Linux preempt-rt

Check our new training course

Real-Time Linux with PREEMPT_RT

Check our new training course
with Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright 2015-2017 Google, Inc
 *
 * USB Type-C Port Controller Interface.
 */

#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/usb/pd.h>
#include <linux/usb/tcpm.h>
#include <linux/usb/typec.h>

#include "tcpci.h"

#define PD_RETRY_COUNT 3

struct tcpci {
	struct device *dev;

	struct tcpm_port *port;

	struct regmap *regmap;

	bool controls_vbus;

	struct tcpc_dev tcpc;
	struct tcpci_data *data;
};

struct tcpci_chip {
	struct tcpci *tcpci;
	struct tcpci_data data;
};

static inline struct tcpci *tcpc_to_tcpci(struct tcpc_dev *tcpc)
{
	return container_of(tcpc, struct tcpci, tcpc);
}

static int tcpci_read16(struct tcpci *tcpci, unsigned int reg, u16 *val)
{
	return regmap_raw_read(tcpci->regmap, reg, val, sizeof(u16));
}

static int tcpci_write16(struct tcpci *tcpci, unsigned int reg, u16 val)
{
	return regmap_raw_write(tcpci->regmap, reg, &val, sizeof(u16));
}

static int tcpci_set_cc(struct tcpc_dev *tcpc, enum typec_cc_status cc)
{
	struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
	unsigned int reg;
	int ret;

	switch (cc) {
	case TYPEC_CC_RA:
		reg = (TCPC_ROLE_CTRL_CC_RA << TCPC_ROLE_CTRL_CC1_SHIFT) |
			(TCPC_ROLE_CTRL_CC_RA << TCPC_ROLE_CTRL_CC2_SHIFT);
		break;
	case TYPEC_CC_RD:
		reg = (TCPC_ROLE_CTRL_CC_RD << TCPC_ROLE_CTRL_CC1_SHIFT) |
			(TCPC_ROLE_CTRL_CC_RD << TCPC_ROLE_CTRL_CC2_SHIFT);
		break;
	case TYPEC_CC_RP_DEF:
		reg = (TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC1_SHIFT) |
			(TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC2_SHIFT) |
			(TCPC_ROLE_CTRL_RP_VAL_DEF <<
			 TCPC_ROLE_CTRL_RP_VAL_SHIFT);
		break;
	case TYPEC_CC_RP_1_5:
		reg = (TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC1_SHIFT) |
			(TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC2_SHIFT) |
			(TCPC_ROLE_CTRL_RP_VAL_1_5 <<
			 TCPC_ROLE_CTRL_RP_VAL_SHIFT);
		break;
	case TYPEC_CC_RP_3_0:
		reg = (TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC1_SHIFT) |
			(TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC2_SHIFT) |
			(TCPC_ROLE_CTRL_RP_VAL_3_0 <<
			 TCPC_ROLE_CTRL_RP_VAL_SHIFT);
		break;
	case TYPEC_CC_OPEN:
	default:
		reg = (TCPC_ROLE_CTRL_CC_OPEN << TCPC_ROLE_CTRL_CC1_SHIFT) |
			(TCPC_ROLE_CTRL_CC_OPEN << TCPC_ROLE_CTRL_CC2_SHIFT);
		break;
	}

	ret = regmap_write(tcpci->regmap, TCPC_ROLE_CTRL, reg);
	if (ret < 0)
		return ret;

	return 0;
}

static int tcpci_start_toggling(struct tcpc_dev *tcpc,
				enum typec_port_type port_type,
				enum typec_cc_status cc)
{
	int ret;
	struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
	unsigned int reg = TCPC_ROLE_CTRL_DRP;

	if (port_type != TYPEC_PORT_DRP)
		return -EOPNOTSUPP;

	/* Handle vendor drp toggling */
	if (tcpci->data->start_drp_toggling) {
		ret = tcpci->data->start_drp_toggling(tcpci, tcpci->data, cc);
		if (ret < 0)
			return ret;
	}

	switch (cc) {
	default:
	case TYPEC_CC_RP_DEF:
		reg |= (TCPC_ROLE_CTRL_RP_VAL_DEF <<
			TCPC_ROLE_CTRL_RP_VAL_SHIFT);
		break;
	case TYPEC_CC_RP_1_5:
		reg |= (TCPC_ROLE_CTRL_RP_VAL_1_5 <<
			TCPC_ROLE_CTRL_RP_VAL_SHIFT);
		break;
	case TYPEC_CC_RP_3_0:
		reg |= (TCPC_ROLE_CTRL_RP_VAL_3_0 <<
			TCPC_ROLE_CTRL_RP_VAL_SHIFT);
		break;
	}

