Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2014-2019 Intel Corporation
 */

#include "gt/intel_gt.h"
#include "gt/intel_gt_irq.h"
#include "gt/intel_gt_pm_irq.h"
#include "intel_guc.h"
#include "intel_guc_ads.h"
#include "intel_guc_submission.h"
#include "i915_drv.h"

/**
 * DOC: GuC
 *
 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
 * designed to offload some of the functionality usually performed by the host
 * driver; currently the main operations it can take care of are:
 *
 * - Authentication of the HuC, which is required to fully enable HuC usage.
 * - Low latency graphics context scheduling (a.k.a. GuC submission).
 * - GT Power management.
 *
 * The enable_guc module parameter can be used to select which of those
 * operations to enable within GuC. Note that not all the operations are
 * supported on all gen9+ platforms.
 *
 * Enabling the GuC is not mandatory and therefore the firmware is only loaded
 * if at least one of the operations is selected. However, not loading the GuC
 * might result in the loss of some features that do require the GuC (currently
 * just the HuC, but more are expected to land in the future).
 */

static void gen8_guc_raise_irq(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);

	intel_uncore_write(gt->uncore, GUC_SEND_INTERRUPT, GUC_SEND_TRIGGER);
}

static void gen11_guc_raise_irq(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);

	intel_uncore_write(gt->uncore, GEN11_GUC_HOST_INTERRUPT, 0);
}

static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
{
	GEM_BUG_ON(!guc->send_regs.base);
	GEM_BUG_ON(!guc->send_regs.count);
	GEM_BUG_ON(i >= guc->send_regs.count);

	return _MMIO(guc->send_regs.base + 4 * i);
}

void intel_guc_init_send_regs(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);
	enum forcewake_domains fw_domains = 0;
	unsigned int i;

	if (INTEL_GEN(gt->i915) >= 11) {
		guc->send_regs.base =
				i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
		guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
	} else {
		guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
		guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
		BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
	}

	for (i = 0; i < guc->send_regs.count; i++) {
		fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
					guc_send_reg(guc, i),
					FW_REG_READ | FW_REG_WRITE);
	}
	guc->send_regs.fw_domains = fw_domains;
}

static void gen9_reset_guc_interrupts(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);

	assert_rpm_wakelock_held(&gt->i915->runtime_pm);

	spin_lock_irq(&gt->irq_lock);
	gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
	spin_unlock_irq(&gt->irq_lock);
}

static void gen9_enable_guc_interrupts(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);

	assert_rpm_wakelock_held(&gt->i915->runtime_pm);

	spin_lock_irq(&gt->irq_lock);
	if (!guc->interrupts.enabled) {
		WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
			     gt->pm_guc_events);
		guc->interrupts.enabled = true;
		gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
	}
	spin_unlock_irq(&gt->irq_lock);
}

static void gen9_disable_guc_interrupts(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);

	assert_rpm_wakelock_held(&gt->i915->runtime_pm);

	spin_lock_irq(&gt->irq_lock);
	guc->interrupts.enabled = false;

	gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);

	spin_unlock_irq(&gt->irq_lock);
	intel_synchronize_irq(gt->i915);

	gen9_reset_guc_interrupts(guc);
}

static void gen11_reset_guc_interrupts(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);

	spin_lock_irq(&gt->irq_lock);
	gen11_gt_reset_one_iir(gt, 0, GEN11_GUC);
	spin_unlock_irq(&gt->irq_lock);
}

static void gen11_enable_guc_interrupts(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);

	spin_lock_irq(&gt->irq_lock);
	if (!guc->interrupts.enabled) {
		u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);

		WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC));
		intel_uncore_write(gt->uncore,
				   GEN11_GUC_SG_INTR_ENABLE, events);
		intel_uncore_write(gt->uncore,
				   GEN11_GUC_SG_INTR_MASK, ~events);
		guc->interrupts.enabled = true;
	}
	spin_unlock_irq(&gt->irq_lock);
}

static void gen11_disable_guc_interrupts(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);

	spin_lock_irq(&gt->irq_lock);
	guc->interrupts.enabled = false;

	intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0);
	intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0);

	spin_unlock_irq(&gt->irq_lock);
	intel_synchronize_irq(gt->i915);

	gen11_reset_guc_interrupts(guc);
}

void intel_guc_init_early(struct intel_guc *guc)
{
	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;

	intel_guc_fw_init_early(guc);
	intel_guc_ct_init_early(&guc->ct);
	intel_guc_log_init_early(&guc->log);
	intel_guc_submission_init_early(guc);

	mutex_init(&guc->send_mutex);
	spin_lock_init(&guc->irq_lock);
	guc->send = intel_guc_send_nop;
	guc->handler = intel_guc_to_host_event_handler_nop;
	if (INTEL_GEN(i915) >= 11) {
		guc->notify = gen11_guc_raise_irq;
		guc->interrupts.reset = gen11_reset_guc_interrupts;
		guc->interrupts.enable = gen11_enable_guc_interrupts;
		guc->interrupts.disable = gen11_disable_guc_interrupts;
	} else {
		guc->notify = gen8_guc_raise_irq;
		guc->interrupts.reset = gen9_reset_guc_interrupts;
		guc->interrupts.enable = gen9_enable_guc_interrupts;
		guc->interrupts.disable = gen9_disable_guc_interrupts;
	}
}

static u32 guc_ctl_debug_flags(struct intel_guc *guc)
{
	u32 level = intel_guc_log_get_level(&guc->log);
	u32 flags = 0;

	if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
		flags |= GUC_LOG_DISABLED;
	else
		flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
			 GUC_LOG_VERBOSITY_SHIFT;

	return flags;
}

static u32 guc_ctl_feature_flags(struct intel_guc *guc)
{
	u32 flags = 0;

	if (!intel_guc_is_submission_supported(guc))
		flags |= GUC_CTL_DISABLE_SCHEDULER;

	return flags;
}

static u32 guc_ctl_ctxinfo_flags(struct intel_guc *guc)
{
	u32 flags = 0;

	if (intel_guc_is_submission_supported(guc)) {
		u32 ctxnum, base;

		base = intel_guc_ggtt_offset(guc, guc->stage_desc_pool);
		ctxnum = GUC_MAX_STAGE_DESCRIPTORS / 16;

		base >>= PAGE_SHIFT;
		flags |= (base << GUC_CTL_BASE_ADDR_SHIFT) |
			(ctxnum << GUC_CTL_CTXNUM_IN16_SHIFT);
	}
	return flags;
}

static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
{
	u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT;
	u32 flags;

	#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
	#define UNIT SZ_1M
	#define FLAG GUC_LOG_ALLOC_IN_MEGABYTE
	#else
	#define UNIT SZ_4K
	#define FLAG 0
	#endif

	BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
	BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT));
	BUILD_BUG_ON(!DPC_BUFFER_SIZE);
	BUILD_BUG_ON(!IS_ALIGNED(DPC_BUFFER_SIZE, UNIT));
	BUILD_BUG_ON(!ISR_BUFFER_SIZE);
	BUILD_BUG_ON(!IS_ALIGNED(ISR_BUFFER_SIZE, UNIT));

	BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) >
			(GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
	BUILD_BUG_ON((DPC_BUFFER_SIZE / UNIT - 1) >
			(GUC_LOG_DPC_MASK >> GUC_LOG_DPC_SHIFT));
	BUILD_BUG_ON((ISR_BUFFER_SIZE / UNIT - 1) >
			(GUC_LOG_ISR_MASK >> GUC_LOG_ISR_SHIFT));

	flags = GUC_LOG_VALID |
		GUC_LOG_NOTIFY_ON_HALF_FULL |
		FLAG |
		((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
		((DPC_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DPC_SHIFT) |
		((ISR_BUFFER_SIZE / UNIT - 1) << GUC_LOG_ISR_SHIFT) |
		(offset << GUC_LOG_BUF_ADDR_SHIFT);

