREQ		BIT(2)
#define NDSR_CORERR		BIT(3)
#define NDSR_UNCERR		BIT(4)
#define NDSR_CMDD(cs)		BIT(8 - cs)
#define NDSR_RDY(rb)		BIT(11 + rb)
#define NDSR_ERRCNT(x)		((x >> 16) & 0x1F)

/* NAND ECC control register */
#define NDECCCTRL		0x28
#define NDECCCTRL_BCH_EN	BIT(0)

/* NAND controller data buffer register */
#define NDDB			0x40

/* NAND controller command buffer 0 register */
#define NDCB0			0x48
#define NDCB0_CMD1(x)		((x & 0xFF) << 0)
#define NDCB0_CMD2(x)		((x & 0xFF) << 8)
#define NDCB0_ADDR_CYC(x)	((x & 0x7) << 16)
#define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
#define NDCB0_DBC		BIT(19)
#define NDCB0_CMD_TYPE(x)	((x & 0x7) << 21)
#define NDCB0_CSEL		BIT(24)
#define NDCB0_RDY_BYP		BIT(27)
#define NDCB0_LEN_OVRD		BIT(28)
#define NDCB0_CMD_XTYPE(x)	((x & 0x7) << 29)

/* NAND controller command buffer 1 register */
#define NDCB1			0x4C
#define NDCB1_COLS(x)		((x & 0xFFFF) << 0)
#define NDCB1_ADDRS_PAGE(x)	(x << 16)

/* NAND controller command buffer 2 register */
#define NDCB2			0x50
#define NDCB2_ADDR5_PAGE(x)	(((x >> 16) & 0xFF) << 0)
#define NDCB2_ADDR5_CYC(x)	((x & 0xFF) << 0)

/* NAND controller command buffer 3 register */
#define NDCB3			0x54
#define NDCB3_ADDR6_CYC(x)	((x & 0xFF) << 16)
#define NDCB3_ADDR7_CYC(x)	((x & 0xFF) << 24)

/* NAND controller command buffer 0 register 'type' and 'xtype' fields */
#define TYPE_READ		0
#define TYPE_WRITE		1
#define TYPE_ERASE		2
#define TYPE_READ_ID		3
#define TYPE_STATUS		4
#define TYPE_RESET		5
#define TYPE_NAKED_CMD		6
#define TYPE_NAKED_ADDR		7
#define TYPE_MASK		7
#define XTYPE_MONOLITHIC_RW	0
#define XTYPE_LAST_NAKED_RW	1
#define XTYPE_FINAL_COMMAND	3
#define XTYPE_READ		4
#define XTYPE_WRITE_DISPATCH	4
#define XTYPE_NAKED_RW		5
#define XTYPE_COMMAND_DISPATCH	6
#define XTYPE_MASK		7

/**
 * Marvell ECC engine works differently than the others, in order to limit the
 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
 * per subpage, and depending on a the desired strength needed by the NAND chip,
 * a particular layout mixing data/spare/ecc is defined, with a possible last
 * chunk smaller that the others.
 *
 * @writesize:		Full page size on which the layout applies
 * @chunk:		Desired ECC chunk size on which the layout applies
 * @strength:		Desired ECC strength (per chunk size bytes) on which the
 *			layout applies
 * @nchunks:		Total number of chunks
 * @full_chunk_cnt:	Number of full-sized chunks, which is the number of
 *			repetitions of the pattern:
 *			(data_bytes + spare_bytes + ecc_bytes).
 * @data_bytes:		Number of data bytes per chunk
 * @spare_bytes:	Number of spare bytes per chunk
 * @ecc_bytes:		Number of ecc bytes per chunk
 * @last_data_bytes:	Number of data bytes in the last chunk
 * @last_spare_bytes:	Number of spare bytes in the last chunk
 * @last_ecc_bytes:	Number of ecc bytes in the last chunk
 */
struct marvell_hw_ecc_layout {
	/* Constraints */
	int writesize;
	int chunk;
	int strength;
	/* Corresponding layout */
	int nchunks;
	int full_chunk_cnt;
	int data_bytes;
	int spare_bytes;
	int ecc_bytes;
	int last_data_bytes;
	int last_spare_bytes;
	int last_ecc_bytes;
};

#define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb)	\
	{								\
		.writesize = ws,					\
		.chunk = dc,						\
		.strength = ds,						\
		.nchunks = nc,						\
		.full_chunk_cnt = fcc,					\
		.data_bytes = db,					\
		.spare_bytes = sb,					\
		.ecc_bytes = eb,					\
		.last_data_bytes = ldb,					\
		.last_spare_bytes = lsb,				\
		.last_ecc_bytes = leb,					\
	}

/* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
	MARVELL_LAYOUT(  512,   512,  1,  1,  1,  512,  8,  8,  0,  0,  0),
	MARVELL_LAYOUT( 2048,   512,  1,  1,  1, 2048, 40, 24,  0,  0,  0),
	MARVELL_LAYOUT( 2048,   512,  4,  1,  1, 2048, 32, 30,  0,  0,  0),
	MARVELL_LAYOUT( 2048,   512,  8,  2,  1, 1024,  0, 30,1024,32, 30),
	MARVELL_LAYOUT( 4096,   512,  4,  2,  2, 2048, 32, 30,  0,  0,  0),
	MARVELL_LAYOUT( 4096,   512,  8,  5,  4, 1024,  0, 30,  0, 64, 30),
	MARVELL_LAYOUT( 8192,   512,  4,  4,  4, 2048,  0, 30,  0,  0,  0),
	MARVELL_LAYOUT( 8192,   512,  8,  9,  8, 1024,  0, 30,  0, 160, 30),
};

/**
 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
 * is made by a field in NDCB0 register, and in another field in NDCB2 register.
 * The datasheet describes the logic with an error: ADDR5 field is once
 * declared at the beginning of NDCB2, and another time at its end. Because the
 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
 * to use the last bit of this field instead of the first ones.
 *
 * @cs:			Wanted CE lane.
 * @ndcb0_csel:		Value of the NDCB0 register with or without the flag
 *			selecting the wanted CE lane. This is set once when
 *			the Device Tree is probed.
 * @rb:			Ready/Busy pin for the flash chip
 */
struct marvell_nand_chip_sel {
	unsigned int cs;
	u32 ndcb0_csel;
	unsigned int rb;
};

/**
 * NAND chip structure: stores NAND chip device related information
 *
 * @chip:		Base NAND chip structure
 * @node:		Used to store NAND chips into a list
 * @layout		NAND layout when using hardware ECC
 * @ndcr:		Controller register value for this NAND chip
 * @ndtr0:		Timing registers 0 value for this NAND chip
 * @ndtr1:		Timing registers 1 value for this NAND chip
 * @selected_die:	Current active CS
 * @nsels:		Number of CS lines required by the NAND chip
 * @sels:		Array of CS lines descriptions
 */
struct marvell_nand_chip {
	struct nand_chip chip;
	struct list_head node;
	const struct marvell_hw_ecc_layout *layout;
	u32 ndcr;
	u32 ndtr0;
	u32 ndtr1;
	int addr_cyc;
	int selected_die;
	unsigned int nsels;
	struct marvell_nand_chip_sel sels[];
};

static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
{
	return container_of(chip, struct marvell_nand_chip, chip);
}

static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
							*nand)
{
	return &nand->sels[nand->selected_die];
}

/**
 * NAND controller capabilities for distinction between compatible strings
 *
 * @max_cs_nb:		Number of Chip Select lines available
 * @max_rb_nb:		Number of Ready/Busy lines available
 * @need_system_controller: Indicates if the SoC needs to have access to the
 *                      system controller (ie. to enable the NAND controller)
 * @legacy_of_bindings:	Indicates if DT parsing must be done using the old
 *			fashion way
 * @is_nfcv2:		NFCv2 has numerous enhancements compared to NFCv1, ie.
 *			BCH error detection and correction algorithm,
 *			NDCB3 register has been added
 * @use_dma:		Use dma for data transfers
 */
struct marvell_nfc_caps {
	unsigned int max_cs_nb;
	unsigned int max_rb_nb;
	bool need_system_controller;
	bool legacy_of_bindings;
	bool is_nfcv2;
	bool use_dma;
};

/**
 * NAND controller structure: stores Marvell NAND controller information
 *
 * @controller:		Base controller structure
 * @dev:		Parent device (used to print error messages)
 * @regs:		NAND controller registers
 * @core_clk:		Core clock
 * @reg_clk:		Registers clock
 * @complete:		Completion object to wait for NAND controller events
 * @assigned_cs:	Bitmask describing already assigned CS lines
 * @chips:		List containing all the NAND chips attached to
 *			this NAND controller
 * @caps:		NAND controller capabilities for each compatible string
 * @dma_chan:		DMA channel (NFCv1 only)
 * @dma_buf:		32-bit aligned buffer for DMA transfers (NFCv1 only)
 */
struct marvell_nfc {
	struct nand_controller controller;
	struct device *dev;
	void __iomem *regs;
	struct clk *core_clk;
	struct clk *reg_clk;
	struct completion complete;
	unsigned long assigned_cs;
	struct list_head chips;
	struct nand_chip *selected_chip;
	const struct marvell_nfc_caps *caps;

	/* DMA (NFCv1 only) */
	bool use_dma;
	struct dma_chan *dma_chan;
	u8 *dma_buf;
};

static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl)
{
	return container_of(ctrl, struct marvell_nfc, controller);
}

