Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
// SPDX-License-Identifier: GPL-2.0
/*
 * AD5758 Digital to analog converters driver
 *
 * Copyright 2018 Analog Devices Inc.
 *
 * TODO: Currently CRC is not supported in this driver
 */
#include <linux/bsearch.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/property.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/spi/spi.h>
#include <linux/gpio/consumer.h>

#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>

/* AD5758 registers definition */
#define AD5758_NOP				0x00
#define AD5758_DAC_INPUT			0x01
#define AD5758_DAC_OUTPUT			0x02
#define AD5758_CLEAR_CODE			0x03
#define AD5758_USER_GAIN			0x04
#define AD5758_USER_OFFSET			0x05
#define AD5758_DAC_CONFIG			0x06
#define AD5758_SW_LDAC				0x07
#define AD5758_KEY				0x08
#define AD5758_GP_CONFIG1			0x09
#define AD5758_GP_CONFIG2			0x0A
#define AD5758_DCDC_CONFIG1			0x0B
#define AD5758_DCDC_CONFIG2			0x0C
#define AD5758_WDT_CONFIG			0x0F
#define AD5758_DIGITAL_DIAG_CONFIG		0x10
#define AD5758_ADC_CONFIG			0x11
#define AD5758_FAULT_PIN_CONFIG			0x12
#define AD5758_TWO_STAGE_READBACK_SELECT	0x13
#define AD5758_DIGITAL_DIAG_RESULTS		0x14
#define AD5758_ANALOG_DIAG_RESULTS		0x15
#define AD5758_STATUS				0x16
#define AD5758_CHIP_ID				0x17
#define AD5758_FREQ_MONITOR			0x18
#define AD5758_DEVICE_ID_0			0x19
#define AD5758_DEVICE_ID_1			0x1A
#define AD5758_DEVICE_ID_2			0x1B
#define AD5758_DEVICE_ID_3			0x1C

/* AD5758_DAC_CONFIG */
#define AD5758_DAC_CONFIG_RANGE_MSK		GENMASK(3, 0)
#define AD5758_DAC_CONFIG_RANGE_MODE(x)		(((x) & 0xF) << 0)
#define AD5758_DAC_CONFIG_INT_EN_MSK		BIT(5)
#define AD5758_DAC_CONFIG_INT_EN_MODE(x)	(((x) & 0x1) << 5)
#define AD5758_DAC_CONFIG_OUT_EN_MSK		BIT(6)
#define AD5758_DAC_CONFIG_OUT_EN_MODE(x)	(((x) & 0x1) << 6)
#define AD5758_DAC_CONFIG_SR_EN_MSK		BIT(8)
#define AD5758_DAC_CONFIG_SR_EN_MODE(x)		(((x) & 0x1) << 8)
#define AD5758_DAC_CONFIG_SR_CLOCK_MSK		GENMASK(12, 9)
#define AD5758_DAC_CONFIG_SR_CLOCK_MODE(x)	(((x) & 0xF) << 9)
#define AD5758_DAC_CONFIG_SR_STEP_MSK		GENMASK(15, 13)
#define AD5758_DAC_CONFIG_SR_STEP_MODE(x)	(((x) & 0x7) << 13)

/* AD5758_KEY */
#define AD5758_KEY_CODE_RESET_1			0x15FA
#define AD5758_KEY_CODE_RESET_2			0xAF51
#define AD5758_KEY_CODE_SINGLE_ADC_CONV		0x1ADC
#define AD5758_KEY_CODE_RESET_WDT		0x0D06
#define AD5758_KEY_CODE_CALIB_MEM_REFRESH	0xFCBA

/* AD5758_DCDC_CONFIG1 */
#define AD5758_DCDC_CONFIG1_DCDC_VPROG_MSK	GENMASK(4, 0)
#define AD5758_DCDC_CONFIG1_DCDC_VPROG_MODE(x)	(((x) & 0x1F) << 0)
#define AD5758_DCDC_CONFIG1_DCDC_MODE_MSK	GENMASK(6, 5)
#define AD5758_DCDC_CONFIG1_DCDC_MODE_MODE(x)	(((x) & 0x3) << 5)

/* AD5758_DCDC_CONFIG2 */
#define AD5758_DCDC_CONFIG2_ILIMIT_MSK		GENMASK(3, 1)
#define AD5758_DCDC_CONFIG2_ILIMIT_MODE(x)	(((x) & 0x7) << 1)
#define AD5758_DCDC_CONFIG2_INTR_SAT_3WI_MSK	BIT(11)
#define AD5758_DCDC_CONFIG2_BUSY_3WI_MSK	BIT(12)

