Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
// SPDX-License-Identifier: GPL-2.0-only
/*
 * MAX44000 Ambient and Infrared Proximity Sensor
 *
 * Copyright (c) 2016, Intel Corporation.
 *
 * Data sheet: https://datasheets.maximintegrated.com/en/ds/MAX44000.pdf
 *
 * 7-bit I2C slave address 0x4a
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/i2c.h>
#include <linux/regmap.h>
#include <linux/util_macros.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/acpi.h>

#define MAX44000_DRV_NAME		"max44000"

/* Registers in datasheet order */
#define MAX44000_REG_STATUS		0x00
#define MAX44000_REG_CFG_MAIN		0x01
#define MAX44000_REG_CFG_RX		0x02
#define MAX44000_REG_CFG_TX		0x03
#define MAX44000_REG_ALS_DATA_HI	0x04
#define MAX44000_REG_ALS_DATA_LO	0x05
#define MAX44000_REG_PRX_DATA		0x16
#define MAX44000_REG_ALS_UPTHR_HI	0x06
#define MAX44000_REG_ALS_UPTHR_LO	0x07
#define MAX44000_REG_ALS_LOTHR_HI	0x08
#define MAX44000_REG_ALS_LOTHR_LO	0x09
#define MAX44000_REG_PST		0x0a
#define MAX44000_REG_PRX_IND		0x0b
#define MAX44000_REG_PRX_THR		0x0c
#define MAX44000_REG_TRIM_GAIN_GREEN	0x0f
#define MAX44000_REG_TRIM_GAIN_IR	0x10

/* REG_CFG bits */
#define MAX44000_CFG_ALSINTE            0x01
#define MAX44000_CFG_PRXINTE            0x02
#define MAX44000_CFG_MASK               0x1c
#define MAX44000_CFG_MODE_SHUTDOWN      0x00
#define MAX44000_CFG_MODE_ALS_GIR       0x04
#define MAX44000_CFG_MODE_ALS_G         0x08
#define MAX44000_CFG_MODE_ALS_IR        0x0c
#define MAX44000_CFG_MODE_ALS_PRX       0x10
#define MAX44000_CFG_MODE_PRX           0x14
#define MAX44000_CFG_TRIM               0x20

/*
 * Upper 4 bits are not documented but start as 1 on powerup
 * Setting them to 0 causes proximity to misbehave so set them to 1
 */
#define MAX44000_REG_CFG_RX_DEFAULT 0xf0

/* REG_RX bits */
#define MAX44000_CFG_RX_ALSTIM_MASK	0x0c
#define MAX44000_CFG_RX_ALSTIM_SHIFT	2
#define MAX44000_CFG_RX_ALSPGA_MASK	0x03
#define MAX44000_CFG_RX_ALSPGA_SHIFT	0

/* REG_TX bits */
#define MAX44000_LED_CURRENT_MASK	0xf
#define MAX44000_LED_CURRENT_MAX	11
#define MAX44000_LED_CURRENT_DEFAULT	6

#define MAX44000_ALSDATA_OVERFLOW	0x4000

struct max44000_data {
	struct mutex lock;
	struct regmap *regmap;
};

/* Default scale is set to the minimum of 0.03125 or 1 / (1 << 5) lux */
#define MAX44000_ALS_TO_LUX_DEFAULT_FRACTION_LOG2 5

/* Scale can be multiplied by up to 128x via ALSPGA for measurement gain */
static const int max44000_alspga_shift[] = {0, 2, 4, 7};
#define MAX44000_ALSPGA_MAX_SHIFT 7

/*
 * Scale can be multiplied by up to 64x via ALSTIM because of lost resolution
 *
 * This scaling factor is hidden from userspace and instead accounted for when
 * reading raw values from the device.
 *
 * This makes it possible to cleanly expose ALSPGA as IIO_CHAN_INFO_SCALE and
 * ALSTIM as IIO_CHAN_INFO_INT_TIME without the values affecting each other.
 *
 * Handling this internally is also required for buffer support because the
 * channel's scan_type can't be modified dynamically.
 */
#define MAX44000_ALSTIM_SHIFT(alstim) (2 * (alstim))

/* Available integration times with pretty manual alignment: */
static const int max44000_int_time_avail_ns_array[] = {
	   100000000,
	    25000000,
	     6250000,
	     1562500,
};
static const char max44000_int_time_avail_str[] =
	"0.100 "
	"0.025 "
	"0.00625 "
	"0.0015625";

