Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright (C) 2017 Free Electrons
 * Copyright (C) 2017 NextThing Co
 *
 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
 */

#include <linux/sizes.h>
#include <linux/slab.h>

#include "internals.h"

#define NAND_HYNIX_CMD_SET_PARAMS	0x36
#define NAND_HYNIX_CMD_APPLY_PARAMS	0x16

#define NAND_HYNIX_1XNM_RR_REPEAT	8

/**
 * struct hynix_read_retry - read-retry data
 * @nregs: number of register to set when applying a new read-retry mode
 * @regs: register offsets (NAND chip dependent)
 * @values: array of values to set in registers. The array size is equal to
 *	    (nregs * nmodes)
 */
struct hynix_read_retry {
	int nregs;
	const u8 *regs;
	u8 values[0];
};

/**
 * struct hynix_nand - private Hynix NAND struct
 * @nand_technology: manufacturing process expressed in picometer
 * @read_retry: read-retry information
 */
struct hynix_nand {
	const struct hynix_read_retry *read_retry;
};

/**
 * struct hynix_read_retry_otp - structure describing how the read-retry OTP
 *				 area
 * @nregs: number of hynix private registers to set before reading the reading
 *	   the OTP area
 * @regs: registers that should be configured
 * @values: values that should be set in regs
 * @page: the address to pass to the READ_PAGE command. Depends on the NAND
 *	  chip
 * @size: size of the read-retry OTP section
 */
struct hynix_read_retry_otp {
	int nregs;
	const u8 *regs;
	const u8 *values;
	int page;
	int size;
};

static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip)
{
	u8 jedecid[5] = { };
	int ret;

	ret = nand_readid_op(chip, 0x40, jedecid, sizeof(jedecid));
	if (ret)
		return false;

	return !strncmp("JEDEC", jedecid, sizeof(jedecid));
}

static int hynix_nand_cmd_op(struct nand_chip *chip, u8 cmd)
{
	if (nand_has_exec_op(chip)) {
		struct nand_op_instr instrs[] = {
			NAND_OP_CMD(cmd, 0),
		};
		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);

		return nand_exec_op(chip, &op);
	}

	chip->legacy.cmdfunc(chip, cmd, -1, -1);

	return 0;
}

static int hynix_nand_reg_write_op(struct nand_chip *chip, u8 addr, u8 val)
{
	u16 column = ((u16)addr << 8) | addr;

	if (nand_has_exec_op(chip)) {
		struct nand_op_instr instrs[] = {
			NAND_OP_ADDR(1, &addr, 0),
			NAND_OP_8BIT_DATA_OUT(1, &val, 0),
		};
		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);

		return nand_exec_op(chip, &op);
	}

	chip->legacy.cmdfunc(chip, NAND_CMD_NONE, column, -1);
	chip->legacy.write_byte(chip, val);

	return 0;
}

static int hynix_nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
{
	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
	const u8 *values;
	int i, ret;

	values = hynix->read_retry->values +
		 (retry_mode * hynix->read_retry->nregs);

	/* Enter 'Set Hynix Parameters' mode */
	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
	if (ret)
		return ret;

	/*
	 * Configure the NAND in the requested read-retry mode.
	 * This is done by setting pre-defined values in internal NAND
	 * registers.
	 *
	 * The set of registers is NAND specific, and the values are either
	 * predefined or extracted from an OTP area on the NAND (values are
	 * probably tweaked at production in this case).
	 */
	for (i = 0; i < hynix->read_retry->nregs; i++) {
		ret = hynix_nand_reg_write_op(chip, hynix->read_retry->regs[i],
					      values[i]);
		if (ret)
			return ret;
	}

	/* Apply the new settings. */
	return hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
}

/**
 * hynix_get_majority - get the value that is occurring the most in a given
 *			set of values
 * @in: the array of values to test
 * @repeat: the size of the in array
 * @out: pointer used to store the output value
 *
 * This function implements the 'majority check' logic that is supposed to
 * overcome the unreliability of MLC NANDs when reading the OTP area storing
 * the read-retry parameters.
 *
 * It's based on a pretty simple assumption: if we repeat the same value
 * several times and then take the one that is occurring the most, we should
 * find the correct value.
 * Let's hope this dummy algorithm prevents us from losing the read-retry
 * parameters.
 */
static int hynix_get_majority(const u8 *in, int repeat, u8 *out)
{
	int i, j, half = repeat / 2;

	/*
	 * We only test the first half of the in array because we must ensure
	 * that the value is at least occurring repeat / 2 times.
	 *
	 * This loop is suboptimal since we may count the occurrences of the
	 * same value several time, but we are doing that on small sets, which
	 * makes it acceptable.
	 */
	for (i = 0; i < half; i++) {
		int cnt = 0;
		u8 val = in[i];