	#undef UNIT
	#undef FLAG

	return flags;
}

static u32 guc_ctl_ads_flags(struct intel_guc *guc)
{
	u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
	u32 flags = ads << GUC_ADS_ADDR_SHIFT;

	return flags;
}

/*
 * Initialise the GuC parameter block before starting the firmware
 * transfer. These parameters are read by the firmware on startup
 * and cannot be changed thereafter.
 */
static void guc_init_params(struct intel_guc *guc)
{
	u32 *params = guc->params;
	int i;

	BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));

	params[GUC_CTL_CTXINFO] = guc_ctl_ctxinfo_flags(guc);
	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
	params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);

	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
		DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]);
}

/*
 * Initialise the GuC parameter block before starting the firmware
 * transfer. These parameters are read by the firmware on startup
 * and cannot be changed thereafter.
 */
void intel_guc_write_params(struct intel_guc *guc)
{
	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
	int i;

	/*
	 * All SOFT_SCRATCH registers are in FORCEWAKE_BLITTER domain and
	 * they are power context saved so it's ok to release forcewake
	 * when we are done here and take it again at xfer time.
	 */
	intel_uncore_forcewake_get(uncore, FORCEWAKE_BLITTER);

	intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);

	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
		intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);

	intel_uncore_forcewake_put(uncore, FORCEWAKE_BLITTER);
}

int intel_guc_init(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);
	int ret;

	ret = intel_uc_fw_init(&guc->fw);
	if (ret)
		goto err_fetch;

	ret = intel_guc_log_create(&guc->log);
	if (ret)
		goto err_fw;

	ret = intel_guc_ads_create(guc);
	if (ret)
		goto err_log;
	GEM_BUG_ON(!guc->ads_vma);

	ret = intel_guc_ct_init(&guc->ct);
	if (ret)
		goto err_ads;

	if (intel_guc_is_submission_supported(guc)) {
		/*
		 * This is stuff we need to have available at fw load time
		 * if we are planning to enable submission later
		 */
		ret = intel_guc_submission_init(guc);
		if (ret)
			goto err_ct;
	}

	/* now that everything is perma-pinned, initialize the parameters */
	guc_init_params(guc);

	/* We need to notify the guc whenever we change the GGTT */
	i915_ggtt_enable_guc(gt->ggtt);

	return 0;

err_ct:
	intel_guc_ct_fini(&guc->ct);
err_ads:
	intel_guc_ads_destroy(guc);
err_log:
	intel_guc_log_destroy(&guc->log);
err_fw:
	intel_uc_fw_fini(&guc->fw);
err_fetch:
	intel_uc_fw_cleanup_fetch(&guc->fw);
	DRM_DEV_DEBUG_DRIVER(gt->i915->drm.dev, "failed with %d\n", ret);
	return ret;
}

void intel_guc_fini(struct intel_guc *guc)
{
	struct intel_gt *gt = guc_to_gt(guc);

	if (!intel_uc_fw_is_available(&guc->fw))
		return;

	i915_ggtt_disable_guc(gt->ggtt);

	if (intel_guc_is_submission_supported(guc))
		intel_guc_submission_fini(guc);

	intel_guc_ct_fini(&guc->ct);

	intel_guc_ads_destroy(guc);
	intel_guc_log_destroy(&guc->log);
	intel_uc_fw_fini(&guc->fw);
	intel_uc_fw_cleanup_fetch(&guc->fw);
}

int intel_guc_send_nop(struct intel_guc *guc, const u32 *action, u32 len,
		       u32 *response_buf, u32 response_buf_size)
{
	WARN(1, "Unexpected send: action=%#x\n", *action);
	return -ENODEV;
}

void intel_guc_to_host_event_handler_nop(struct intel_guc *guc)
{
	WARN(1, "Unexpected event: no suitable handler\n");
}