	if (cc == TYPEC_CC_RD)
		reg |= (TCPC_ROLE_CTRL_CC_RD << TCPC_ROLE_CTRL_CC1_SHIFT) |
			   (TCPC_ROLE_CTRL_CC_RD << TCPC_ROLE_CTRL_CC2_SHIFT);
	else
		reg |= (TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC1_SHIFT) |
			   (TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC2_SHIFT);
	ret = regmap_write(tcpci->regmap, TCPC_ROLE_CTRL, reg);
	if (ret < 0)
		return ret;
	return regmap_write(tcpci->regmap, TCPC_COMMAND,
			    TCPC_CMD_LOOK4CONNECTION);
}

static enum typec_cc_status tcpci_to_typec_cc(unsigned int cc, bool sink)
{
	switch (cc) {
	case 0x1:
		return sink ? TYPEC_CC_RP_DEF : TYPEC_CC_RA;
	case 0x2:
		return sink ? TYPEC_CC_RP_1_5 : TYPEC_CC_RD;
	case 0x3:
		if (sink)
			return TYPEC_CC_RP_3_0;
		/* fall through */
	case 0x0:
	default:
		return TYPEC_CC_OPEN;
	}
}

static int tcpci_get_cc(struct tcpc_dev *tcpc,
			enum typec_cc_status *cc1, enum typec_cc_status *cc2)
{
	struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
	unsigned int reg;
	int ret;

	ret = regmap_read(tcpci->regmap, TCPC_CC_STATUS, &reg);
	if (ret < 0)
		return ret;

	*cc1 = tcpci_to_typec_cc((reg >> TCPC_CC_STATUS_CC1_SHIFT) &
				 TCPC_CC_STATUS_CC1_MASK,
				 reg & TCPC_CC_STATUS_TERM);
	*cc2 = tcpci_to_typec_cc((reg >> TCPC_CC_STATUS_CC2_SHIFT) &
				 TCPC_CC_STATUS_CC2_MASK,
				 reg & TCPC_CC_STATUS_TERM);

	return 0;
}

static int tcpci_set_polarity(struct tcpc_dev *tcpc,
			      enum typec_cc_polarity polarity)
{
	struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
	unsigned int reg;
	int ret;

	/* Keep the disconnect cc line open */
	ret = regmap_read(tcpci->regmap, TCPC_ROLE_CTRL, &reg);
	if (ret < 0)
		return ret;

	if (polarity == TYPEC_POLARITY_CC2)
		reg |= TCPC_ROLE_CTRL_CC_OPEN << TCPC_ROLE_CTRL_CC1_SHIFT;
	else
		reg |= TCPC_ROLE_CTRL_CC_OPEN << TCPC_ROLE_CTRL_CC2_SHIFT;
	ret = regmap_write(tcpci->regmap, TCPC_ROLE_CTRL, reg);
	if (ret < 0)
		return ret;

	return regmap_write(tcpci->regmap, TCPC_TCPC_CTRL,
			   (polarity == TYPEC_POLARITY_CC2) ?
			   TCPC_TCPC_CTRL_ORIENTATION : 0);
}

static int tcpci_set_vconn(struct tcpc_dev *tcpc, bool enable)
{
	struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
	int ret;

	/* Handle vendor set vconn */
	if (tcpci->data->set_vconn) {
		ret = tcpci->data->set_vconn(tcpci, tcpci->data, enable);
		if (ret < 0)
			return ret;
	}

	return regmap_update_bits(tcpci->regmap, TCPC_POWER_CTRL,
				TCPC_POWER_CTRL_VCONN_ENABLE,
				enable ? TCPC_POWER_CTRL_VCONN_ENABLE : 0);
}

static int tcpci_set_roles(struct tcpc_dev *tcpc, bool attached,
			   enum typec_role role, enum typec_data_role data)
{
	struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
	unsigned int reg;
	int ret;

	reg = PD_REV20 << TCPC_MSG_HDR_INFO_REV_SHIFT;
	if (role == TYPEC_SOURCE)
		reg |= TCPC_MSG_HDR_INFO_PWR_ROLE;
	if (data == TYPEC_HOST)
		reg |= TCPC_MSG_HDR_INFO_DATA_ROLE;
	ret = regmap_write(tcpci->regmap, TCPC_MSG_HDR_INFO, reg);
	if (ret < 0)
		return ret;