/**
 * NAND controller timings expressed in NAND Controller clock cycles
 *
 * @tRP:		ND_nRE pulse width
 * @tRH:		ND_nRE high duration
 * @tWP:		ND_nWE pulse time
 * @tWH:		ND_nWE high duration
 * @tCS:		Enable signal setup time
 * @tCH:		Enable signal hold time
 * @tADL:		Address to write data delay
 * @tAR:		ND_ALE low to ND_nRE low delay
 * @tWHR:		ND_nWE high to ND_nRE low for status read
 * @tRHW:		ND_nRE high duration, read to write delay
 * @tR:			ND_nWE high to ND_nRE low for read
 */
struct marvell_nfc_timings {
	/* NDTR0 fields */
	unsigned int tRP;
	unsigned int tRH;
	unsigned int tWP;
	unsigned int tWH;
	unsigned int tCS;
	unsigned int tCH;
	unsigned int tADL;
	/* NDTR1 fields */
	unsigned int tAR;
	unsigned int tWHR;
	unsigned int tRHW;
	unsigned int tR;
};

/**
 * Derives a duration in numbers of clock cycles.
 *
 * @ps: Duration in pico-seconds
 * @period_ns:  Clock period in nano-seconds
 *
 * Convert the duration in nano-seconds, then divide by the period and
 * return the number of clock periods.
 */
#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
#define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
						     period_ns))

/**
 * NAND driver structure filled during the parsing of the ->exec_op() subop
 * subset of instructions.
 *
 * @ndcb:		Array of values written to NDCBx registers
 * @cle_ale_delay_ns:	Optional delay after the last CMD or ADDR cycle
 * @rdy_timeout_ms:	Timeout for waits on Ready/Busy pin
 * @rdy_delay_ns:	Optional delay after waiting for the RB pin
 * @data_delay_ns:	Optional delay after the data xfer
 * @data_instr_idx:	Index of the data instruction in the subop
 * @data_instr:		Pointer to the data instruction in the subop
 */
struct marvell_nfc_op {
	u32 ndcb[4];
	unsigned int cle_ale_delay_ns;
	unsigned int rdy_timeout_ms;
	unsigned int rdy_delay_ns;
	unsigned int data_delay_ns;
	unsigned int data_instr_idx;
	const struct nand_op_instr *data_instr;
};

/*
 * Internal helper to conditionnally apply a delay (from the above structure,
 * most of the time).
 */
static void cond_delay(unsigned int ns)
{
	if (!ns)
		return;

	if (ns < 10000)
		ndelay(ns);
	else
		udelay(DIV_ROUND_UP(ns, 1000));
}

/*
 * The controller has many flags that could generate interrupts, most of them
 * are disabled and polling is used. For the very slow signals, using interrupts
 * may relax the CPU charge.
 */
static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
{
	u32 reg;

	/* Writing 1 disables the interrupt */
	reg = readl_relaxed(nfc->regs + NDCR);
	writel_relaxed(reg | int_mask, nfc->regs + NDCR);
}

static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
{
	u32 reg;

	/* Writing 0 enables the interrupt */
	reg = readl_relaxed(nfc->regs + NDCR);
	writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
}

static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
{
	u32 reg;

	reg = readl_relaxed(nfc->regs + NDSR);
	writel_relaxed(int_mask, nfc->regs + NDSR);

	return reg & int_mask;
}

static void marvell_nfc_force_byte_access(struct nand_chip *chip,
					  bool force_8bit)
{
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	u32 ndcr;

	/*
	 * Callers of this function do not verify if the NAND is using a 16-bit
	 * an 8-bit bus for normal operations, so we need to take care of that
	 * here by leaving the configuration unchanged if the NAND does not have
	 * the NAND_BUSWIDTH_16 flag set.
	 */
	if (!(chip->options & NAND_BUSWIDTH_16))
		return;

	ndcr = readl_relaxed(nfc->regs + NDCR);

	if (force_8bit)
		ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
	else
		ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;

	writel_relaxed(ndcr, nfc->regs + NDCR);
}

static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
{
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	u32 val;
	int ret;

	/*
	 * The command is being processed, wait for the ND_RUN bit to be
	 * cleared by the NFC. If not, we must clear it by hand.
	 */
	ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
					 (val & NDCR_ND_RUN) == 0,
					 POLL_PERIOD, POLL_TIMEOUT);
	if (ret) {
		dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
			       nfc->regs + NDCR);
		return ret;
	}

	return 0;
}

/*
 * Any time a command has to be sent to the controller, the following sequence
 * has to be followed:
 * - call marvell_nfc_prepare_cmd()
 *      -> activate the ND_RUN bit that will kind of 'start a job'
 *      -> wait the signal indicating the NFC is waiting for a command
 * - send the command (cmd and address cycles)
 * - enventually send or receive the data
 * - call marvell_nfc_end_cmd() with the corresponding flag
 *      -> wait the flag to be triggered or cancel the job with a timeout
 *
 * The following helpers are here to factorize the code a bit so that
 * specialized functions responsible for executing the actual NAND
 * operations do not have to replicate the same code blocks.
 */
static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
{
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	u32 ndcr, val;
	int ret;

	/* Poll ND_RUN and clear NDSR before issuing any command */
	ret = marvell_nfc_wait_ndrun(chip);
	if (ret) {
		dev_err(nfc->dev, "Last operation did not succeed\n");
		return ret;
	}

	ndcr = readl_relaxed(nfc->regs + NDCR);
	writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);

	/* Assert ND_RUN bit and wait the NFC to be ready */
	writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
	ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
					 val & NDSR_WRCMDREQ,
					 POLL_PERIOD, POLL_TIMEOUT);
	if (ret) {
		dev_err(nfc->dev, "Timeout on WRCMDRE\n");
		return -ETIMEDOUT;
	}

	/* Command may be written, clear WRCMDREQ status bit */
	writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);

	return 0;
}

static void marvell_nfc_send_cmd(struct nand_chip *chip,
				 struct marvell_nfc_op *nfc_op)
{
	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);

	dev_dbg(nfc->dev, "\nNDCR:  0x%08x\n"
		"NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
		(u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
		nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);

	writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
		       nfc->regs + NDCB0);
	writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
	writel(nfc_op->ndcb[2], nfc->regs + NDCB0);

	/*
	 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
	 * fields are used (only available on NFCv2).
	 */
	if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
	    NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
		if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
			writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
	}
}

static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
			       const char *label)
{
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	u32 val;
	int ret;

	ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
					 val & flag,
					 POLL_PERIOD, POLL_TIMEOUT);

	if (ret) {
		dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
			label, val);
		if (nfc->dma_chan)
			dmaengine_terminate_all(nfc->dma_chan);
		return ret;
	}

	/*
	 * DMA function uses this helper to poll on CMDD bits without wanting
	 * them to be cleared.
	 */
	if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
		return 0;

	writel_relaxed(flag, nfc->regs + NDSR);

	return 0;
}

static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
{
	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
	int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);

	return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
}

static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
{
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	u32 pending;
	int ret;

	/* Timeout is expressed in ms */
	if (!timeout_ms)
		timeout_ms = IRQ_TIMEOUT;

	init_completion(&nfc->complete);

	marvell_nfc_enable_int(nfc, NDCR_RDYM);
	ret = wait_for_completion_timeout(&nfc->complete,
					  msecs_to_jiffies(timeout_ms));
	marvell_nfc_disable_int(nfc, NDCR_RDYM);
	pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));

	/*
	 * In case the interrupt was not served in the required time frame,
	 * check if the ISR was not served or if something went actually wrong.
	 */
	if (ret && !pending) {
		dev_err(nfc->dev, "Timeout waiting for RB signal\n");
		return -ETIMEDOUT;
	}

	return 0;
}

static void marvell_nfc_select_target(struct nand_chip *chip,
				      unsigned int die_nr)
{
	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	u32 ndcr_generic;

	/*
	 * Reset the NDCR register to a clean state for this particular chip,
	 * also clear ND_RUN bit.
	 */
	ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
		       NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
	writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);

	/* Also reset the interrupt status register */
	marvell_nfc_clear_int(nfc, NDCR_ALL_INT);

	if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
		return;

	writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
	writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);

	nfc->selected_chip = chip;
	marvell_nand->selected_die = die_nr;
}

static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
{
	struct marvell_nfc *nfc = dev_id;
	u32 st = readl_relaxed(nfc->regs + NDSR);
	u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;

	/*
	 * RDY interrupt mask is one bit in NDCR while there are two status
	 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
	 */
	if (st & NDSR_RDY(1))
		st |= NDSR_RDY(0);

	if (!(st & ien))
		return IRQ_NONE;

	marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);

	if (st & (NDSR_RDY(0) | NDSR_RDY(1)))
		complete(&nfc->complete);

	return IRQ_HANDLED;
}

/* HW ECC related functions */
static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
{
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	u32 ndcr = readl_relaxed(nfc->regs + NDCR);

	if (!(ndcr & NDCR_ECC_EN)) {
		writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);

		/*
		 * When enabling BCH, set threshold to 0 to always know the
		 * number of corrected bitflips.
		 */
		if (chip->ecc.algo == NAND_ECC_BCH)
			writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
	}
}

static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
{
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	u32 ndcr = readl_relaxed(nfc->regs + NDCR);

	if (ndcr & NDCR_ECC_EN) {
		writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
		if (chip->ecc.algo == NAND_ECC_BCH)
			writel_relaxed(0, nfc->regs + NDECCCTRL);
	}
}

/* DMA related helpers */
static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
{
	u32 reg;

	reg = readl_relaxed(nfc->regs + NDCR);
	writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
}

static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
{
	u32 reg;

	reg = readl_relaxed(nfc->regs + NDCR);
	writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
}