/* AD5758_DIGITAL_DIAG_RESULTS */
#define AD5758_CAL_MEM_UNREFRESHED_MSK		BIT(15)

/* AD5758_ADC_CONFIG */
#define AD5758_ADC_CONFIG_PPC_BUF_EN(x)		(((x) & 0x1) << 11)
#define AD5758_ADC_CONFIG_PPC_BUF_MSK		BIT(11)

#define AD5758_WR_FLAG_MSK(x)		(0x80 | ((x) & 0x1F))

#define AD5758_FULL_SCALE_MICRO	65535000000ULL

/**
 * struct ad5758_state - driver instance specific data
 * @spi:	spi_device
 * @lock:	mutex lock
 * @out_range:	struct which stores the output range
 * @dc_dc_mode:	variable which stores the mode of operation
 * @dc_dc_ilim:	variable which stores the dc-to-dc converter current limit
 * @slew_time:	variable which stores the target slew time
 * @pwr_down:	variable which contains whether a channel is powered down or not
 * @data:	spi transfer buffers
 */

struct ad5758_range {
	int reg;
	int min;
	int max;
};

struct ad5758_state {
	struct spi_device *spi;
	struct mutex lock;
	struct gpio_desc *gpio_reset;
	struct ad5758_range out_range;
	unsigned int dc_dc_mode;
	unsigned int dc_dc_ilim;
	unsigned int slew_time;
	bool pwr_down;
	__be32 d32[3];
};

/**
 * Output ranges corresponding to bits [3:0] from DAC_CONFIG register
 * 0000: 0 V to 5 V voltage range
 * 0001: 0 V to 10 V voltage range
 * 0010: ±5 V voltage range
 * 0011: ±10 V voltage range
 * 1000: 0 mA to 20 mA current range
 * 1001: 0 mA to 24 mA current range
 * 1010: 4 mA to 20 mA current range
 * 1011: ±20 mA current range
 * 1100: ±24 mA current range
 * 1101: -1 mA to +22 mA current range
 */
enum ad5758_output_range {
	AD5758_RANGE_0V_5V,
	AD5758_RANGE_0V_10V,
	AD5758_RANGE_PLUSMINUS_5V,
	AD5758_RANGE_PLUSMINUS_10V,
	AD5758_RANGE_0mA_20mA = 8,
	AD5758_RANGE_0mA_24mA,
	AD5758_RANGE_4mA_24mA,
	AD5758_RANGE_PLUSMINUS_20mA,
	AD5758_RANGE_PLUSMINUS_24mA,
	AD5758_RANGE_MINUS_1mA_PLUS_22mA,
};

enum ad5758_dc_dc_mode {
	AD5758_DCDC_MODE_POWER_OFF,
	AD5758_DCDC_MODE_DPC_CURRENT,
	AD5758_DCDC_MODE_DPC_VOLTAGE,
	AD5758_DCDC_MODE_PPC_CURRENT,
};

static const struct ad5758_range ad5758_voltage_range[] = {
	{ AD5758_RANGE_0V_5V, 0, 5000000 },
	{ AD5758_RANGE_0V_10V, 0, 10000000 },
	{ AD5758_RANGE_PLUSMINUS_5V, -5000000, 5000000 },
	{ AD5758_RANGE_PLUSMINUS_10V, -10000000, 10000000 }
};

static const struct ad5758_range ad5758_current_range[] = {
	{ AD5758_RANGE_0mA_20mA, 0, 20000},
	{ AD5758_RANGE_0mA_24mA, 0, 24000 },
	{ AD5758_RANGE_4mA_24mA, 4, 24000 },
	{ AD5758_RANGE_PLUSMINUS_20mA, -20000, 20000 },
	{ AD5758_RANGE_PLUSMINUS_24mA, -24000, 24000 },
	{ AD5758_RANGE_MINUS_1mA_PLUS_22mA, -1000, 22000 },
};

static const int ad5758_sr_clk[16] = {
	240000, 200000, 150000, 128000, 64000, 32000, 16000, 8000, 4000, 2000,
	1000, 512, 256, 128, 64, 16
};

static const int ad5758_sr_step[8] = {
	4, 12, 64, 120, 256, 500, 1820, 2048
};