/*
 * This function implements the MMIO based host to GuC interface.
 */
int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len,
			u32 *response_buf, u32 response_buf_size)
{
	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
	u32 status;
	int i;
	int ret;

	GEM_BUG_ON(!len);
	GEM_BUG_ON(len > guc->send_regs.count);

	/* We expect only action code */
	GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK);

	/* If CT is available, we expect to use MMIO only during init/fini */
	GEM_BUG_ON(*action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER &&
		   *action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER);

	mutex_lock(&guc->send_mutex);
	intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);

	for (i = 0; i < len; i++)
		intel_uncore_write(uncore, guc_send_reg(guc, i), action[i]);

	intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));

	intel_guc_notify(guc);

	/*
	 * No GuC command should ever take longer than 10ms.
	 * Fast commands should still complete in 10us.
	 */
	ret = __intel_wait_for_register_fw(uncore,
					   guc_send_reg(guc, 0),
					   INTEL_GUC_MSG_TYPE_MASK,
					   INTEL_GUC_MSG_TYPE_RESPONSE <<
					   INTEL_GUC_MSG_TYPE_SHIFT,
					   10, 10, &status);
	/* If GuC explicitly returned an error, convert it to -EIO */
	if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status))
		ret = -EIO;

	if (ret) {
		DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n",
			  action[0], ret, status);
		goto out;
	}

	if (response_buf) {
		int count = min(response_buf_size, guc->send_regs.count - 1);

		for (i = 0; i < count; i++)
			response_buf[i] = intel_uncore_read(uncore,
							    guc_send_reg(guc, i + 1));
	}

	/* Use data from the GuC response as our return value */
	ret = INTEL_GUC_MSG_TO_DATA(status);

out:
	intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
	mutex_unlock(&guc->send_mutex);

	return ret;
}

int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
				       const u32 *payload, u32 len)
{
	u32 msg;

	if (unlikely(!len))
		return -EPROTO;

	/* Make sure to handle only enabled messages */
	msg = payload[0] & guc->msg_enabled_mask;

	if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
		   INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED))
		intel_guc_log_handle_flush_event(&guc->log);

	return 0;
}

int intel_guc_sample_forcewake(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915;
	u32 action[2];

	action[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE;
	/* WaRsDisableCoarsePowerGating:skl,cnl */
	if (!HAS_RC6(dev_priv) || NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
		action[1] = 0;
	else
		/* bit 0 and 1 are for Render and Media domain separately */
		action[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA;

	return intel_guc_send(guc, action, ARRAY_SIZE(action));
}

/**
 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
 * @guc: intel_guc structure
 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
 *
 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
 * intel_huc_auth().
 *
 * Return:	non-zero code on error
 */
int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
{
	u32 action[] = {
		INTEL_GUC_ACTION_AUTHENTICATE_HUC,
		rsa_offset
	};

	return intel_guc_send(guc, action, ARRAY_SIZE(action));
}

/**
 * intel_guc_suspend() - notify GuC entering suspend state
 * @guc:	the guc
 */
int intel_guc_suspend(struct intel_guc *guc)
{
	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
	int ret;
	u32 status;
	u32 action[] = {
		INTEL_GUC_ACTION_ENTER_S_STATE,
		GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */
	};

	/*
	 * If GuC communication is enabled but submission is not supported,
	 * we do not need to suspend the GuC.
	 */
	if (!intel_guc_submission_is_enabled(guc))
		return 0;