/* Read/write PIO/DMA accessors */
static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
				     enum dma_data_direction direction,
				     unsigned int len)
{
	unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
	struct dma_async_tx_descriptor *tx;
	struct scatterlist sg;
	dma_cookie_t cookie;
	int ret;

	marvell_nfc_enable_dma(nfc);
	/* Prepare the DMA transfer */
	sg_init_one(&sg, nfc->dma_buf, dma_len);
	dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
	tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
				     direction == DMA_FROM_DEVICE ?
				     DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
				     DMA_PREP_INTERRUPT);
	if (!tx) {
		dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
		return -ENXIO;
	}

	/* Do the task and wait for it to finish */
	cookie = dmaengine_submit(tx);
	ret = dma_submit_error(cookie);
	if (ret)
		return -EIO;

	dma_async_issue_pending(nfc->dma_chan);
	ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
	dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
	marvell_nfc_disable_dma(nfc);
	if (ret) {
		dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
			dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
		dmaengine_terminate_all(nfc->dma_chan);
		return -ETIMEDOUT;
	}

	return 0;
}

static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
					unsigned int len)
{
	unsigned int last_len = len % FIFO_DEPTH;
	unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
	int i;

	for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
		ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));

	if (last_len) {
		u8 tmp_buf[FIFO_DEPTH];

		ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
		memcpy(in + last_full_offset, tmp_buf, last_len);
	}

	return 0;
}

static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
					 unsigned int len)
{
	unsigned int last_len = len % FIFO_DEPTH;
	unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
	int i;

	for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
		iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));

	if (last_len) {
		u8 tmp_buf[FIFO_DEPTH];

		memcpy(tmp_buf, out + last_full_offset, last_len);
		iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
	}

	return 0;
}

static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
					  u8 *data, int data_len,
					  u8 *spare, int spare_len,
					  u8 *ecc, int ecc_len,
					  unsigned int *max_bitflips)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int bf;

	/*
	 * Blank pages (all 0xFF) that have not been written may be recognized
	 * as bad if bitflips occur, so whenever an uncorrectable error occurs,
	 * check if the entire page (with ECC bytes) is actually blank or not.
	 */
	if (!data)
		data_len = 0;
	if (!spare)
		spare_len = 0;
	if (!ecc)
		ecc_len = 0;

	bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
					 spare, spare_len, chip->ecc.strength);
	if (bf < 0) {
		mtd->ecc_stats.failed++;
		return;
	}

	/* Update the stats and max_bitflips */
	mtd->ecc_stats.corrected += bf;
	*max_bitflips = max_t(unsigned int, *max_bitflips, bf);
}

/*
 * Check a chunk is correct or not according to hardware ECC engine.
 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
 * mtd->ecc_stats.failure is not, the function will instead return a non-zero
 * value indicating that a check on the emptyness of the subpage must be
 * performed before declaring the subpage corrupted.
 */
static int marvell_nfc_hw_ecc_correct(struct nand_chip *chip,
				      unsigned int *max_bitflips)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	int bf = 0;
	u32 ndsr;

	ndsr = readl_relaxed(nfc->regs + NDSR);

	/* Check uncorrectable error flag */
	if (ndsr & NDSR_UNCERR) {
		writel_relaxed(ndsr, nfc->regs + NDSR);

		/*
		 * Do not increment ->ecc_stats.failed now, instead, return a
		 * non-zero value to indicate that this chunk was apparently
		 * bad, and it should be check to see if it empty or not. If
		 * the chunk (with ECC bytes) is not declared empty, the calling
		 * function must increment the failure count.
		 */
		return -EBADMSG;
	}

	/* Check correctable error flag */
	if (ndsr & NDSR_CORERR) {
		writel_relaxed(ndsr, nfc->regs + NDSR);

		if (chip->ecc.algo == NAND_ECC_BCH)
			bf = NDSR_ERRCNT(ndsr);
		else
			bf = 1;
	}

	/* Update the stats and max_bitflips */
	mtd->ecc_stats.corrected += bf;
	*max_bitflips = max_t(unsigned int, *max_bitflips, bf);

	return 0;
}

/* Hamming read helpers */
static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
					       u8 *data_buf, u8 *oob_buf,
					       bool raw, int page)
{
	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
	struct marvell_nfc_op nfc_op = {
		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
			   NDCB0_DBC |
			   NDCB0_CMD1(NAND_CMD_READ0) |
			   NDCB0_CMD2(NAND_CMD_READSTART),
		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
	};
	unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
	int ret;

	/* NFCv2 needs more information about the operation being executed */
	if (nfc->caps->is_nfcv2)
		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);

	ret = marvell_nfc_prepare_cmd(chip);
	if (ret)
		return ret;

	marvell_nfc_send_cmd(chip, &nfc_op);
	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
				  "RDDREQ while draining FIFO (data/oob)");
	if (ret)
		return ret;

	/*
	 * Read the page then the OOB area. Unlike what is shown in current
	 * documentation, spare bytes are protected by the ECC engine, and must
	 * be at the beginning of the OOB area or running this driver on legacy
	 * systems will prevent the discovery of the BBM/BBT.
	 */
	if (nfc->use_dma) {
		marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
					  lt->data_bytes + oob_bytes);
		memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
		memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
	} else {
		marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
		marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
	}

	ret = marvell_nfc_wait_cmdd(chip);
	return ret;
}

static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf,
						int oob_required, int page)
{
	marvell_nfc_select_target(chip, chip->cur_cs);
	return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
						   true, page);
}

static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf,
					    int oob_required, int page)
{
	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
	unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
	int max_bitflips = 0, ret;
	u8 *raw_buf;

	marvell_nfc_select_target(chip, chip->cur_cs);
	marvell_nfc_enable_hw_ecc(chip);
	marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
					    page);
	ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
	marvell_nfc_disable_hw_ecc(chip);

	if (!ret)
		return max_bitflips;

	/*
	 * When ECC failures are detected, check if the full page has been
	 * written or not. Ignore the failure if it is actually empty.
	 */
	raw_buf = kmalloc(full_sz, GFP_KERNEL);
	if (!raw_buf)
		return -ENOMEM;

	marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
					    lt->data_bytes, true, page);
	marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
				      &max_bitflips);
	kfree(raw_buf);

	return max_bitflips;
}

/*
 * Spare area in Hamming layouts is not protected by the ECC engine (even if
 * it appears before the ECC bytes when reading), the ->read_oob_raw() function
 * also stands for ->read_oob().
 */
static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page)
{
	u8 *buf = nand_get_data_buf(chip);

	marvell_nfc_select_target(chip, chip->cur_cs);
	return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
						   true, page);
}

/* Hamming write helpers */
static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
						const u8 *data_buf,
						const u8 *oob_buf, bool raw,
						int page)
{
	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
	struct marvell_nfc_op nfc_op = {
		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
			   NDCB0_CMD1(NAND_CMD_SEQIN) |
			   NDCB0_CMD2(NAND_CMD_PAGEPROG) |
			   NDCB0_DBC,
		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
	};
	unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
	int ret;

	/* NFCv2 needs more information about the operation being executed */
	if (nfc->caps->is_nfcv2)
		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);

	ret = marvell_nfc_prepare_cmd(chip);
	if (ret)
		return ret;

	marvell_nfc_send_cmd(chip, &nfc_op);
	ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
				  "WRDREQ while loading FIFO (data)");
	if (ret)
		return ret;

	/* Write the page then the OOB area */
	if (nfc->use_dma) {
		memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
		memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
		marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
					  lt->ecc_bytes + lt->spare_bytes);
	} else {
		marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
		marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
	}

	ret = marvell_nfc_wait_cmdd(chip);
	if (ret)
		return ret;

	ret = marvell_nfc_wait_op(chip,
				  PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
	return ret;
}

static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip,
						 const u8 *buf,
						 int oob_required, int page)
{
	marvell_nfc_select_target(chip, chip->cur_cs);
	return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
						    true, page);
}

static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip,
					     const u8 *buf,
					     int oob_required, int page)
{
	int ret;

	marvell_nfc_select_target(chip, chip->cur_cs);
	marvell_nfc_enable_hw_ecc(chip);
	ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
						   false, page);
	marvell_nfc_disable_hw_ecc(chip);

	return ret;
}

/*
 * Spare area in Hamming layouts is not protected by the ECC engine (even if
 * it appears before the ECC bytes when reading), the ->write_oob_raw() function
 * also stands for ->write_oob().
 */
static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip,
						int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	u8 *buf = nand_get_data_buf(chip);

	memset(buf, 0xFF, mtd->writesize);

	marvell_nfc_select_target(chip, chip->cur_cs);
	return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
						    true, page);
}

/* BCH read helpers */
static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf,
						int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
	u8 *oob = chip->oob_poi;
	int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
	int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
		lt->last_spare_bytes;
	int data_len = lt->data_bytes;
	int spare_len = lt->spare_bytes;
	int ecc_len = lt->ecc_bytes;
	int chunk;

	marvell_nfc_select_target(chip, chip->cur_cs);

	if (oob_required)
		memset(chip->oob_poi, 0xFF, mtd->oobsize);

	nand_read_page_op(chip, page, 0, NULL, 0);

	for (chunk = 0; chunk < lt->nchunks; chunk++) {
		/* Update last chunk length */
		if (chunk >= lt->full_chunk_cnt) {
			data_len = lt->last_data_bytes;
			spare_len = lt->last_spare_bytes;
			ecc_len = lt->last_ecc_bytes;
		}

		/* Read data bytes*/
		nand_change_read_column_op(chip, chunk * chunk_size,
					   buf + (lt->data_bytes * chunk),
					   data_len, false);