static const int ad5758_dc_dc_ilim[6] = {
	150000, 200000, 250000, 300000, 350000, 400000
};

static int ad5758_spi_reg_read(struct ad5758_state *st, unsigned int addr)
{
	struct spi_transfer t[] = {
		{
			.tx_buf = &st->d32[0],
			.len = 4,
			.cs_change = 1,
		}, {
			.tx_buf = &st->d32[1],
			.rx_buf = &st->d32[2],
			.len = 4,
		},
	};
	int ret;

	st->d32[0] = cpu_to_be32(
		(AD5758_WR_FLAG_MSK(AD5758_TWO_STAGE_READBACK_SELECT) << 24) |
		(addr << 8));
	st->d32[1] = cpu_to_be32(AD5758_WR_FLAG_MSK(AD5758_NOP) << 24);

	ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t));
	if (ret < 0)
		return ret;

	return (be32_to_cpu(st->d32[2]) >> 8) & 0xFFFF;
}

static int ad5758_spi_reg_write(struct ad5758_state *st,
				unsigned int addr,
				unsigned int val)
{
	st->d32[0] = cpu_to_be32((AD5758_WR_FLAG_MSK(addr) << 24) |
				 ((val & 0xFFFF) << 8));

	return spi_write(st->spi, &st->d32[0], sizeof(st->d32[0]));
}

static int ad5758_spi_write_mask(struct ad5758_state *st,
				 unsigned int addr,
				 unsigned long int mask,
				 unsigned int val)
{
	int regval;

	regval = ad5758_spi_reg_read(st, addr);
	if (regval < 0)
		return regval;

	regval &= ~mask;
	regval |= val;

	return ad5758_spi_reg_write(st, addr, regval);
}

static int cmpfunc(const void *a, const void *b)
{
	return *(int *)a - *(int *)b;
}

static int ad5758_find_closest_match(const int *array,
				     unsigned int size, int val)
{
	int i;

	for (i = 0; i < size; i++) {
		if (val <= array[i])
			return i;
	}

	return size - 1;
}

static int ad5758_wait_for_task_complete(struct ad5758_state *st,
					 unsigned int reg,
					 unsigned int mask)
{
	unsigned int timeout;
	int ret;

	timeout = 10;
	do {
		ret = ad5758_spi_reg_read(st, reg);
		if (ret < 0)
			return ret;

		if (!(ret & mask))
			return 0;

		usleep_range(100, 1000);
	} while (--timeout);

	dev_err(&st->spi->dev,
		"Error reading bit 0x%x in 0x%x register\n", mask, reg);

	return -EIO;
}

static int ad5758_calib_mem_refresh(struct ad5758_state *st)
{
	int ret;

	ret = ad5758_spi_reg_write(st, AD5758_KEY,
				   AD5758_KEY_CODE_CALIB_MEM_REFRESH);
	if (ret < 0) {
		dev_err(&st->spi->dev,
			"Failed to initiate a calibration memory refresh\n");
		return ret;
	}

	/* Wait to allow time for the internal calibrations to complete */
	return ad5758_wait_for_task_complete(st, AD5758_DIGITAL_DIAG_RESULTS,
					     AD5758_CAL_MEM_UNREFRESHED_MSK);
}

static int ad5758_soft_reset(struct ad5758_state *st)
{
	int ret;

	ret = ad5758_spi_reg_write(st, AD5758_KEY, AD5758_KEY_CODE_RESET_1);
	if (ret < 0)
		return ret;

	ret = ad5758_spi_reg_write(st, AD5758_KEY, AD5758_KEY_CODE_RESET_2);

	/* Perform a software reset and wait at least 100us */
	usleep_range(100, 1000);

	return ret;
}

static int ad5758_set_dc_dc_conv_mode(struct ad5758_state *st,
				      enum ad5758_dc_dc_mode mode)
{
	int ret;

	/*
	 * The ENABLE_PPC_BUFFERS bit must be set prior to enabling PPC current
	 * mode.
	 */
	if (mode == AD5758_DCDC_MODE_PPC_CURRENT) {
		ret  = ad5758_spi_write_mask(st, AD5758_ADC_CONFIG,
				    AD5758_ADC_CONFIG_PPC_BUF_MSK,
				    AD5758_ADC_CONFIG_PPC_BUF_EN(1));
		if (ret < 0)
			return ret;
	}

	ret = ad5758_spi_write_mask(st, AD5758_DCDC_CONFIG1,
				    AD5758_DCDC_CONFIG1_DCDC_MODE_MSK,
				    AD5758_DCDC_CONFIG1_DCDC_MODE_MODE(mode));
	if (ret < 0)
		return ret;