		/* Count all values that are matching the one at index i. */
		for (j = i + 1; j < repeat; j++) {
			if (in[j] == val)
				cnt++;
		}

		/* We found a value occurring more than repeat / 2. */
		if (cnt > half) {
			*out = val;
			return 0;
		}
	}

	return -EIO;
}

static int hynix_read_rr_otp(struct nand_chip *chip,
			     const struct hynix_read_retry_otp *info,
			     void *buf)
{
	int i, ret;

	ret = nand_reset_op(chip);
	if (ret)
		return ret;

	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
	if (ret)
		return ret;

	for (i = 0; i < info->nregs; i++) {
		ret = hynix_nand_reg_write_op(chip, info->regs[i],
					      info->values[i]);
		if (ret)
			return ret;
	}

	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
	if (ret)
		return ret;

	/* Sequence to enter OTP mode? */
	ret = hynix_nand_cmd_op(chip, 0x17);
	if (ret)
		return ret;

	ret = hynix_nand_cmd_op(chip, 0x4);
	if (ret)
		return ret;

	ret = hynix_nand_cmd_op(chip, 0x19);
	if (ret)
		return ret;

	/* Now read the page */
	ret = nand_read_page_op(chip, info->page, 0, buf, info->size);
	if (ret)
		return ret;

	/* Put everything back to normal */
	ret = nand_reset_op(chip);
	if (ret)
		return ret;

	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
	if (ret)
		return ret;

	ret = hynix_nand_reg_write_op(chip, 0x38, 0);
	if (ret)
		return ret;

	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
	if (ret)
		return ret;

	return nand_read_page_op(chip, 0, 0, NULL, 0);
}

#define NAND_HYNIX_1XNM_RR_COUNT_OFFS				0
#define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS			8
#define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv)		\
	(16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize)))

static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs,
				   int mode, int reg, bool inv, u8 *val)
{
	u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT];
	int val_offs = (mode * nregs) + reg;
	int set_size = nmodes * nregs;
	int i, ret;

	for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) {
		int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv);

		tmp[i] = buf[val_offs + set_offs];
	}

	ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val);
	if (ret)
		return ret;

	if (inv)
		*val = ~*val;

	return 0;
}

static u8 hynix_1xnm_mlc_read_retry_regs[] = {
	0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf
};

static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip,
				  const struct hynix_read_retry_otp *info)
{
	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
	struct hynix_read_retry *rr = NULL;
	int ret, i, j;
	u8 nregs, nmodes;
	u8 *buf;

	buf = kmalloc(info->size, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = hynix_read_rr_otp(chip, info, buf);
	if (ret)
		goto out;

	ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT,
				 &nmodes);
	if (ret)
		goto out;

	ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT,
				 NAND_HYNIX_1XNM_RR_REPEAT,
				 &nregs);
	if (ret)
		goto out;

	rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL);
	if (!rr) {
		ret = -ENOMEM;
		goto out;
	}

	for (i = 0; i < nmodes; i++) {
		for (j = 0; j < nregs; j++) {
			u8 *val = rr->values + (i * nregs);

			ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
						      false, val);
			if (!ret)
				continue;

			ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
						      true, val);
			if (ret)
				goto out;
		}
	}

	rr->nregs = nregs;
	rr->regs = hynix_1xnm_mlc_read_retry_regs;
	hynix->read_retry = rr;
	chip->setup_read_retry = hynix_nand_setup_read_retry;
	chip->read_retries = nmodes;

out:
	kfree(buf);

	if (ret)
		kfree(rr);

	return ret;
}

static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 };
static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 };

static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = {
	{
		.nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
		.regs = hynix_mlc_1xnm_rr_otp_regs,
		.values = hynix_mlc_1xnm_rr_otp_values,
		.page = 0x21f,
		.size = 784
	},
	{
		.nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
		.regs = hynix_mlc_1xnm_rr_otp_regs,
		.values = hynix_mlc_1xnm_rr_otp_values,
		.page = 0x200,
		.size = 528,
	},
};

static int hynix_nand_rr_init(struct nand_chip *chip)
{
	int i, ret = 0;
	bool valid_jedecid;

	valid_jedecid = hynix_nand_has_valid_jedecid(chip);

	/*
	 * We only support read-retry for 1xnm NANDs, and those NANDs all
	 * expose a valid JEDEC ID.
	 */
	if (valid_jedecid) {
		u8 nand_tech = chip->id.data[5] >> 4;