		/* Read spare bytes */
		nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
				  spare_len, false);

		/* Read ECC bytes */
		nand_read_data_op(chip, oob + ecc_offset +
				  (ALIGN(lt->ecc_bytes, 32) * chunk),
				  ecc_len, false);
	}

	return 0;
}

static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
					      u8 *data, unsigned int data_len,
					      u8 *spare, unsigned int spare_len,
					      int page)
{
	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
	int i, ret;
	struct marvell_nfc_op nfc_op = {
		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
			   NDCB0_LEN_OVRD,
		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
		.ndcb[3] = data_len + spare_len,
	};

	ret = marvell_nfc_prepare_cmd(chip);
	if (ret)
		return;

	if (chunk == 0)
		nfc_op.ndcb[0] |= NDCB0_DBC |
				  NDCB0_CMD1(NAND_CMD_READ0) |
				  NDCB0_CMD2(NAND_CMD_READSTART);

	/*
	 * Trigger the monolithic read on the first chunk, then naked read on
	 * intermediate chunks and finally a last naked read on the last chunk.
	 */
	if (chunk == 0)
		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
	else if (chunk < lt->nchunks - 1)
		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
	else
		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);

	marvell_nfc_send_cmd(chip, &nfc_op);

	/*
	 * According to the datasheet, when reading from NDDB
	 * with BCH enabled, after each 32 bytes reads, we
	 * have to make sure that the NDSR.RDDREQ bit is set.
	 *
	 * Drain the FIFO, 8 32-bit reads at a time, and skip
	 * the polling on the last read.
	 *
	 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
	 */
	for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
		marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
				    "RDDREQ while draining FIFO (data)");
		marvell_nfc_xfer_data_in_pio(nfc, data,
					     FIFO_DEPTH * BCH_SEQ_READS);
		data += FIFO_DEPTH * BCH_SEQ_READS;
	}

	for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
		marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
				    "RDDREQ while draining FIFO (OOB)");
		marvell_nfc_xfer_data_in_pio(nfc, spare,
					     FIFO_DEPTH * BCH_SEQ_READS);
		spare += FIFO_DEPTH * BCH_SEQ_READS;
	}
}

static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip,
					    u8 *buf, int oob_required,
					    int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
	int data_len = lt->data_bytes, spare_len = lt->spare_bytes;
	u8 *data = buf, *spare = chip->oob_poi;
	int max_bitflips = 0;
	u32 failure_mask = 0;
	int chunk, ret;

	marvell_nfc_select_target(chip, chip->cur_cs);

	/*
	 * With BCH, OOB is not fully used (and thus not read entirely), not
	 * expected bytes could show up at the end of the OOB buffer if not
	 * explicitly erased.
	 */
	if (oob_required)
		memset(chip->oob_poi, 0xFF, mtd->oobsize);

	marvell_nfc_enable_hw_ecc(chip);

	for (chunk = 0; chunk < lt->nchunks; chunk++) {
		/* Update length for the last chunk */
		if (chunk >= lt->full_chunk_cnt) {
			data_len = lt->last_data_bytes;
			spare_len = lt->last_spare_bytes;
		}

		/* Read the chunk and detect number of bitflips */
		marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
						  spare, spare_len, page);
		ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
		if (ret)
			failure_mask |= BIT(chunk);

		data += data_len;
		spare += spare_len;
	}

	marvell_nfc_disable_hw_ecc(chip);

	if (!failure_mask)
		return max_bitflips;

	/*
	 * Please note that dumping the ECC bytes during a normal read with OOB
	 * area would add a significant overhead as ECC bytes are "consumed" by
	 * the controller in normal mode and must be re-read in raw mode. To
	 * avoid dropping the performances, we prefer not to include them. The
	 * user should re-read the page in raw mode if ECC bytes are required.
	 */

	/*
	 * In case there is any subpage read error reported by ->correct(), we
	 * usually re-read only ECC bytes in raw mode and check if the whole
	 * page is empty. In this case, it is normal that the ECC check failed
	 * and we just ignore the error.
	 *
	 * However, it has been empirically observed that for some layouts (e.g
	 * 2k page, 8b strength per 512B chunk), the controller tries to correct
	 * bits and may create itself bitflips in the erased area. To overcome
	 * this strange behavior, the whole page is re-read in raw mode, not
	 * only the ECC bytes.
	 */
	for (chunk = 0; chunk < lt->nchunks; chunk++) {
		int data_off_in_page, spare_off_in_page, ecc_off_in_page;
		int data_off, spare_off, ecc_off;
		int data_len, spare_len, ecc_len;

		/* No failure reported for this chunk, move to the next one */
		if (!(failure_mask & BIT(chunk)))
			continue;

		data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes +
					    lt->ecc_bytes);
		spare_off_in_page = data_off_in_page +
			(chunk < lt->full_chunk_cnt ? lt->data_bytes :
						      lt->last_data_bytes);
		ecc_off_in_page = spare_off_in_page +
			(chunk < lt->full_chunk_cnt ? lt->spare_bytes :
						      lt->last_spare_bytes);

		data_off = chunk * lt->data_bytes;
		spare_off = chunk * lt->spare_bytes;
		ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) +
			  lt->last_spare_bytes +
			  (chunk * (lt->ecc_bytes + 2));

		data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes :
							lt->last_data_bytes;
		spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes :
							 lt->last_spare_bytes;
		ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes :
						       lt->last_ecc_bytes;

		/*
		 * Only re-read the ECC bytes, unless we are using the 2k/8b
		 * layout which is buggy in the sense that the ECC engine will
		 * try to correct data bytes anyway, creating bitflips. In this
		 * case, re-read the entire page.
		 */
		if (lt->writesize == 2048 && lt->strength == 8) {
			nand_change_read_column_op(chip, data_off_in_page,
						   buf + data_off, data_len,
						   false);
			nand_change_read_column_op(chip, spare_off_in_page,
						   chip->oob_poi + spare_off, spare_len,
						   false);
		}

		nand_change_read_column_op(chip, ecc_off_in_page,
					   chip->oob_poi + ecc_off, ecc_len,
					   false);

		/* Check the entire chunk (data + spare + ecc) for emptyness */
		marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len,
					      chip->oob_poi + spare_off, spare_len,
					      chip->oob_poi + ecc_off, ecc_len,
					      &max_bitflips);
	}

	return max_bitflips;
}

static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page)
{
	u8 *buf = nand_get_data_buf(chip);

	return chip->ecc.read_page_raw(chip, buf, true, page);
}

static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page)
{
	u8 *buf = nand_get_data_buf(chip);

	return chip->ecc.read_page(chip, buf, true, page);
}

/* BCH write helpers */
static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip,
						 const u8 *buf,
						 int oob_required, int page)
{
	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
	int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
	int data_len = lt->data_bytes;
	int spare_len = lt->spare_bytes;
	int ecc_len = lt->ecc_bytes;
	int spare_offset = 0;
	int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
		lt->last_spare_bytes;
	int chunk;

	marvell_nfc_select_target(chip, chip->cur_cs);

	nand_prog_page_begin_op(chip, page, 0, NULL, 0);

	for (chunk = 0; chunk < lt->nchunks; chunk++) {
		if (chunk >= lt->full_chunk_cnt) {
			data_len = lt->last_data_bytes;
			spare_len = lt->last_spare_bytes;
			ecc_len = lt->last_ecc_bytes;
		}

		/* Point to the column of the next chunk */
		nand_change_write_column_op(chip, chunk * full_chunk_size,
					    NULL, 0, false);

		/* Write the data */
		nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
				   data_len, false);

		if (!oob_required)
			continue;

		/* Write the spare bytes */
		if (spare_len)
			nand_write_data_op(chip, chip->oob_poi + spare_offset,
					   spare_len, false);

		/* Write the ECC bytes */
		if (ecc_len)
			nand_write_data_op(chip, chip->oob_poi + ecc_offset,
					   ecc_len, false);

		spare_offset += spare_len;
		ecc_offset += ALIGN(ecc_len, 32);
	}

	return nand_prog_page_end_op(chip);
}

static int
marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
				   const u8 *data, unsigned int data_len,
				   const u8 *spare, unsigned int spare_len,
				   int page)
{
	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
	u32 xtype;
	int ret;
	struct marvell_nfc_op nfc_op = {
		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
		.ndcb[3] = data_len + spare_len,
	};

	/*
	 * First operation dispatches the CMD_SEQIN command, issue the address
	 * cycles and asks for the first chunk of data.
	 * All operations in the middle (if any) will issue a naked write and
	 * also ask for data.
	 * Last operation (if any) asks for the last chunk of data through a
	 * last naked write.
	 */
	if (chunk == 0) {
		if (lt->nchunks == 1)
			xtype = XTYPE_MONOLITHIC_RW;
		else
			xtype = XTYPE_WRITE_DISPATCH;

		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
				  NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
				  NDCB0_CMD1(NAND_CMD_SEQIN);
		nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
		nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
	} else if (chunk < lt->nchunks - 1) {
		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
	} else {
		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
	}

	/* Always dispatch the PAGEPROG command on the last chunk */
	if (chunk == lt->nchunks - 1)
		nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;

	ret = marvell_nfc_prepare_cmd(chip);
	if (ret)
		return ret;

	marvell_nfc_send_cmd(chip, &nfc_op);
	ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
				  "WRDREQ while loading FIFO (data)");
	if (ret)
		return ret;