	/*
	 * Poll the BUSY_3WI bit in the DCDC_CONFIG2 register until it is 0.
	 * This allows the 3-wire interface communication to complete.
	 */
	ret = ad5758_wait_for_task_complete(st, AD5758_DCDC_CONFIG2,
					    AD5758_DCDC_CONFIG2_BUSY_3WI_MSK);
	if (ret < 0)
		return ret;

	st->dc_dc_mode = mode;

	return ret;
}

static int ad5758_set_dc_dc_ilim(struct ad5758_state *st, unsigned int ilim)
{
	int ret;

	ret = ad5758_spi_write_mask(st, AD5758_DCDC_CONFIG2,
				    AD5758_DCDC_CONFIG2_ILIMIT_MSK,
				    AD5758_DCDC_CONFIG2_ILIMIT_MODE(ilim));
	if (ret < 0)
		return ret;
	/*
	 * Poll the BUSY_3WI bit in the DCDC_CONFIG2 register until it is 0.
	 * This allows the 3-wire interface communication to complete.
	 */
	return ad5758_wait_for_task_complete(st, AD5758_DCDC_CONFIG2,
					     AD5758_DCDC_CONFIG2_BUSY_3WI_MSK);
}

static int ad5758_slew_rate_set(struct ad5758_state *st,
				unsigned int sr_clk_idx,
				unsigned int sr_step_idx)
{
	unsigned int mode;
	unsigned long int mask;
	int ret;

	mask = AD5758_DAC_CONFIG_SR_EN_MSK |
	       AD5758_DAC_CONFIG_SR_CLOCK_MSK |
	       AD5758_DAC_CONFIG_SR_STEP_MSK;
	mode = AD5758_DAC_CONFIG_SR_EN_MODE(1) |
	       AD5758_DAC_CONFIG_SR_STEP_MODE(sr_step_idx) |
	       AD5758_DAC_CONFIG_SR_CLOCK_MODE(sr_clk_idx);

	ret = ad5758_spi_write_mask(st, AD5758_DAC_CONFIG, mask, mode);
	if (ret < 0)
		return ret;

	/* Wait to allow time for the internal calibrations to complete */
	return ad5758_wait_for_task_complete(st, AD5758_DIGITAL_DIAG_RESULTS,
					     AD5758_CAL_MEM_UNREFRESHED_MSK);
}

static int ad5758_slew_rate_config(struct ad5758_state *st)
{
	unsigned int sr_clk_idx, sr_step_idx;
	int i, res;
	s64 diff_new, diff_old;
	u64 sr_step, calc_slew_time;

	sr_clk_idx = 0;
	sr_step_idx = 0;
	diff_old = S64_MAX;
	/*
	 * The slew time can be determined by using the formula:
	 * Slew Time = (Full Scale Out / (Step Size x Update Clk Freq))
	 * where Slew time is expressed in microseconds
	 * Given the desired slew time, the following algorithm determines the
	 * best match for the step size and the update clock frequency.
	 */
	for (i = 0; i < ARRAY_SIZE(ad5758_sr_clk); i++) {
		/*
		 * Go through each valid update clock freq and determine a raw
		 * value for the step size by using the formula:
		 * Step Size = Full Scale Out / (Update Clk Freq * Slew Time)
		 */
		sr_step = AD5758_FULL_SCALE_MICRO;
		do_div(sr_step, ad5758_sr_clk[i]);
		do_div(sr_step, st->slew_time);
		/*
		 * After a raw value for step size was determined, find the
		 * closest valid match
		 */
		res = ad5758_find_closest_match(ad5758_sr_step,
						ARRAY_SIZE(ad5758_sr_step),
						sr_step);
		/* Calculate the slew time */
		calc_slew_time = AD5758_FULL_SCALE_MICRO;
		do_div(calc_slew_time, ad5758_sr_step[res]);
		do_div(calc_slew_time, ad5758_sr_clk[i]);
		/*
		 * Determine with how many microseconds the calculated slew time
		 * is different from the desired slew time and store the diff
		 * for the next iteration
		 */
		diff_new = abs(st->slew_time - calc_slew_time);
		if (diff_new < diff_old) {
			diff_old = diff_new;
			sr_clk_idx = i;
			sr_step_idx = res;
		}
	}

	return ad5758_slew_rate_set(st, sr_clk_idx, sr_step_idx);
}

static int ad5758_set_out_range(struct ad5758_state *st, int range)
{
	int ret;

	ret = ad5758_spi_write_mask(st, AD5758_DAC_CONFIG,
				    AD5758_DAC_CONFIG_RANGE_MSK,
				    AD5758_DAC_CONFIG_RANGE_MODE(range));
	if (ret < 0)
		return ret;