	return 0;
}

static int tcpci_set_pd_rx(struct tcpc_dev *tcpc, bool enable)
{
	struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
	unsigned int reg = 0;
	int ret;

	if (enable)
		reg = TCPC_RX_DETECT_SOP | TCPC_RX_DETECT_HARD_RESET;
	ret = regmap_write(tcpci->regmap, TCPC_RX_DETECT, reg);
	if (ret < 0)
		return ret;

	return 0;
}

static int tcpci_get_vbus(struct tcpc_dev *tcpc)
{
	struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
	unsigned int reg;
	int ret;

	ret = regmap_read(tcpci->regmap, TCPC_POWER_STATUS, &reg);
	if (ret < 0)
		return ret;

	return !!(reg & TCPC_POWER_STATUS_VBUS_PRES);
}

static int tcpci_set_vbus(struct tcpc_dev *tcpc, bool source, bool sink)
{
	struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
	int ret;

	/* Disable both source and sink first before enabling anything */

	if (!source) {
		ret = regmap_write(tcpci->regmap, TCPC_COMMAND,
				   TCPC_CMD_DISABLE_SRC_VBUS);
		if (ret < 0)
			return ret;
	}

	if (!sink) {
		ret = regmap_write(tcpci->regmap, TCPC_COMMAND,
				   TCPC_CMD_DISABLE_SINK_VBUS);
		if (ret < 0)
			return ret;
	}

	if (source) {
		ret = regmap_write(tcpci->regmap, TCPC_COMMAND,
				   TCPC_CMD_SRC_VBUS_DEFAULT);
		if (ret < 0)
			return ret;
	}

	if (sink) {
		ret = regmap_write(tcpci->regmap, TCPC_COMMAND,
				   TCPC_CMD_SINK_VBUS);
		if (ret < 0)
			return ret;
	}

	return 0;
}

static int tcpci_pd_transmit(struct tcpc_dev *tcpc,
			     enum tcpm_transmit_type type,
			     const struct pd_message *msg)
{
	struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
	u16 header = msg ? le16_to_cpu(msg->header) : 0;
	unsigned int reg, cnt;
	int ret;

	cnt = msg ? pd_header_cnt(header) * 4 : 0;
	ret = regmap_write(tcpci->regmap, TCPC_TX_BYTE_CNT, cnt + 2);
	if (ret < 0)
		return ret;

	ret = tcpci_write16(tcpci, TCPC_TX_HDR, header);
	if (ret < 0)
		return ret;

	if (cnt > 0) {
		ret = regmap_raw_write(tcpci->regmap, TCPC_TX_DATA,
				       &msg->payload, cnt);
		if (ret < 0)
			return ret;
	}

	reg = (PD_RETRY_COUNT << TCPC_TRANSMIT_RETRY_SHIFT) |
		(type << TCPC_TRANSMIT_TYPE_SHIFT);
	ret = regmap_write(tcpci->regmap, TCPC_TRANSMIT, reg);
	if (ret < 0)
		return ret;

	return 0;
}

static int tcpci_init(struct tcpc_dev *tcpc)
{
	struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
	unsigned long timeout = jiffies + msecs_to_jiffies(2000); /* XXX */
	unsigned int reg;
	int ret;

	while (time_before_eq(jiffies, timeout)) {
		ret = regmap_read(tcpci->regmap, TCPC_POWER_STATUS, &reg);
		if (ret < 0)
			return ret;
		if (!(reg & TCPC_POWER_STATUS_UNINIT))
			break;
		usleep_range(10000, 20000);
	}
	if (time_after(jiffies, timeout))
		return -ETIMEDOUT;

	/* Handle vendor init */
	if (tcpci->data->init) {
		ret = tcpci->data->init(tcpci, tcpci->data);
		if (ret < 0)
			return ret;
	}

	/* Clear all events */
	ret = tcpci_write16(tcpci, TCPC_ALERT, 0xffff);
	if (ret < 0)
		return ret;

	if (tcpci->controls_vbus)
		reg = TCPC_POWER_STATUS_VBUS_PRES;
	else
		reg = 0;
	ret = regmap_write(tcpci->regmap, TCPC_POWER_STATUS_MASK, reg);
	if (ret < 0)
		return ret;