	/*
	 * The ENTER_S_STATE action queues the save/restore operation in GuC FW
	 * and then returns, so waiting on the H2G is not enough to guarantee
	 * GuC is done. When all the processing is done, GuC writes
	 * INTEL_GUC_SLEEP_STATE_SUCCESS to scratch register 14, so we can poll
	 * on that. Note that GuC does not ensure that the value in the register
	 * is different from INTEL_GUC_SLEEP_STATE_SUCCESS while the action is
	 * in progress so we need to take care of that ourselves as well.
	 */

	intel_uncore_write(uncore, SOFT_SCRATCH(14),
			   INTEL_GUC_SLEEP_STATE_INVALID_MASK);

	ret = intel_guc_send(guc, action, ARRAY_SIZE(action));
	if (ret)
		return ret;

	ret = __intel_wait_for_register(uncore, SOFT_SCRATCH(14),
					INTEL_GUC_SLEEP_STATE_INVALID_MASK,
					0, 0, 10, &status);
	if (ret)
		return ret;

	if (status != INTEL_GUC_SLEEP_STATE_SUCCESS) {
		DRM_ERROR("GuC failed to change sleep state. "
			  "action=0x%x, err=%u\n",
			  action[0], status);
		return -EIO;
	}

	return 0;
}

/**
 * intel_guc_reset_engine() - ask GuC to reset an engine
 * @guc:	intel_guc structure
 * @engine:	engine to be reset
 */
int intel_guc_reset_engine(struct intel_guc *guc,
			   struct intel_engine_cs *engine)
{
	/* XXX: to be implemented with submission interface rework */

	return -ENODEV;
}

/**
 * intel_guc_resume() - notify GuC resuming from suspend state
 * @guc:	the guc
 */
int intel_guc_resume(struct intel_guc *guc)
{
	u32 action[] = {
		INTEL_GUC_ACTION_EXIT_S_STATE,
		GUC_POWER_D0,
	};

	/*
	 * If GuC communication is enabled but submission is not supported,
	 * we do not need to resume the GuC but we do need to enable the
	 * GuC communication on resume (above).
	 */
	if (!intel_guc_submission_is_enabled(guc))
		return 0;

	return intel_guc_send(guc, action, ARRAY_SIZE(action));
}

/**
 * DOC: GuC Memory Management
 *
 * GuC can't allocate any memory for its own usage, so all the allocations must
 * be handled by the host driver. GuC accesses the memory via the GGTT, with the
 * exception of the top and bottom parts of the 4GB address space, which are
 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
 * or other parts of the HW. The driver must take care not to place objects that
 * the GuC is going to access in these reserved ranges. The layout of the GuC
 * address space is shown below:
 *
 * ::
 *
 *     +===========> +====================+ <== FFFF_FFFF
 *     ^             |      Reserved      |
 *     |             +====================+ <== GUC_GGTT_TOP
 *     |             |                    |
 *     |             |        DRAM        |
 *    GuC            |                    |
 *  Address    +===> +====================+ <== GuC ggtt_pin_bias
 *   Space     ^     |                    |
 *     |       |     |                    |
 *     |      GuC    |        GuC         |
 *     |     WOPCM   |       WOPCM        |
 *     |      Size   |                    |
 *     |       |     |                    |
 *     v       v     |                    |
 *     +=======+===> +====================+ <== 0000_0000
 *
 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
 */

/**
 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
 * @guc:	the guc
 * @size:	size of area to allocate (both virtual space and memory)
 *
 * This is a wrapper to create an object for use with the GuC. In order to
 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
 * both some backing storage and a range inside the Global GTT. We must pin
 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
 * range is reserved inside GuC.
 *
 * Return:	A i915_vma if successful, otherwise an ERR_PTR.
 */
struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
{
	struct intel_gt *gt = guc_to_gt(guc);
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	u64 flags;
	int ret;

	obj = i915_gem_object_create_shmem(gt->i915, size);
	if (IS_ERR(obj))
		return ERR_CAST(obj);

	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
	if (IS_ERR(vma))
		goto err;

	flags = PIN_GLOBAL | PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
	ret = i915_vma_pin(vma, 0, 0, flags);
	if (ret) {
		vma = ERR_PTR(ret);
		goto err;
	}

	return i915_vma_make_unshrinkable(vma);

err:
	i915_gem_object_put(obj);
	return vma;
}