	/* Wait to allow time for the internal calibrations to complete */
	return ad5758_wait_for_task_complete(st, AD5758_DIGITAL_DIAG_RESULTS,
					     AD5758_CAL_MEM_UNREFRESHED_MSK);
}

static int ad5758_internal_buffers_en(struct ad5758_state *st, bool enable)
{
	int ret;

	ret = ad5758_spi_write_mask(st, AD5758_DAC_CONFIG,
				    AD5758_DAC_CONFIG_INT_EN_MSK,
				    AD5758_DAC_CONFIG_INT_EN_MODE(enable));
	if (ret < 0)
		return ret;

	/* Wait to allow time for the internal calibrations to complete */
	return ad5758_wait_for_task_complete(st, AD5758_DIGITAL_DIAG_RESULTS,
					     AD5758_CAL_MEM_UNREFRESHED_MSK);
}

static int ad5758_reset(struct ad5758_state *st)
{
	if (st->gpio_reset) {
		gpiod_set_value(st->gpio_reset, 0);
		usleep_range(100, 1000);
		gpiod_set_value(st->gpio_reset, 1);
		usleep_range(100, 1000);

		return 0;
	} else {
		/* Perform a software reset */
		return ad5758_soft_reset(st);
	}
}

static int ad5758_reg_access(struct iio_dev *indio_dev,
			     unsigned int reg,
			     unsigned int writeval,
			     unsigned int *readval)
{
	struct ad5758_state *st = iio_priv(indio_dev);
	int ret;

	mutex_lock(&st->lock);
	if (readval) {
		ret = ad5758_spi_reg_read(st, reg);
		if (ret < 0) {
			mutex_unlock(&st->lock);
			return ret;
		}

		*readval = ret;
		ret = 0;
	} else {
		ret = ad5758_spi_reg_write(st, reg, writeval);
	}
	mutex_unlock(&st->lock);

	return ret;
}

static int ad5758_read_raw(struct iio_dev *indio_dev,
			   struct iio_chan_spec const *chan,
			   int *val, int *val2, long info)
{
	struct ad5758_state *st = iio_priv(indio_dev);
	int max, min, ret;

	switch (info) {
	case IIO_CHAN_INFO_RAW:
		mutex_lock(&st->lock);
		ret = ad5758_spi_reg_read(st, AD5758_DAC_INPUT);
		mutex_unlock(&st->lock);
		if (ret < 0)
			return ret;

		*val = ret;
		return IIO_VAL_INT;
	case IIO_CHAN_INFO_SCALE:
		min = st->out_range.min;
		max = st->out_range.max;
		*val = (max - min) / 1000;
		*val2 = 16;
		return IIO_VAL_FRACTIONAL_LOG2;
	case IIO_CHAN_INFO_OFFSET:
		min = st->out_range.min;
		max = st->out_range.max;
		*val = ((min * (1 << 16)) / (max - min)) / 1000;
		return IIO_VAL_INT;
	default:
		return -EINVAL;
	}
}

static int ad5758_write_raw(struct iio_dev *indio_dev,
			    struct iio_chan_spec const *chan,
			    int val, int val2, long info)
{
	struct ad5758_state *st = iio_priv(indio_dev);
	int ret;

	switch (info) {
	case IIO_CHAN_INFO_RAW:
		mutex_lock(&st->lock);
		ret = ad5758_spi_reg_write(st, AD5758_DAC_INPUT, val);
		mutex_unlock(&st->lock);
		return ret;
	default:
		return -EINVAL;
	}
}

static ssize_t ad5758_read_powerdown(struct iio_dev *indio_dev,
				     uintptr_t priv,
				     const struct iio_chan_spec *chan,
				     char *buf)
{
	struct ad5758_state *st = iio_priv(indio_dev);