	/* Enable Vbus detection */
	ret = regmap_write(tcpci->regmap, TCPC_COMMAND,
			   TCPC_CMD_ENABLE_VBUS_DETECT);
	if (ret < 0)
		return ret;

	reg = TCPC_ALERT_TX_SUCCESS | TCPC_ALERT_TX_FAILED |
		TCPC_ALERT_TX_DISCARDED | TCPC_ALERT_RX_STATUS |
		TCPC_ALERT_RX_HARD_RST | TCPC_ALERT_CC_STATUS;
	if (tcpci->controls_vbus)
		reg |= TCPC_ALERT_POWER_STATUS;
	return tcpci_write16(tcpci, TCPC_ALERT_MASK, reg);
}

irqreturn_t tcpci_irq(struct tcpci *tcpci)
{
	u16 status;

	tcpci_read16(tcpci, TCPC_ALERT, &status);

	/*
	 * Clear alert status for everything except RX_STATUS, which shouldn't
	 * be cleared until we have successfully retrieved message.
	 */
	if (status & ~TCPC_ALERT_RX_STATUS)
		tcpci_write16(tcpci, TCPC_ALERT,
			      status & ~TCPC_ALERT_RX_STATUS);

	if (status & TCPC_ALERT_CC_STATUS)
		tcpm_cc_change(tcpci->port);

	if (status & TCPC_ALERT_POWER_STATUS) {
		unsigned int reg;

		regmap_read(tcpci->regmap, TCPC_POWER_STATUS_MASK, &reg);

		/*
		 * If power status mask has been reset, then the TCPC
		 * has reset.
		 */
		if (reg == 0xff)
			tcpm_tcpc_reset(tcpci->port);
		else
			tcpm_vbus_change(tcpci->port);
	}

	if (status & TCPC_ALERT_RX_STATUS) {
		struct pd_message msg;
		unsigned int cnt, payload_cnt;
		u16 header;

		regmap_read(tcpci->regmap, TCPC_RX_BYTE_CNT, &cnt);
		/*
		 * 'cnt' corresponds to READABLE_BYTE_COUNT in section 4.4.14
		 * of the TCPCI spec [Rev 2.0 Ver 1.0 October 2017] and is
		 * defined in table 4-36 as one greater than the number of
		 * bytes received. And that number includes the header. So:
		 */
		if (cnt > 3)
			payload_cnt = cnt - (1 + sizeof(msg.header));
		else
			payload_cnt = 0;

		tcpci_read16(tcpci, TCPC_RX_HDR, &header);
		msg.header = cpu_to_le16(header);

		if (WARN_ON(payload_cnt > sizeof(msg.payload)))
			payload_cnt = sizeof(msg.payload);

		if (payload_cnt > 0)
			regmap_raw_read(tcpci->regmap, TCPC_RX_DATA,
					&msg.payload, payload_cnt);

		/* Read complete, clear RX status alert bit */
		tcpci_write16(tcpci, TCPC_ALERT, TCPC_ALERT_RX_STATUS);

		tcpm_pd_receive(tcpci->port, &msg);
	}

	if (status & TCPC_ALERT_RX_HARD_RST)
		tcpm_pd_hard_reset(tcpci->port);

	if (status & TCPC_ALERT_TX_SUCCESS)
		tcpm_pd_transmit_complete(tcpci->port, TCPC_TX_SUCCESS);
	else if (status & TCPC_ALERT_TX_DISCARDED)
		tcpm_pd_transmit_complete(tcpci->port, TCPC_TX_DISCARDED);
	else if (status & TCPC_ALERT_TX_FAILED)
		tcpm_pd_transmit_complete(tcpci->port, TCPC_TX_FAILED);

	return IRQ_HANDLED;
}
EXPORT_SYMBOL_GPL(tcpci_irq);

static irqreturn_t _tcpci_irq(int irq, void *dev_id)
{
	struct tcpci_chip *chip = dev_id;

	return tcpci_irq(chip->tcpci);
}

static const struct regmap_config tcpci_regmap_config = {
	.reg_bits = 8,
	.val_bits = 8,