	/* Transfer the contents */
	iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
	iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));

	return 0;
}

static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip,
					     const u8 *buf,
					     int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
	const u8 *data = buf;
	const u8 *spare = chip->oob_poi;
	int data_len = lt->data_bytes;
	int spare_len = lt->spare_bytes;
	int chunk, ret;

	marvell_nfc_select_target(chip, chip->cur_cs);

	/* Spare data will be written anyway, so clear it to avoid garbage */
	if (!oob_required)
		memset(chip->oob_poi, 0xFF, mtd->oobsize);

	marvell_nfc_enable_hw_ecc(chip);

	for (chunk = 0; chunk < lt->nchunks; chunk++) {
		if (chunk >= lt->full_chunk_cnt) {
			data_len = lt->last_data_bytes;
			spare_len = lt->last_spare_bytes;
		}

		marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
						   spare, spare_len, page);
		data += data_len;
		spare += spare_len;

		/*
		 * Waiting only for CMDD or PAGED is not enough, ECC are
		 * partially written. No flag is set once the operation is
		 * really finished but the ND_RUN bit is cleared, so wait for it
		 * before stepping into the next command.
		 */
		marvell_nfc_wait_ndrun(chip);
	}

	ret = marvell_nfc_wait_op(chip,
				  PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));

	marvell_nfc_disable_hw_ecc(chip);

	if (ret)
		return ret;

	return 0;
}

static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip,
						int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	u8 *buf = nand_get_data_buf(chip);

	memset(buf, 0xFF, mtd->writesize);

	return chip->ecc.write_page_raw(chip, buf, true, page);
}

static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	u8 *buf = nand_get_data_buf(chip);

	memset(buf, 0xFF, mtd->writesize);

	return chip->ecc.write_page(chip, buf, true, page);
}

/* NAND framework ->exec_op() hooks and related helpers */
static void marvell_nfc_parse_instructions(struct nand_chip *chip,
					   const struct nand_subop *subop,
					   struct marvell_nfc_op *nfc_op)
{
	const struct nand_op_instr *instr = NULL;
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	bool first_cmd = true;
	unsigned int op_id;
	int i;

	/* Reset the input structure as most of its fields will be OR'ed */
	memset(nfc_op, 0, sizeof(struct marvell_nfc_op));

	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
		unsigned int offset, naddrs;
		const u8 *addrs;
		int len;

		instr = &subop->instrs[op_id];

		switch (instr->type) {
		case NAND_OP_CMD_INSTR:
			if (first_cmd)
				nfc_op->ndcb[0] |=
					NDCB0_CMD1(instr->ctx.cmd.opcode);
			else
				nfc_op->ndcb[0] |=
					NDCB0_CMD2(instr->ctx.cmd.opcode) |
					NDCB0_DBC;

			nfc_op->cle_ale_delay_ns = instr->delay_ns;
			first_cmd = false;
			break;

		case NAND_OP_ADDR_INSTR:
			offset = nand_subop_get_addr_start_off(subop, op_id);
			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
			addrs = &instr->ctx.addr.addrs[offset];

			nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);

			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
				nfc_op->ndcb[1] |= addrs[i] << (8 * i);

			if (naddrs >= 5)
				nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
			if (naddrs >= 6)
				nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
			if (naddrs == 7)
				nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);

			nfc_op->cle_ale_delay_ns = instr->delay_ns;
			break;

		case NAND_OP_DATA_IN_INSTR:
			nfc_op->data_instr = instr;
			nfc_op->data_instr_idx = op_id;
			nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
			if (nfc->caps->is_nfcv2) {
				nfc_op->ndcb[0] |=
					NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
					NDCB0_LEN_OVRD;
				len = nand_subop_get_data_len(subop, op_id);
				nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
			}
			nfc_op->data_delay_ns = instr->delay_ns;
			break;

		case NAND_OP_DATA_OUT_INSTR:
			nfc_op->data_instr = instr;
			nfc_op->data_instr_idx = op_id;
			nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
			if (nfc->caps->is_nfcv2) {
				nfc_op->ndcb[0] |=
					NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
					NDCB0_LEN_OVRD;
				len = nand_subop_get_data_len(subop, op_id);
				nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
			}
			nfc_op->data_delay_ns = instr->delay_ns;
			break;

		case NAND_OP_WAITRDY_INSTR:
			nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
			nfc_op->rdy_delay_ns = instr->delay_ns;
			break;
		}
	}
}

static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
				     const struct nand_subop *subop,
				     struct marvell_nfc_op *nfc_op)
{
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	const struct nand_op_instr *instr = nfc_op->data_instr;
	unsigned int op_id = nfc_op->data_instr_idx;
	unsigned int len = nand_subop_get_data_len(subop, op_id);
	unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
	bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
	int ret;

	if (instr->ctx.data.force_8bit)
		marvell_nfc_force_byte_access(chip, true);

	if (reading) {
		u8 *in = instr->ctx.data.buf.in + offset;

		ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
	} else {
		const u8 *out = instr->ctx.data.buf.out + offset;

		ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
	}

	if (instr->ctx.data.force_8bit)
		marvell_nfc_force_byte_access(chip, false);

	return ret;
}

static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
					      const struct nand_subop *subop)
{
	struct marvell_nfc_op nfc_op;
	bool reading;
	int ret;

	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
	reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);

	ret = marvell_nfc_prepare_cmd(chip);
	if (ret)
		return ret;

	marvell_nfc_send_cmd(chip, &nfc_op);
	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
				  "RDDREQ/WRDREQ while draining raw data");
	if (ret)
		return ret;

	cond_delay(nfc_op.cle_ale_delay_ns);

	if (reading) {
		if (nfc_op.rdy_timeout_ms) {
			ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
			if (ret)
				return ret;
		}

		cond_delay(nfc_op.rdy_delay_ns);
	}

	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
	ret = marvell_nfc_wait_cmdd(chip);
	if (ret)
		return ret;

	cond_delay(nfc_op.data_delay_ns);

	if (!reading) {
		if (nfc_op.rdy_timeout_ms) {
			ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
			if (ret)
				return ret;
		}

		cond_delay(nfc_op.rdy_delay_ns);
	}

	/*
	 * NDCR ND_RUN bit should be cleared automatically at the end of each
	 * operation but experience shows that the behavior is buggy when it
	 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
	 */
	if (!reading) {
		struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);

		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
			       nfc->regs + NDCR);
	}

	return 0;
}

static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
					 const struct nand_subop *subop)
{
	struct marvell_nfc_op nfc_op;
	int ret;

	marvell_nfc_parse_instructions(chip, subop, &nfc_op);

	/*
	 * Naked access are different in that they need to be flagged as naked
	 * by the controller. Reset the controller registers fields that inform
	 * on the type and refill them according to the ongoing operation.
	 */
	nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
			    NDCB0_CMD_XTYPE(XTYPE_MASK));
	switch (subop->instrs[0].type) {
	case NAND_OP_CMD_INSTR:
		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
		break;
	case NAND_OP_ADDR_INSTR:
		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
		break;
	case NAND_OP_DATA_IN_INSTR:
		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
				  NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
		break;
	case NAND_OP_DATA_OUT_INSTR:
		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
				  NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
		break;
	default:
		/* This should never happen */
		break;
	}

	ret = marvell_nfc_prepare_cmd(chip);
	if (ret)
		return ret;

	marvell_nfc_send_cmd(chip, &nfc_op);

	if (!nfc_op.data_instr) {
		ret = marvell_nfc_wait_cmdd(chip);
		cond_delay(nfc_op.cle_ale_delay_ns);
		return ret;
	}

	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
				  "RDDREQ/WRDREQ while draining raw data");
	if (ret)
		return ret;

	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
	ret = marvell_nfc_wait_cmdd(chip);
	if (ret)
		return ret;

	/*
	 * NDCR ND_RUN bit should be cleared automatically at the end of each
	 * operation but experience shows that the behavior is buggy when it
	 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
	 */
	if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
		struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);

		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
			       nfc->regs + NDCR);
	}

	return 0;
}

static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
					  const struct nand_subop *subop)
{
	struct marvell_nfc_op nfc_op;
	int ret;

	marvell_nfc_parse_instructions(chip, subop, &nfc_op);

	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
	cond_delay(nfc_op.rdy_delay_ns);

	return ret;
}

static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
					 const struct nand_subop *subop)
{
	struct marvell_nfc_op nfc_op;
	int ret;

	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
	nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);

	ret = marvell_nfc_prepare_cmd(chip);
	if (ret)
		return ret;

	marvell_nfc_send_cmd(chip, &nfc_op);
	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
				  "RDDREQ while reading ID");
	if (ret)
		return ret;

	cond_delay(nfc_op.cle_ale_delay_ns);

	if (nfc_op.rdy_timeout_ms) {
		ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
		if (ret)
			return ret;
	}

	cond_delay(nfc_op.rdy_delay_ns);

	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
	ret = marvell_nfc_wait_cmdd(chip);
	if (ret)
		return ret;

	cond_delay(nfc_op.data_delay_ns);

	return 0;
}

static int marvell_nfc_read_status_exec(struct nand_chip *chip,
					const struct nand_subop *subop)
{
	struct marvell_nfc_op nfc_op;
	int ret;

	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
	nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);

	ret = marvell_nfc_prepare_cmd(chip);
	if (ret)
		return ret;

	marvell_nfc_send_cmd(chip, &nfc_op);
	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
				  "RDDREQ while reading status");
	if (ret)
		return ret;

	cond_delay(nfc_op.cle_ale_delay_ns);

	if (nfc_op.rdy_timeout_ms) {
		ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
		if (ret)
			return ret;
	}

	cond_delay(nfc_op.rdy_delay_ns);