/* Available scales (internal to ulux) with pretty manual alignment: */
static const int max44000_scale_avail_ulux_array[] = {
	    31250,
	   125000,
	   500000,
	  4000000,
};
static const char max44000_scale_avail_str[] =
	"0.03125 "
	"0.125 "
	"0.5 "
	 "4";

#define MAX44000_SCAN_INDEX_ALS 0
#define MAX44000_SCAN_INDEX_PRX 1

static const struct iio_chan_spec max44000_channels[] = {
	{
		.type = IIO_LIGHT,
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
					    BIT(IIO_CHAN_INFO_INT_TIME),
		.scan_index = MAX44000_SCAN_INDEX_ALS,
		.scan_type = {
			.sign		= 'u',
			.realbits	= 14,
			.storagebits	= 16,
		}
	},
	{
		.type = IIO_PROXIMITY,
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
		.scan_index = MAX44000_SCAN_INDEX_PRX,
		.scan_type = {
			.sign		= 'u',
			.realbits	= 8,
			.storagebits	= 16,
		}
	},
	IIO_CHAN_SOFT_TIMESTAMP(2),
	{
		.type = IIO_CURRENT,
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
				      BIT(IIO_CHAN_INFO_SCALE),
		.extend_name = "led",
		.output = 1,
		.scan_index = -1,
	},
};

static int max44000_read_alstim(struct max44000_data *data)
{
	unsigned int val;
	int ret;

	ret = regmap_read(data->regmap, MAX44000_REG_CFG_RX, &val);
	if (ret < 0)
		return ret;
	return (val & MAX44000_CFG_RX_ALSTIM_MASK) >> MAX44000_CFG_RX_ALSTIM_SHIFT;
}

static int max44000_write_alstim(struct max44000_data *data, int val)
{
	return regmap_write_bits(data->regmap, MAX44000_REG_CFG_RX,
				 MAX44000_CFG_RX_ALSTIM_MASK,
				 val << MAX44000_CFG_RX_ALSTIM_SHIFT);
}

static int max44000_read_alspga(struct max44000_data *data)
{
	unsigned int val;
	int ret;

	ret = regmap_read(data->regmap, MAX44000_REG_CFG_RX, &val);
	if (ret < 0)
		return ret;
	return (val & MAX44000_CFG_RX_ALSPGA_MASK) >> MAX44000_CFG_RX_ALSPGA_SHIFT;
}

static int max44000_write_alspga(struct max44000_data *data, int val)
{
	return regmap_write_bits(data->regmap, MAX44000_REG_CFG_RX,
				 MAX44000_CFG_RX_ALSPGA_MASK,
				 val << MAX44000_CFG_RX_ALSPGA_SHIFT);
}

static int max44000_read_alsval(struct max44000_data *data)
{
	u16 regval;
	__be16 val;
	int alstim, ret;

	ret = regmap_bulk_read(data->regmap, MAX44000_REG_ALS_DATA_HI,
			       &val, sizeof(val));
	if (ret < 0)
		return ret;
	alstim = ret = max44000_read_alstim(data);
	if (ret < 0)
		return ret;

	regval = be16_to_cpu(val);

	/*
	 * Overflow is explained on datasheet page 17.
	 *
	 * It's a warning that either the G or IR channel has become saturated
	 * and that the value in the register is likely incorrect.
	 *
	 * The recommendation is to change the scale (ALSPGA).
	 * The driver just returns the max representable value.
	 */
	if (regval & MAX44000_ALSDATA_OVERFLOW)
		return 0x3FFF;

	return regval << MAX44000_ALSTIM_SHIFT(alstim);
}

static int max44000_write_led_current_raw(struct max44000_data *data, int val)
{
	/* Maybe we should clamp the value instead? */
	if (val < 0 || val > MAX44000_LED_CURRENT_MAX)
		return -ERANGE;
	if (val >= 8)
		val += 4;
	return regmap_write_bits(data->regmap, MAX44000_REG_CFG_TX,
				 MAX44000_LED_CURRENT_MASK, val);
}

static int max44000_read_led_current_raw(struct max44000_data *data)
{
	unsigned int regval;
	int ret;

	ret = regmap_read(data->regmap, MAX44000_REG_CFG_TX, &regval);
	if (ret < 0)
		return ret;
	regval &= MAX44000_LED_CURRENT_MASK;
	if (regval >= 8)
		regval -= 4;
	return regval;
}