	.max_register = 0x7F, /* 0x80 .. 0xFF are vendor defined */
};

static int tcpci_parse_config(struct tcpci *tcpci)
{
	tcpci->controls_vbus = true; /* XXX */

	tcpci->tcpc.fwnode = device_get_named_child_node(tcpci->dev,
							 "connector");
	if (!tcpci->tcpc.fwnode) {
		dev_err(tcpci->dev, "Can't find connector node.\n");
		return -EINVAL;
	}

	return 0;
}

struct tcpci *tcpci_register_port(struct device *dev, struct tcpci_data *data)
{
	struct tcpci *tcpci;
	int err;

	tcpci = devm_kzalloc(dev, sizeof(*tcpci), GFP_KERNEL);
	if (!tcpci)
		return ERR_PTR(-ENOMEM);

	tcpci->dev = dev;
	tcpci->data = data;
	tcpci->regmap = data->regmap;

	tcpci->tcpc.init = tcpci_init;
	tcpci->tcpc.get_vbus = tcpci_get_vbus;
	tcpci->tcpc.set_vbus = tcpci_set_vbus;
	tcpci->tcpc.set_cc = tcpci_set_cc;
	tcpci->tcpc.get_cc = tcpci_get_cc;
	tcpci->tcpc.set_polarity = tcpci_set_polarity;
	tcpci->tcpc.set_vconn = tcpci_set_vconn;
	tcpci->tcpc.start_toggling = tcpci_start_toggling;

	tcpci->tcpc.set_pd_rx = tcpci_set_pd_rx;
	tcpci->tcpc.set_roles = tcpci_set_roles;
	tcpci->tcpc.pd_transmit = tcpci_pd_transmit;

	err = tcpci_parse_config(tcpci);
	if (err < 0)
		return ERR_PTR(err);

	tcpci->port = tcpm_register_port(tcpci->dev, &tcpci->tcpc);
	if (IS_ERR(tcpci->port))
		return ERR_CAST(tcpci->port);

	return tcpci;
}
EXPORT_SYMBOL_GPL(tcpci_register_port);

void tcpci_unregister_port(struct tcpci *tcpci)
{
	tcpm_unregister_port(tcpci->port);
}
EXPORT_SYMBOL_GPL(tcpci_unregister_port);

static int tcpci_probe(struct i2c_client *client,
		       const struct i2c_device_id *i2c_id)
{
	struct tcpci_chip *chip;
	int err;
	u16 val = 0;

	chip = devm_kzalloc(&client->dev, sizeof(*chip), GFP_KERNEL);
	if (!chip)
		return -ENOMEM;

	chip->data.regmap = devm_regmap_init_i2c(client, &tcpci_regmap_config);
	if (IS_ERR(chip->data.regmap))
		return PTR_ERR(chip->data.regmap);

	i2c_set_clientdata(client, chip);

	/* Disable chip interrupts before requesting irq */
	err = regmap_raw_write(chip->data.regmap, TCPC_ALERT_MASK, &val,
			       sizeof(u16));
	if (err < 0)
		return err;

	chip->tcpci = tcpci_register_port(&client->dev, &chip->data);
	if (IS_ERR(chip->tcpci))
		return PTR_ERR(chip->tcpci);

	err = devm_request_threaded_irq(&client->dev, client->irq, NULL,
					_tcpci_irq,
					IRQF_ONESHOT | IRQF_TRIGGER_LOW,
					dev_name(&client->dev), chip);
	if (err < 0) {
		tcpci_unregister_port(chip->tcpci);
		return err;
	}

	return 0;
}

static int tcpci_remove(struct i2c_client *client)
{
	struct tcpci_chip *chip = i2c_get_clientdata(client);
	int err;

	/* Disable chip interrupts before unregistering port */
	err = tcpci_write16(chip->tcpci, TCPC_ALERT_MASK, 0);
	if (err < 0)
		return err;

	tcpci_unregister_port(chip->tcpci);

	return 0;
}

static const struct i2c_device_id tcpci_id[] = {
	{ "tcpci", 0 },
	{ }
};
MODULE_DEVICE_TABLE(i2c, tcpci_id);

#ifdef CONFIG_OF
static const struct of_device_id tcpci_of_match[] = {
	{ .compatible = "nxp,ptn5110", },
	{},
};
MODULE_DEVICE_TABLE(of, tcpci_of_match);
#endif

static struct i2c_driver tcpci_i2c_driver = {
	.driver = {
		.name = "tcpci",
		.of_match_table = of_match_ptr(tcpci_of_match),
	},
	.probe = tcpci_probe,
	.remove = tcpci_remove,
	.id_table = tcpci_id,
};
module_i2c_driver(tcpci_i2c_driver);

MODULE_DESCRIPTION("USB Type-C Port Controller Interface driver");
MODULE_LICENSE("GPL");