		/* 1xnm technology */
		if (nand_tech == 4) {
			for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps);
			     i++) {
				/*
				 * FIXME: Hynix recommend to copy the
				 * read-retry OTP area into a normal page.
				 */
				ret = hynix_mlc_1xnm_rr_init(chip,
						hynix_mlc_1xnm_rr_otps);
				if (!ret)
					break;
			}
		}
	}

	if (ret)
		pr_warn("failed to initialize read-retry infrastructure");

	return 0;
}

static void hynix_nand_extract_oobsize(struct nand_chip *chip,
				       bool valid_jedecid)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct nand_memory_organization *memorg;
	u8 oobsize;

	memorg = nanddev_get_memorg(&chip->base);

	oobsize = ((chip->id.data[3] >> 2) & 0x3) |
		  ((chip->id.data[3] >> 4) & 0x4);

	if (valid_jedecid) {
		switch (oobsize) {
		case 0:
			memorg->oobsize = 2048;
			break;
		case 1:
			memorg->oobsize = 1664;
			break;
		case 2:
			memorg->oobsize = 1024;
			break;
		case 3:
			memorg->oobsize = 640;
			break;
		default:
			/*
			 * We should never reach this case, but if that
			 * happens, this probably means Hynix decided to use
			 * a different extended ID format, and we should find
			 * a way to support it.
			 */
			WARN(1, "Invalid OOB size");
			break;
		}
	} else {
		switch (oobsize) {
		case 0:
			memorg->oobsize = 128;
			break;
		case 1:
			memorg->oobsize = 224;
			break;
		case 2:
			memorg->oobsize = 448;
			break;
		case 3:
			memorg->oobsize = 64;
			break;
		case 4:
			memorg->oobsize = 32;
			break;
		case 5:
			memorg->oobsize = 16;
			break;
		case 6:
			memorg->oobsize = 640;
			break;
		default:
			/*
			 * We should never reach this case, but if that
			 * happens, this probably means Hynix decided to use
			 * a different extended ID format, and we should find
			 * a way to support it.
			 */
			WARN(1, "Invalid OOB size");
			break;
		}

		/*
		 * The datasheet of H27UCG8T2BTR mentions that the "Redundant
		 * Area Size" is encoded "per 8KB" (page size). This chip uses
		 * a page size of 16KiB. The datasheet mentions an OOB size of
		 * 1.280 bytes, but the OOB size encoded in the ID bytes (using
		 * the existing logic above) is 640 bytes.
		 * Update the OOB size for this chip by taking the value
		 * determined above and scaling it to the actual page size (so
		 * the actual OOB size for this chip is: 640 * 16k / 8k).
		 */
		if (chip->id.data[1] == 0xde)
			memorg->oobsize *= memorg->pagesize / SZ_8K;
	}

	mtd->oobsize = memorg->oobsize;
}

static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip,
						bool valid_jedecid)
{
	u8 ecc_level = (chip->id.data[4] >> 4) & 0x7;

	if (valid_jedecid) {
		/* Reference: H27UCG8T2E datasheet */
		chip->base.eccreq.step_size = 1024;

		switch (ecc_level) {
		case 0:
			chip->base.eccreq.step_size = 0;
			chip->base.eccreq.strength = 0;
			break;
		case 1:
			chip->base.eccreq.strength = 4;
			break;
		case 2:
			chip->base.eccreq.strength = 24;
			break;
		case 3:
			chip->base.eccreq.strength = 32;
			break;
		case 4:
			chip->base.eccreq.strength = 40;
			break;
		case 5:
			chip->base.eccreq.strength = 50;
			break;
		case 6:
			chip->base.eccreq.strength = 60;
			break;
		default:
			/*
			 * We should never reach this case, but if that
			 * happens, this probably means Hynix decided to use
			 * a different extended ID format, and we should find
			 * a way to support it.
			 */
			WARN(1, "Invalid ECC requirements");
		}
	} else {
		/*
		 * The ECC requirements field meaning depends on the
		 * NAND technology.
		 */
		u8 nand_tech = chip->id.data[5] & 0x7;