static int max44000_read_raw(struct iio_dev *indio_dev,
			     struct iio_chan_spec const *chan,
			     int *val, int *val2, long mask)
{
	struct max44000_data *data = iio_priv(indio_dev);
	int alstim, alspga;
	unsigned int regval;
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		switch (chan->type) {
		case IIO_LIGHT:
			mutex_lock(&data->lock);
			ret = max44000_read_alsval(data);
			mutex_unlock(&data->lock);
			if (ret < 0)
				return ret;
			*val = ret;
			return IIO_VAL_INT;

		case IIO_PROXIMITY:
			mutex_lock(&data->lock);
			ret = regmap_read(data->regmap, MAX44000_REG_PRX_DATA, &regval);
			mutex_unlock(&data->lock);
			if (ret < 0)
				return ret;
			*val = regval;
			return IIO_VAL_INT;

		case IIO_CURRENT:
			mutex_lock(&data->lock);
			ret = max44000_read_led_current_raw(data);
			mutex_unlock(&data->lock);
			if (ret < 0)
				return ret;
			*val = ret;
			return IIO_VAL_INT;

		default:
			return -EINVAL;
		}

	case IIO_CHAN_INFO_SCALE:
		switch (chan->type) {
		case IIO_CURRENT:
			/* Output register is in 10s of miliamps */
			*val = 10;
			return IIO_VAL_INT;

		case IIO_LIGHT:
			mutex_lock(&data->lock);
			alspga = ret = max44000_read_alspga(data);
			mutex_unlock(&data->lock);
			if (ret < 0)
				return ret;

			/* Avoid negative shifts */
			*val = (1 << MAX44000_ALSPGA_MAX_SHIFT);
			*val2 = MAX44000_ALS_TO_LUX_DEFAULT_FRACTION_LOG2
					+ MAX44000_ALSPGA_MAX_SHIFT
					- max44000_alspga_shift[alspga];
			return IIO_VAL_FRACTIONAL_LOG2;

		default:
			return -EINVAL;
		}

	case IIO_CHAN_INFO_INT_TIME:
		mutex_lock(&data->lock);
		alstim = ret = max44000_read_alstim(data);
		mutex_unlock(&data->lock);

		if (ret < 0)
			return ret;
		*val = 0;
		*val2 = max44000_int_time_avail_ns_array[alstim];
		return IIO_VAL_INT_PLUS_NANO;

	default:
		return -EINVAL;
	}
}

static int max44000_write_raw(struct iio_dev *indio_dev,
			      struct iio_chan_spec const *chan,
			      int val, int val2, long mask)
{
	struct max44000_data *data = iio_priv(indio_dev);
	int ret;

	if (mask == IIO_CHAN_INFO_RAW && chan->type == IIO_CURRENT) {
		mutex_lock(&data->lock);
		ret = max44000_write_led_current_raw(data, val);
		mutex_unlock(&data->lock);
		return ret;
	} else if (mask == IIO_CHAN_INFO_INT_TIME && chan->type == IIO_LIGHT) {
		s64 valns = val * NSEC_PER_SEC + val2;
		int alstim = find_closest_descending(valns,
				max44000_int_time_avail_ns_array,
				ARRAY_SIZE(max44000_int_time_avail_ns_array));
		mutex_lock(&data->lock);
		ret = max44000_write_alstim(data, alstim);
		mutex_unlock(&data->lock);
		return ret;
	} else if (mask == IIO_CHAN_INFO_SCALE && chan->type == IIO_LIGHT) {
		s64 valus = val * USEC_PER_SEC + val2;
		int alspga = find_closest(valus,
				max44000_scale_avail_ulux_array,
				ARRAY_SIZE(max44000_scale_avail_ulux_array));
		mutex_lock(&data->lock);
		ret = max44000_write_alspga(data, alspga);
		mutex_unlock(&data->lock);
		return ret;
	}

	return -EINVAL;
}

static int max44000_write_raw_get_fmt(struct iio_dev *indio_dev,
				      struct iio_chan_spec const *chan,
				      long mask)
{
	if (mask == IIO_CHAN_INFO_INT_TIME && chan->type == IIO_LIGHT)
		return IIO_VAL_INT_PLUS_NANO;
	else if (mask == IIO_CHAN_INFO_SCALE && chan->type == IIO_LIGHT)
		return IIO_VAL_INT_PLUS_MICRO;
	else
		return IIO_VAL_INT;
}