	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
	ret = marvell_nfc_wait_cmdd(chip);
	if (ret)
		return ret;

	cond_delay(nfc_op.data_delay_ns);

	return 0;
}

static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
					   const struct nand_subop *subop)
{
	struct marvell_nfc_op nfc_op;
	int ret;

	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);

	ret = marvell_nfc_prepare_cmd(chip);
	if (ret)
		return ret;

	marvell_nfc_send_cmd(chip, &nfc_op);
	ret = marvell_nfc_wait_cmdd(chip);
	if (ret)
		return ret;

	cond_delay(nfc_op.cle_ale_delay_ns);

	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
	if (ret)
		return ret;

	cond_delay(nfc_op.rdy_delay_ns);

	return 0;
}

static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
					   const struct nand_subop *subop)
{
	struct marvell_nfc_op nfc_op;
	int ret;

	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);

	ret = marvell_nfc_prepare_cmd(chip);
	if (ret)
		return ret;

	marvell_nfc_send_cmd(chip, &nfc_op);
	ret = marvell_nfc_wait_cmdd(chip);
	if (ret)
		return ret;

	cond_delay(nfc_op.cle_ale_delay_ns);

	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
	if (ret)
		return ret;

	cond_delay(nfc_op.rdy_delay_ns);

	return 0;
}

static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
	/* Monolithic reads/writes */
	NAND_OP_PARSER_PATTERN(
		marvell_nfc_monolithic_access_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
		NAND_OP_PARSER_PAT_CMD_ELEM(true),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
	NAND_OP_PARSER_PATTERN(
		marvell_nfc_monolithic_access_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
		NAND_OP_PARSER_PAT_CMD_ELEM(true),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
	/* Naked commands */
	NAND_OP_PARSER_PATTERN(
		marvell_nfc_naked_access_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
	NAND_OP_PARSER_PATTERN(
		marvell_nfc_naked_access_exec,
		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
	NAND_OP_PARSER_PATTERN(
		marvell_nfc_naked_access_exec,
		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
	NAND_OP_PARSER_PATTERN(
		marvell_nfc_naked_access_exec,
		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
	NAND_OP_PARSER_PATTERN(
		marvell_nfc_naked_waitrdy_exec,
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
	);

static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
	/* Naked commands not supported, use a function for each pattern */
	NAND_OP_PARSER_PATTERN(
		marvell_nfc_read_id_type_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
	NAND_OP_PARSER_PATTERN(
		marvell_nfc_erase_cmd_type_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
	NAND_OP_PARSER_PATTERN(
		marvell_nfc_read_status_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
	NAND_OP_PARSER_PATTERN(
		marvell_nfc_reset_cmd_type_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
	NAND_OP_PARSER_PATTERN(
		marvell_nfc_naked_waitrdy_exec,
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
	);

static int marvell_nfc_exec_op(struct nand_chip *chip,
			       const struct nand_operation *op,
			       bool check_only)
{
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);

	marvell_nfc_select_target(chip, op->cs);

	if (nfc->caps->is_nfcv2)
		return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
					      op, check_only);
	else
		return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
					      op, check_only);
}

/*
 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
 * usable.
 */
static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
				      struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;

	if (section)
		return -ERANGE;

	oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
			    lt->last_ecc_bytes;
	oobregion->offset = mtd->oobsize - oobregion->length;

	return 0;
}

static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
				       struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;

	if (section)
		return -ERANGE;

	/*
	 * Bootrom looks in bytes 0 & 5 for bad blocks for the
	 * 4KB page / 4bit BCH combination.
	 */
	if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
		oobregion->offset = 6;
	else
		oobregion->offset = 2;

	oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
			    lt->last_spare_bytes - oobregion->offset;

	return 0;
}

static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
	.ecc = marvell_nand_ooblayout_ecc,
	.free = marvell_nand_ooblayout_free,
};

static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
					 struct nand_ecc_ctrl *ecc)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	const struct marvell_hw_ecc_layout *l;
	int i;

	if (!nfc->caps->is_nfcv2 &&
	    (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
		dev_err(nfc->dev,
			"NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
			mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
		return -ENOTSUPP;
	}

	to_marvell_nand(chip)->layout = NULL;
	for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
		l = &marvell_nfc_layouts[i];
		if (mtd->writesize == l->writesize &&
		    ecc->size == l->chunk && ecc->strength == l->strength) {
			to_marvell_nand(chip)->layout = l;
			break;
		}
	}

	if (!to_marvell_nand(chip)->layout ||
	    (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
		dev_err(nfc->dev,
			"ECC strength %d at page size %d is not supported\n",
			ecc->strength, mtd->writesize);
		return -ENOTSUPP;
	}

	/* Special care for the layout 2k/8-bit/512B  */
	if (l->writesize == 2048 && l->strength == 8) {
		if (mtd->oobsize < 128) {
			dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n");
			return -ENOTSUPP;
		} else {
			chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
		}
	}

	mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
	ecc->steps = l->nchunks;
	ecc->size = l->data_bytes;

	if (ecc->strength == 1) {
		chip->ecc.algo = NAND_ECC_HAMMING;
		ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
		ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
		ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
		ecc->read_oob = ecc->read_oob_raw;
		ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
		ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
		ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
		ecc->write_oob = ecc->write_oob_raw;
	} else {
		chip->ecc.algo = NAND_ECC_BCH;
		ecc->strength = 16;
		ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
		ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
		ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
		ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
		ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
		ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
		ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
		ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
	}

	return 0;
}

static int marvell_nand_ecc_init(struct mtd_info *mtd,
				 struct nand_ecc_ctrl *ecc)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	int ret;

	if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) {
		if (chip->base.eccreq.step_size && chip->base.eccreq.strength) {
			ecc->size = chip->base.eccreq.step_size;
			ecc->strength = chip->base.eccreq.strength;
		} else {
			dev_info(nfc->dev,
				 "No minimum ECC strength, using 1b/512B\n");
			ecc->size = 512;
			ecc->strength = 1;
		}
	}

	switch (ecc->mode) {
	case NAND_ECC_HW:
		ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc);
		if (ret)
			return ret;
		break;
	case NAND_ECC_NONE:
	case NAND_ECC_SOFT:
	case NAND_ECC_ON_DIE:
		if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
		    mtd->writesize != SZ_2K) {
			dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
				mtd->writesize);
			return -EINVAL;
		}
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
		   NAND_BBT_2BIT | NAND_BBT_VERSION,
	.offs =	8,
	.len = 6,
	.veroffs = 14,
	.maxblocks = 8,	/* Last 8 blocks in each chip */
	.pattern = bbt_pattern
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
		   NAND_BBT_2BIT | NAND_BBT_VERSION,
	.offs =	8,
	.len = 6,
	.veroffs = 14,
	.maxblocks = 8,	/* Last 8 blocks in each chip */
	.pattern = bbt_mirror_pattern
};

static int marvell_nfc_setup_data_interface(struct nand_chip *chip, int chipnr,
					    const struct nand_data_interface
					    *conf)
{
	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
	const struct nand_sdr_timings *sdr;
	struct marvell_nfc_timings nfc_tmg;
	int read_delay;

	sdr = nand_get_sdr_timings(conf);
	if (IS_ERR(sdr))
		return PTR_ERR(sdr);

	/*
	 * SDR timings are given in pico-seconds while NFC timings must be
	 * expressed in NAND controller clock cycles, which is half of the
	 * frequency of the accessible ECC clock retrieved by clk_get_rate().
	 * This is not written anywhere in the datasheet but was observed
	 * with an oscilloscope.
	 *
	 * NFC datasheet gives equations from which thoses calculations
	 * are derived, they tend to be slightly more restrictives than the
	 * given core timings and may improve the overall speed.
	 */
	nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
	nfc_tmg.tRH = nfc_tmg.tRP;
	nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
	nfc_tmg.tWH = nfc_tmg.tWP;
	nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
	nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
	nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
	/*
	 * Read delay is the time of propagation from SoC pins to NFC internal
	 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
	 * EDO mode, an additional delay of tRH must be taken into account so
	 * the data is sampled on the falling edge instead of the rising edge.
	 */
	read_delay = sdr->tRC_min >= 30000 ?
		MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;

	nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
	/*
	 * tWHR and tRHW are supposed to be read to write delays (and vice
	 * versa) but in some cases, ie. when doing a change column, they must
	 * be greater than that to be sure tCCS delay is respected.
	 */
	nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
				 period_ns) - 2,
	nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
				 period_ns);

	/*
	 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
	 * NFCv1: No WAIT_MODE, tR must be maximal.
	 */
	if (nfc->caps->is_nfcv2) {
		nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
	} else {
		nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
					 period_ns);
		if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
			nfc_tmg.tR = nfc_tmg.tCH - 3;
		else
			nfc_tmg.tR = 0;
	}

	if (chipnr < 0)
		return 0;

	marvell_nand->ndtr0 =
		NDTR0_TRP(nfc_tmg.tRP) |
		NDTR0_TRH(nfc_tmg.tRH) |
		NDTR0_ETRP(nfc_tmg.tRP) |
		NDTR0_TWP(nfc_tmg.tWP) |
		NDTR0_TWH(nfc_tmg.tWH) |
		NDTR0_TCS(nfc_tmg.tCS) |
		NDTR0_TCH(nfc_tmg.tCH);

	marvell_nand->ndtr1 =
		NDTR1_TAR(nfc_tmg.tAR) |
		NDTR1_TWHR(nfc_tmg.tWHR) |
		NDTR1_TR(nfc_tmg.tR);

	if (nfc->caps->is_nfcv2) {
		marvell_nand->ndtr0 |=
			NDTR0_RD_CNT_DEL(read_delay) |
			NDTR0_SELCNTR |
			NDTR0_TADL(nfc_tmg.tADL);

		marvell_nand->ndtr1 |=
			NDTR1_TRHW(nfc_tmg.tRHW) |
			NDTR1_WAIT_MODE;
	}

	return 0;
}

static int marvell_nand_attach_chip(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
	struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev);
	int ret;

	if (pdata && pdata->flash_bbt)
		chip->bbt_options |= NAND_BBT_USE_FLASH;