		if (nand_tech < 3) {
			/* > 26nm, reference: H27UBG8T2A datasheet */
			if (ecc_level < 5) {
				chip->base.eccreq.step_size = 512;
				chip->base.eccreq.strength = 1 << ecc_level;
			} else if (ecc_level < 7) {
				if (ecc_level == 5)
					chip->base.eccreq.step_size = 2048;
				else
					chip->base.eccreq.step_size = 1024;
				chip->base.eccreq.strength = 24;
			} else {
				/*
				 * We should never reach this case, but if that
				 * happens, this probably means Hynix decided
				 * to use a different extended ID format, and
				 * we should find a way to support it.
				 */
				WARN(1, "Invalid ECC requirements");
			}
		} else {
			/* <= 26nm, reference: H27UBG8T2B datasheet */
			if (!ecc_level) {
				chip->base.eccreq.step_size = 0;
				chip->base.eccreq.strength = 0;
			} else if (ecc_level < 5) {
				chip->base.eccreq.step_size = 512;
				chip->base.eccreq.strength = 1 << (ecc_level - 1);
			} else {
				chip->base.eccreq.step_size = 1024;
				chip->base.eccreq.strength = 24 +
							(8 * (ecc_level - 5));
			}
		}
	}
}

static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip,
						       bool valid_jedecid)
{
	u8 nand_tech;

	/* We need scrambling on all TLC NANDs*/
	if (nanddev_bits_per_cell(&chip->base) > 2)
		chip->options |= NAND_NEED_SCRAMBLING;

	/* And on MLC NANDs with sub-3xnm process */
	if (valid_jedecid) {
		nand_tech = chip->id.data[5] >> 4;

		/* < 3xnm */
		if (nand_tech > 0)
			chip->options |= NAND_NEED_SCRAMBLING;
	} else {
		nand_tech = chip->id.data[5] & 0x7;

		/* < 32nm */
		if (nand_tech > 2)
			chip->options |= NAND_NEED_SCRAMBLING;
	}
}

static void hynix_nand_decode_id(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct nand_memory_organization *memorg;
	bool valid_jedecid;
	u8 tmp;

	memorg = nanddev_get_memorg(&chip->base);

	/*
	 * Exclude all SLC NANDs from this advanced detection scheme.
	 * According to the ranges defined in several datasheets, it might
	 * appear that even SLC NANDs could fall in this extended ID scheme.
	 * If that the case rework the test to let SLC NANDs go through the
	 * detection process.
	 */
	if (chip->id.len < 6 || nand_is_slc(chip)) {
		nand_decode_ext_id(chip);
		return;
	}

	/* Extract pagesize */
	memorg->pagesize = 2048 << (chip->id.data[3] & 0x03);
	mtd->writesize = memorg->pagesize;

	tmp = (chip->id.data[3] >> 4) & 0x3;
	/*
	 * When bit7 is set that means we start counting at 1MiB, otherwise
	 * we start counting at 128KiB and shift this value the content of
	 * ID[3][4:5].
	 * The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in
	 * this case the erasesize is set to 768KiB.
	 */
	if (chip->id.data[3] & 0x80) {
		memorg->pages_per_eraseblock = (SZ_1M << tmp) /
					       memorg->pagesize;
		mtd->erasesize = SZ_1M << tmp;
	} else if (tmp == 3) {
		memorg->pages_per_eraseblock = (SZ_512K + SZ_256K) /
					       memorg->pagesize;
		mtd->erasesize = SZ_512K + SZ_256K;
	} else {
		memorg->pages_per_eraseblock = (SZ_128K << tmp) /
					       memorg->pagesize;
		mtd->erasesize = SZ_128K << tmp;
	}

	/*
	 * Modern Toggle DDR NANDs have a valid JEDECID even though they are
	 * not exposing a valid JEDEC parameter table.
	 * These NANDs use a different NAND ID scheme.
	 */
	valid_jedecid = hynix_nand_has_valid_jedecid(chip);

	hynix_nand_extract_oobsize(chip, valid_jedecid);
	hynix_nand_extract_ecc_requirements(chip, valid_jedecid);
	hynix_nand_extract_scrambling_requirements(chip, valid_jedecid);
}

static void hynix_nand_cleanup(struct nand_chip *chip)
{
	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);

	if (!hynix)
		return;

	kfree(hynix->read_retry);
	kfree(hynix);
	nand_set_manufacturer_data(chip, NULL);
}

static int hynix_nand_init(struct nand_chip *chip)
{
	struct hynix_nand *hynix;
	int ret;

	if (!nand_is_slc(chip))
		chip->options |= NAND_BBM_LASTPAGE;
	else
		chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;

	hynix = kzalloc(sizeof(*hynix), GFP_KERNEL);
	if (!hynix)
		return -ENOMEM;

	nand_set_manufacturer_data(chip, hynix);

	ret = hynix_nand_rr_init(chip);
	if (ret)
		hynix_nand_cleanup(chip);

	return ret;
}

const struct nand_manufacturer_ops hynix_nand_manuf_ops = {
	.detect = hynix_nand_decode_id,
	.init = hynix_nand_init,
	.cleanup = hynix_nand_cleanup,
};