static IIO_CONST_ATTR(illuminance_integration_time_available, max44000_int_time_avail_str);
static IIO_CONST_ATTR(illuminance_scale_available, max44000_scale_avail_str);

static struct attribute *max44000_attributes[] = {
	&iio_const_attr_illuminance_integration_time_available.dev_attr.attr,
	&iio_const_attr_illuminance_scale_available.dev_attr.attr,
	NULL
};

static const struct attribute_group max44000_attribute_group = {
	.attrs = max44000_attributes,
};

static const struct iio_info max44000_info = {
	.read_raw		= max44000_read_raw,
	.write_raw		= max44000_write_raw,
	.write_raw_get_fmt	= max44000_write_raw_get_fmt,
	.attrs			= &max44000_attribute_group,
};

static bool max44000_readable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case MAX44000_REG_STATUS:
	case MAX44000_REG_CFG_MAIN:
	case MAX44000_REG_CFG_RX:
	case MAX44000_REG_CFG_TX:
	case MAX44000_REG_ALS_DATA_HI:
	case MAX44000_REG_ALS_DATA_LO:
	case MAX44000_REG_PRX_DATA:
	case MAX44000_REG_ALS_UPTHR_HI:
	case MAX44000_REG_ALS_UPTHR_LO:
	case MAX44000_REG_ALS_LOTHR_HI:
	case MAX44000_REG_ALS_LOTHR_LO:
	case MAX44000_REG_PST:
	case MAX44000_REG_PRX_IND:
	case MAX44000_REG_PRX_THR:
	case MAX44000_REG_TRIM_GAIN_GREEN:
	case MAX44000_REG_TRIM_GAIN_IR:
		return true;
	default:
		return false;
	}
}

static bool max44000_writeable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case MAX44000_REG_CFG_MAIN:
	case MAX44000_REG_CFG_RX:
	case MAX44000_REG_CFG_TX:
	case MAX44000_REG_ALS_UPTHR_HI:
	case MAX44000_REG_ALS_UPTHR_LO:
	case MAX44000_REG_ALS_LOTHR_HI:
	case MAX44000_REG_ALS_LOTHR_LO:
	case MAX44000_REG_PST:
	case MAX44000_REG_PRX_IND:
	case MAX44000_REG_PRX_THR:
	case MAX44000_REG_TRIM_GAIN_GREEN:
	case MAX44000_REG_TRIM_GAIN_IR:
		return true;
	default:
		return false;
	}
}

static bool max44000_volatile_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case MAX44000_REG_STATUS:
	case MAX44000_REG_ALS_DATA_HI:
	case MAX44000_REG_ALS_DATA_LO:
	case MAX44000_REG_PRX_DATA:
		return true;
	default:
		return false;
	}
}

static bool max44000_precious_reg(struct device *dev, unsigned int reg)
{
	return reg == MAX44000_REG_STATUS;
}

static const struct regmap_config max44000_regmap_config = {
	.reg_bits		= 8,
	.val_bits		= 8,

	.max_register		= MAX44000_REG_PRX_DATA,
	.readable_reg		= max44000_readable_reg,
	.writeable_reg		= max44000_writeable_reg,
	.volatile_reg		= max44000_volatile_reg,
	.precious_reg		= max44000_precious_reg,

	.use_single_read	= true,
	.use_single_write	= true,
	.cache_type		= REGCACHE_RBTREE,
};

static irqreturn_t max44000_trigger_handler(int irq, void *p)
{
	struct iio_poll_func *pf = p;
	struct iio_dev *indio_dev = pf->indio_dev;
	struct max44000_data *data = iio_priv(indio_dev);
	u16 buf[8]; /* 2x u16 + padding + 8 bytes timestamp */
	int index = 0;
	unsigned int regval;
	int ret;

	mutex_lock(&data->lock);
	if (test_bit(MAX44000_SCAN_INDEX_ALS, indio_dev->active_scan_mask)) {
		ret = max44000_read_alsval(data);
		if (ret < 0)
			goto out_unlock;
		buf[index++] = ret;
	}
	if (test_bit(MAX44000_SCAN_INDEX_PRX, indio_dev->active_scan_mask)) {
		ret = regmap_read(data->regmap, MAX44000_REG_PRX_DATA, &regval);
		if (ret < 0)
			goto out_unlock;
		buf[index] = regval;
	}
	mutex_unlock(&data->lock);

	iio_push_to_buffers_with_timestamp(indio_dev, buf,
					   iio_get_time_ns(indio_dev));
	iio_trigger_notify_done(indio_dev->trig);
	return IRQ_HANDLED;

out_unlock:
	mutex_unlock(&data->lock);
	iio_trigger_notify_done(indio_dev->trig);
	return IRQ_HANDLED;
}

static int max44000_probe(struct i2c_client *client,
			  const struct i2c_device_id *id)
{
	struct max44000_data *data;
	struct iio_dev *indio_dev;
	int ret, reg;