	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
		/*
		 * We'll use a bad block table stored in-flash and don't
		 * allow writing the bad block marker to the flash.
		 */
		chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
		chip->bbt_td = &bbt_main_descr;
		chip->bbt_md = &bbt_mirror_descr;
	}

	/* Save the chip-specific fields of NDCR */
	marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
	if (chip->options & NAND_BUSWIDTH_16)
		marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;

	/*
	 * On small page NANDs, only one cycle is needed to pass the
	 * column address.
	 */
	if (mtd->writesize <= 512) {
		marvell_nand->addr_cyc = 1;
	} else {
		marvell_nand->addr_cyc = 2;
		marvell_nand->ndcr |= NDCR_RA_START;
	}

	/*
	 * Now add the number of cycles needed to pass the row
	 * address.
	 *
	 * Addressing a chip using CS 2 or 3 should also need the third row
	 * cycle but due to inconsistance in the documentation and lack of
	 * hardware to test this situation, this case is not supported.
	 */
	if (chip->options & NAND_ROW_ADDR_3)
		marvell_nand->addr_cyc += 3;
	else
		marvell_nand->addr_cyc += 2;

	if (pdata) {
		chip->ecc.size = pdata->ecc_step_size;
		chip->ecc.strength = pdata->ecc_strength;
	}

	ret = marvell_nand_ecc_init(mtd, &chip->ecc);
	if (ret) {
		dev_err(nfc->dev, "ECC init failed: %d\n", ret);
		return ret;
	}

	if (chip->ecc.mode == NAND_ECC_HW) {
		/*
		 * Subpage write not available with hardware ECC, prohibit also
		 * subpage read as in userspace subpage access would still be
		 * allowed and subpage write, if used, would lead to numerous
		 * uncorrectable ECC errors.
		 */
		chip->options |= NAND_NO_SUBPAGE_WRITE;
	}

	if (pdata || nfc->caps->legacy_of_bindings) {
		/*
		 * We keep the MTD name unchanged to avoid breaking platforms
		 * where the MTD cmdline parser is used and the bootloader
		 * has not been updated to use the new naming scheme.
		 */
		mtd->name = "pxa3xx_nand-0";
	} else if (!mtd->name) {
		/*
		 * If the new bindings are used and the bootloader has not been
		 * updated to pass a new mtdparts parameter on the cmdline, you
		 * should define the following property in your NAND node, ie:
		 *
		 *	label = "main-storage";
		 *
		 * This way, mtd->name will be set by the core when
		 * nand_set_flash_node() is called.
		 */
		mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
					   "%s:nand.%d", dev_name(nfc->dev),
					   marvell_nand->sels[0].cs);
		if (!mtd->name) {
			dev_err(nfc->dev, "Failed to allocate mtd->name\n");
			return -ENOMEM;
		}
	}

	return 0;
}

static const struct nand_controller_ops marvell_nand_controller_ops = {
	.attach_chip = marvell_nand_attach_chip,
	.exec_op = marvell_nfc_exec_op,
	.setup_data_interface = marvell_nfc_setup_data_interface,
};

static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
				  struct device_node *np)
{
	struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
	struct marvell_nand_chip *marvell_nand;
	struct mtd_info *mtd;
	struct nand_chip *chip;
	int nsels, ret, i;
	u32 cs, rb;

	/*
	 * The legacy "num-cs" property indicates the number of CS on the only
	 * chip connected to the controller (legacy bindings does not support
	 * more than one chip). The CS and RB pins are always the #0.
	 *
	 * When not using legacy bindings, a couple of "reg" and "nand-rb"
	 * properties must be filled. For each chip, expressed as a subnode,
	 * "reg" points to the CS lines and "nand-rb" to the RB line.
	 */
	if (pdata || nfc->caps->legacy_of_bindings) {
		nsels = 1;
	} else {
		nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
		if (nsels <= 0) {
			dev_err(dev, "missing/invalid reg property\n");
			return -EINVAL;
		}
	}

	/* Alloc the nand chip structure */
	marvell_nand = devm_kzalloc(dev,
				    struct_size(marvell_nand, sels, nsels),
				    GFP_KERNEL);
	if (!marvell_nand) {
		dev_err(dev, "could not allocate chip structure\n");
		return -ENOMEM;
	}

	marvell_nand->nsels = nsels;
	marvell_nand->selected_die = -1;

	for (i = 0; i < nsels; i++) {
		if (pdata || nfc->caps->legacy_of_bindings) {
			/*
			 * Legacy bindings use the CS lines in natural
			 * order (0, 1, ...)
			 */
			cs = i;
		} else {
			/* Retrieve CS id */
			ret = of_property_read_u32_index(np, "reg", i, &cs);
			if (ret) {
				dev_err(dev, "could not retrieve reg property: %d\n",
					ret);
				return ret;
			}
		}

		if (cs >= nfc->caps->max_cs_nb) {
			dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
				cs, nfc->caps->max_cs_nb);
			return -EINVAL;
		}

		if (test_and_set_bit(cs, &nfc->assigned_cs)) {
			dev_err(dev, "CS %d already assigned\n", cs);
			return -EINVAL;
		}

		/*
		 * The cs variable represents the chip select id, which must be
		 * converted in bit fields for NDCB0 and NDCB2 to select the
		 * right chip. Unfortunately, due to a lack of information on
		 * the subject and incoherent documentation, the user should not
		 * use CS1 and CS3 at all as asserting them is not supported in
		 * a reliable way (due to multiplexing inside ADDR5 field).
		 */
		marvell_nand->sels[i].cs = cs;
		switch (cs) {
		case 0:
		case 2:
			marvell_nand->sels[i].ndcb0_csel = 0;
			break;
		case 1:
		case 3:
			marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
			break;
		default:
			return -EINVAL;
		}

		/* Retrieve RB id */
		if (pdata || nfc->caps->legacy_of_bindings) {
			/* Legacy bindings always use RB #0 */
			rb = 0;
		} else {
			ret = of_property_read_u32_index(np, "nand-rb", i,
							 &rb);
			if (ret) {
				dev_err(dev,
					"could not retrieve RB property: %d\n",
					ret);
				return ret;
			}
		}

		if (rb >= nfc->caps->max_rb_nb) {
			dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
				rb, nfc->caps->max_rb_nb);
			return -EINVAL;
		}

		marvell_nand->sels[i].rb = rb;
	}

	chip = &marvell_nand->chip;
	chip->controller = &nfc->controller;
	nand_set_flash_node(chip, np);

	if (!of_property_read_bool(np, "marvell,nand-keep-config"))
		chip->options |= NAND_KEEP_TIMINGS;

	mtd = nand_to_mtd(chip);
	mtd->dev.parent = dev;

	/*
	 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
	 * in the DT node, this entry will be overwritten in nand_scan_ident().
	 */
	chip->ecc.mode = NAND_ECC_HW;

	/*
	 * Save a reference value for timing registers before
	 * ->setup_data_interface() is called.
	 */
	marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
	marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);

	chip->options |= NAND_BUSWIDTH_AUTO;

	ret = nand_scan(chip, marvell_nand->nsels);
	if (ret) {
		dev_err(dev, "could not scan the nand chip\n");
		return ret;
	}

	if (pdata)
		/* Legacy bindings support only one chip */
		ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
	else
		ret = mtd_device_register(mtd, NULL, 0);
	if (ret) {
		dev_err(dev, "failed to register mtd device: %d\n", ret);
		nand_release(chip);
		return ret;
	}

	list_add_tail(&marvell_nand->node, &nfc->chips);

	return 0;
}

static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
{
	struct device_node *np = dev->of_node;
	struct device_node *nand_np;
	int max_cs = nfc->caps->max_cs_nb;
	int nchips;
	int ret;

	if (!np)
		nchips = 1;
	else
		nchips = of_get_child_count(np);

	if (nchips > max_cs) {
		dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
			max_cs);
		return -EINVAL;
	}

	/*
	 * Legacy bindings do not use child nodes to exhibit NAND chip
	 * properties and layout. Instead, NAND properties are mixed with the
	 * controller ones, and partitions are defined as direct subnodes of the
	 * NAND controller node.
	 */
	if (nfc->caps->legacy_of_bindings) {
		ret = marvell_nand_chip_init(dev, nfc, np);
		return ret;
	}

	for_each_child_of_node(np, nand_np) {
		ret = marvell_nand_chip_init(dev, nfc, nand_np);
		if (ret) {
			of_node_put(nand_np);
			return ret;
		}
	}

	return 0;
}

static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
{
	struct marvell_nand_chip *entry, *temp;

	list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
		nand_release(&entry->chip);
		list_del(&entry->node);
	}
}

static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
{
	struct platform_device *pdev = container_of(nfc->dev,
						    struct platform_device,
						    dev);
	struct dma_slave_config config = {};
	struct resource *r;
	int ret;

	if (!IS_ENABLED(CONFIG_PXA_DMA)) {
		dev_warn(nfc->dev,
			 "DMA not enabled in configuration\n");
		return -ENOTSUPP;
	}

	ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
	if (ret)
		return ret;

	nfc->dma_chan =	dma_request_chan(nfc->dev, "data");
	if (IS_ERR(nfc->dma_chan)) {
		ret = PTR_ERR(nfc->dma_chan);
		nfc->dma_chan = NULL;
		if (ret != -EPROBE_DEFER)
			dev_err(nfc->dev, "DMA channel request failed: %d\n",
				ret);
		return ret;
	}

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!r) {
		ret = -ENXIO;
		goto release_channel;
	}

	config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	config.src_addr = r->start + NDDB;
	config.dst_addr = r->start + NDDB;
	config.src_maxburst = 32;
	config.dst_maxburst = 32;
	ret = dmaengine_slave_config(nfc->dma_chan, &config);
	if (ret < 0) {
		dev_err(nfc->dev, "Failed to configure DMA channel\n");
		goto release_channel;
	}

	/*
	 * DMA must act on length multiple of 32 and this length may be
	 * bigger than the destination buffer. Use this buffer instead
	 * for DMA transfers and then copy the desired amount of data to
	 * the provided buffer.
	 */
	nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
	if (!nfc->dma_buf) {
		ret = -ENOMEM;
		goto release_channel;
	}

	nfc->use_dma = true;

	return 0;

release_channel:
	dma_release_channel(nfc->dma_chan);
	nfc->dma_chan = NULL;

	return ret;
}

static void marvell_nfc_reset(struct marvell_nfc *nfc)
{
	/*
	 * ECC operations and interruptions are only enabled when specifically
	 * needed. ECC shall not be activated in the early stages (fails probe).
	 * Arbiter flag, even if marked as "reserved", must be set (empirical).
	 * SPARE_EN bit must always be set or ECC bytes will not be at the same
	 * offset in the read page and this will fail the protection.
	 */
	writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
		       NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
	writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
	writel_relaxed(0, nfc->regs + NDECCCTRL);
}

static int marvell_nfc_init(struct marvell_nfc *nfc)
{
	struct device_node *np = nfc->dev->of_node;

	/*
	 * Some SoCs like A7k/A8k need to enable manually the NAND
	 * controller, gated clocks and reset bits to avoid being bootloader
	 * dependent. This is done through the use of the System Functions
	 * registers.
	 */
	if (nfc->caps->need_system_controller) {
		struct regmap *sysctrl_base =
			syscon_regmap_lookup_by_phandle(np,
							"marvell,system-controller");

		if (IS_ERR(sysctrl_base))
			return PTR_ERR(sysctrl_base);

		regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX,
			     GENCONF_SOC_DEVICE_MUX_NFC_EN |
			     GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
			     GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
			     GENCONF_SOC_DEVICE_MUX_NFC_INT_EN);

		regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL,
				   GENCONF_CLK_GATING_CTRL_ND_GATE,
				   GENCONF_CLK_GATING_CTRL_ND_GATE);

		regmap_update_bits(sysctrl_base, GENCONF_ND_CLK_CTRL,
				   GENCONF_ND_CLK_CTRL_EN,
				   GENCONF_ND_CLK_CTRL_EN);
	}

	/* Configure the DMA if appropriate */
	if (!nfc->caps->is_nfcv2)
		marvell_nfc_init_dma(nfc);

	marvell_nfc_reset(nfc);

	return 0;
}

static int marvell_nfc_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct resource *r;
	struct marvell_nfc *nfc;
	int ret;
	int irq;

	nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
			   GFP_KERNEL);
	if (!nfc)
		return -ENOMEM;

	nfc->dev = dev;
	nand_controller_init(&nfc->controller);
	nfc->controller.ops = &marvell_nand_controller_ops;
	INIT_LIST_HEAD(&nfc->chips);

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	nfc->regs = devm_ioremap_resource(dev, r);
	if (IS_ERR(nfc->regs))
		return PTR_ERR(nfc->regs);

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

	nfc->core_clk = devm_clk_get(&pdev->dev, "core");

	/* Managed the legacy case (when the first clock was not named) */
	if (nfc->core_clk == ERR_PTR(-ENOENT))
		nfc->core_clk = devm_clk_get(&pdev->dev, NULL);

	if (IS_ERR(nfc->core_clk))
		return PTR_ERR(nfc->core_clk);

	ret = clk_prepare_enable(nfc->core_clk);
	if (ret)
		return ret;

	nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
	if (IS_ERR(nfc->reg_clk)) {
		if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
			ret = PTR_ERR(nfc->reg_clk);
			goto unprepare_core_clk;
		}

		nfc->reg_clk = NULL;
	}

	ret = clk_prepare_enable(nfc->reg_clk);
	if (ret)
		goto unprepare_core_clk;

	marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
	marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
	ret = devm_request_irq(dev, irq, marvell_nfc_isr,
			       0, "marvell-nfc", nfc);
	if (ret)
		goto unprepare_reg_clk;

	/* Get NAND controller capabilities */
	if (pdev->id_entry)
		nfc->caps = (void *)pdev->id_entry->driver_data;
	else
		nfc->caps = of_device_get_match_data(&pdev->dev);

	if (!nfc->caps) {
		dev_err(dev, "Could not retrieve NFC caps\n");
		ret = -EINVAL;
		goto unprepare_reg_clk;
	}

	/* Init the controller and then probe the chips */
	ret = marvell_nfc_init(nfc);
	if (ret)
		goto unprepare_reg_clk;

	platform_set_drvdata(pdev, nfc);

	ret = marvell_nand_chips_init(dev, nfc);
	if (ret)
		goto release_dma;

	return 0;

release_dma:
	if (nfc->use_dma)
		dma_release_channel(nfc->dma_chan);
unprepare_reg_clk:
	clk_disable_unprepare(nfc->reg_clk);
unprepare_core_clk:
	clk_disable_unprepare(nfc->core_clk);

	return ret;
}

static int marvell_nfc_remove(struct platform_device *pdev)
{
	struct marvell_nfc *nfc = platform_get_drvdata(pdev);

	marvell_nand_chips_cleanup(nfc);

	if (nfc->use_dma) {
		dmaengine_terminate_all(nfc->dma_chan);
		dma_release_channel(nfc->dma_chan);
	}

	clk_disable_unprepare(nfc->reg_clk);
	clk_disable_unprepare(nfc->core_clk);

	return 0;
}

static int __maybe_unused marvell_nfc_suspend(struct device *dev)
{
	struct marvell_nfc *nfc = dev_get_drvdata(dev);
	struct marvell_nand_chip *chip;

	list_for_each_entry(chip, &nfc->chips, node)
		marvell_nfc_wait_ndrun(&chip->chip);

	clk_disable_unprepare(nfc->reg_clk);
	clk_disable_unprepare(nfc->core_clk);

	return 0;
}

static int __maybe_unused marvell_nfc_resume(struct device *dev)
{
	struct marvell_nfc *nfc = dev_get_drvdata(dev);
	int ret;

	ret = clk_prepare_enable(nfc->core_clk);
	if (ret < 0)
		return ret;

	ret = clk_prepare_enable(nfc->reg_clk);
	if (ret < 0)
		return ret;

	/*
	 * Reset nfc->selected_chip so the next command will cause the timing
	 * registers to be restored in marvell_nfc_select_target().
	 */
	nfc->selected_chip = NULL;

	/* Reset registers that have lost their contents */
	marvell_nfc_reset(nfc);

	return 0;
}

static const struct dev_pm_ops marvell_nfc_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume)
};

static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
	.max_cs_nb = 4,
	.max_rb_nb = 2,
	.need_system_controller = true,
	.is_nfcv2 = true,
};

static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
	.max_cs_nb = 4,
	.max_rb_nb = 2,
	.is_nfcv2 = true,
};

static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
	.max_cs_nb = 2,
	.max_rb_nb = 1,
	.use_dma = true,
};

static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
	.max_cs_nb = 4,
	.max_rb_nb = 2,
	.need_system_controller = true,
	.legacy_of_bindings = true,
	.is_nfcv2 = true,
};

static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
	.max_cs_nb = 4,
	.max_rb_nb = 2,
	.legacy_of_bindings = true,
	.is_nfcv2 = true,
};

static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
	.max_cs_nb = 2,
	.max_rb_nb = 1,
	.legacy_of_bindings = true,
	.use_dma = true,
};

static const struct platform_device_id marvell_nfc_platform_ids[] = {
	{
		.name = "pxa3xx-nand",
		.driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
	},
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);

static const struct of_device_id marvell_nfc_of_ids[] = {
	{
		.compatible = "marvell,armada-8k-nand-controller",
		.data = &marvell_armada_8k_nfc_caps,
	},
	{
		.compatible = "marvell,armada370-nand-controller",
		.data = &marvell_armada370_nfc_caps,
	},
	{
		.compatible = "marvell,pxa3xx-nand-controller",
		.data = &marvell_pxa3xx_nfc_caps,
	},
	/* Support for old/deprecated bindings: */
	{
		.compatible = "marvell,armada-8k-nand",
		.data = &marvell_armada_8k_nfc_legacy_caps,
	},
	{
		.compatible = "marvell,armada370-nand",
		.data = &marvell_armada370_nfc_legacy_caps,
	},
	{
		.compatible = "marvell,pxa3xx-nand",
		.data = &marvell_pxa3xx_nfc_legacy_caps,
	},
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);

static struct platform_driver marvell_nfc_driver = {
	.driver	= {
		.name		= "marvell-nfc",
		.of_match_table = marvell_nfc_of_ids,
		.pm		= &marvell_nfc_pm_ops,
	},
	.id_table = marvell_nfc_platform_ids,
	.probe = marvell_nfc_probe,
	.remove	= marvell_nfc_remove,
};
module_platform_driver(marvell_nfc_driver);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Marvell NAND controller driver");