	return sprintf(buf, "%d\n", st->pwr_down);
}

static ssize_t ad5758_write_powerdown(struct iio_dev *indio_dev,
				      uintptr_t priv,
				      struct iio_chan_spec const *chan,
				      const char *buf, size_t len)
{
	struct ad5758_state *st = iio_priv(indio_dev);
	bool pwr_down;
	unsigned int dac_config_mode, val;
	unsigned long int dac_config_msk;
	int ret;

	ret = kstrtobool(buf, &pwr_down);
	if (ret)
		return ret;

	mutex_lock(&st->lock);
	if (pwr_down)
		val = 0;
	else
		val = 1;

	dac_config_mode = AD5758_DAC_CONFIG_OUT_EN_MODE(val) |
			  AD5758_DAC_CONFIG_INT_EN_MODE(val);
	dac_config_msk = AD5758_DAC_CONFIG_OUT_EN_MSK |
			 AD5758_DAC_CONFIG_INT_EN_MSK;

	ret = ad5758_spi_write_mask(st, AD5758_DAC_CONFIG,
				    dac_config_msk,
				    dac_config_mode);
	if (ret < 0)
		goto err_unlock;

	st->pwr_down = pwr_down;

err_unlock:
	mutex_unlock(&st->lock);

	return ret ? ret : len;
}

static const struct iio_info ad5758_info = {
	.read_raw = ad5758_read_raw,
	.write_raw = ad5758_write_raw,
	.debugfs_reg_access = &ad5758_reg_access,
};

static const struct iio_chan_spec_ext_info ad5758_ext_info[] = {
	{
		.name = "powerdown",
		.read = ad5758_read_powerdown,
		.write = ad5758_write_powerdown,
		.shared = IIO_SHARED_BY_TYPE,
	},
	{ }
};

#define AD5758_DAC_CHAN(_chan_type) {				\
	.type = (_chan_type),					\
	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_RAW) |	\
		BIT(IIO_CHAN_INFO_SCALE) |			\
		BIT(IIO_CHAN_INFO_OFFSET),			\
	.indexed = 1,						\
	.output = 1,						\
	.ext_info = ad5758_ext_info,				\
}

static const struct iio_chan_spec ad5758_voltage_ch[] = {
	AD5758_DAC_CHAN(IIO_VOLTAGE)
};

static const struct iio_chan_spec ad5758_current_ch[] = {
	AD5758_DAC_CHAN(IIO_CURRENT)
};

static bool ad5758_is_valid_mode(enum ad5758_dc_dc_mode mode)
{
	switch (mode) {
	case AD5758_DCDC_MODE_DPC_CURRENT:
	case AD5758_DCDC_MODE_DPC_VOLTAGE:
	case AD5758_DCDC_MODE_PPC_CURRENT:
		return true;
	default:
		return false;
	}
}

static int ad5758_crc_disable(struct ad5758_state *st)
{
	unsigned int mask;

	mask = (AD5758_WR_FLAG_MSK(AD5758_DIGITAL_DIAG_CONFIG) << 24) | 0x5C3A;
	st->d32[0] = cpu_to_be32(mask);

	return spi_write(st->spi, &st->d32[0], 4);
}

static int ad5758_find_out_range(struct ad5758_state *st,
				 const struct ad5758_range *range,
				 unsigned int size,
				 int min, int max)
{
	int i;

	for (i = 0; i < size; i++) {
		if ((min == range[i].min) && (max == range[i].max)) {
			st->out_range.reg = range[i].reg;
			st->out_range.min = range[i].min;
			st->out_range.max = range[i].max;

			return 0;
		}
	}

	return -EINVAL;
}

static int ad5758_parse_dt(struct ad5758_state *st)
{
	unsigned int tmp, tmparray[2], size;
	const struct ad5758_range *range;
	int *index, ret;

	st->dc_dc_ilim = 0;
	ret = device_property_read_u32(&st->spi->dev,
				       "adi,dc-dc-ilim-microamp", &tmp);
	if (ret) {
		dev_dbg(&st->spi->dev,
			"Missing \"dc-dc-ilim-microamp\" property\n");
	} else {
		index = bsearch(&tmp, ad5758_dc_dc_ilim,
				ARRAY_SIZE(ad5758_dc_dc_ilim),
				sizeof(int), cmpfunc);
		if (!index)
			dev_dbg(&st->spi->dev, "dc-dc-ilim out of range\n");
		else
			st->dc_dc_ilim = index - ad5758_dc_dc_ilim;
	}