	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
	if (!indio_dev)
		return -ENOMEM;
	data = iio_priv(indio_dev);
	data->regmap = devm_regmap_init_i2c(client, &max44000_regmap_config);
	if (IS_ERR(data->regmap)) {
		dev_err(&client->dev, "regmap_init failed!\n");
		return PTR_ERR(data->regmap);
	}

	i2c_set_clientdata(client, indio_dev);
	mutex_init(&data->lock);
	indio_dev->dev.parent = &client->dev;
	indio_dev->info = &max44000_info;
	indio_dev->name = MAX44000_DRV_NAME;
	indio_dev->channels = max44000_channels;
	indio_dev->num_channels = ARRAY_SIZE(max44000_channels);

	/*
	 * The device doesn't have a reset function so we just clear some
	 * important bits at probe time to ensure sane operation.
	 *
	 * Since we don't support interrupts/events the threshold values are
	 * not important. We also don't touch trim values.
	 */

	/* Reset ALS scaling bits */
	ret = regmap_write(data->regmap, MAX44000_REG_CFG_RX,
			   MAX44000_REG_CFG_RX_DEFAULT);
	if (ret < 0) {
		dev_err(&client->dev, "failed to write default CFG_RX: %d\n",
			ret);
		return ret;
	}

	/*
	 * By default the LED pulse used for the proximity sensor is disabled.
	 * Set a middle value so that we get some sort of valid data by default.
	 */
	ret = max44000_write_led_current_raw(data, MAX44000_LED_CURRENT_DEFAULT);
	if (ret < 0) {
		dev_err(&client->dev, "failed to write init config: %d\n", ret);
		return ret;
	}

	/* Reset CFG bits to ALS_PRX mode which allows easy reading of both values. */
	reg = MAX44000_CFG_TRIM | MAX44000_CFG_MODE_ALS_PRX;
	ret = regmap_write(data->regmap, MAX44000_REG_CFG_MAIN, reg);
	if (ret < 0) {
		dev_err(&client->dev, "failed to write init config: %d\n", ret);
		return ret;
	}

	/* Read status at least once to clear any stale interrupt bits. */
	ret = regmap_read(data->regmap, MAX44000_REG_STATUS, &reg);
	if (ret < 0) {
		dev_err(&client->dev, "failed to read init status: %d\n", ret);
		return ret;
	}

	ret = iio_triggered_buffer_setup(indio_dev, NULL, max44000_trigger_handler, NULL);
	if (ret < 0) {
		dev_err(&client->dev, "iio triggered buffer setup failed\n");
		return ret;
	}

	return iio_device_register(indio_dev);
}

static int max44000_remove(struct i2c_client *client)
{
	struct iio_dev *indio_dev = i2c_get_clientdata(client);

	iio_device_unregister(indio_dev);
	iio_triggered_buffer_cleanup(indio_dev);

	return 0;
}

static const struct i2c_device_id max44000_id[] = {
	{"max44000", 0},
	{ }
};
MODULE_DEVICE_TABLE(i2c, max44000_id);

#ifdef CONFIG_ACPI
static const struct acpi_device_id max44000_acpi_match[] = {
	{"MAX44000", 0},
	{ }
};
MODULE_DEVICE_TABLE(acpi, max44000_acpi_match);
#endif

static struct i2c_driver max44000_driver = {
	.driver = {
		.name	= MAX44000_DRV_NAME,
		.acpi_match_table = ACPI_PTR(max44000_acpi_match),
	},
	.probe		= max44000_probe,
	.remove		= max44000_remove,
	.id_table	= max44000_id,
};

module_i2c_driver(max44000_driver);

MODULE_AUTHOR("Crestez Dan Leonard <leonard.crestez@intel.com>");
MODULE_DESCRIPTION("MAX44000 Ambient and Infrared Proximity Sensor");
MODULE_LICENSE("GPL v2");