	ret = device_property_read_u32(&st->spi->dev, "adi,dc-dc-mode",
				       &st->dc_dc_mode);
	if (ret) {
		dev_err(&st->spi->dev, "Missing \"dc-dc-mode\" property\n");
		return ret;
	}

	if (!ad5758_is_valid_mode(st->dc_dc_mode))
		return -EINVAL;

	if (st->dc_dc_mode == AD5758_DCDC_MODE_DPC_VOLTAGE) {
		ret = device_property_read_u32_array(&st->spi->dev,
						     "adi,range-microvolt",
						     tmparray, 2);
		if (ret) {
			dev_err(&st->spi->dev,
				"Missing \"range-microvolt\" property\n");
			return ret;
		}
		range = ad5758_voltage_range;
		size = ARRAY_SIZE(ad5758_voltage_range);
	} else {
		ret = device_property_read_u32_array(&st->spi->dev,
						     "adi,range-microamp",
						     tmparray, 2);
		if (ret) {
			dev_err(&st->spi->dev,
				"Missing \"range-microamp\" property\n");
			return ret;
		}
		range = ad5758_current_range;
		size = ARRAY_SIZE(ad5758_current_range);
	}

	ret = ad5758_find_out_range(st, range, size, tmparray[0], tmparray[1]);
	if (ret) {
		dev_err(&st->spi->dev, "range invalid\n");
		return ret;
	}

	ret = device_property_read_u32(&st->spi->dev, "adi,slew-time-us", &tmp);
	if (ret) {
		dev_dbg(&st->spi->dev, "Missing \"slew-time-us\" property\n");
		st->slew_time = 0;
	} else {
		st->slew_time = tmp;
	}

	return 0;
}

static int ad5758_init(struct ad5758_state *st)
{
	int regval, ret;

	st->gpio_reset = devm_gpiod_get_optional(&st->spi->dev, "reset",
						 GPIOD_OUT_HIGH);
	if (IS_ERR(st->gpio_reset))
		return PTR_ERR(st->gpio_reset);

	/* Disable CRC checks */
	ret = ad5758_crc_disable(st);
	if (ret < 0)
		return ret;

	/* Perform a reset */
	ret = ad5758_reset(st);
	if (ret < 0)
		return ret;

	/* Disable CRC checks */
	ret = ad5758_crc_disable(st);
	if (ret < 0)
		return ret;

	/* Perform a calibration memory refresh */
	ret = ad5758_calib_mem_refresh(st);
	if (ret < 0)
		return ret;

	regval = ad5758_spi_reg_read(st, AD5758_DIGITAL_DIAG_RESULTS);
	if (regval < 0)
		return regval;

	/* Clear all the error flags */
	ret = ad5758_spi_reg_write(st, AD5758_DIGITAL_DIAG_RESULTS, regval);
	if (ret < 0)
		return ret;

	/* Set the dc-to-dc current limit */
	ret = ad5758_set_dc_dc_ilim(st, st->dc_dc_ilim);
	if (ret < 0)
		return ret;

	/* Configure the dc-to-dc controller mode */
	ret = ad5758_set_dc_dc_conv_mode(st, st->dc_dc_mode);
	if (ret < 0)
		return ret;

	/* Configure the output range */
	ret = ad5758_set_out_range(st, st->out_range.reg);
	if (ret < 0)
		return ret;

	/* Enable Slew Rate Control, set the slew rate clock and step */
	if (st->slew_time) {
		ret = ad5758_slew_rate_config(st);
		if (ret < 0)
			return ret;
	}

	/* Power up the DAC and internal (INT) amplifiers */
	ret = ad5758_internal_buffers_en(st, 1);
	if (ret < 0)
		return ret;

	/* Enable VIOUT */
	return ad5758_spi_write_mask(st, AD5758_DAC_CONFIG,
				     AD5758_DAC_CONFIG_OUT_EN_MSK,
				     AD5758_DAC_CONFIG_OUT_EN_MODE(1));
}

static int ad5758_probe(struct spi_device *spi)
{
	struct ad5758_state *st;
	struct iio_dev *indio_dev;
	int ret;

	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
	if (!indio_dev)
		return -ENOMEM;

	st = iio_priv(indio_dev);
	spi_set_drvdata(spi, indio_dev);

	st->spi = spi;

	mutex_init(&st->lock);

	indio_dev->dev.parent = &spi->dev;
	indio_dev->name = spi_get_device_id(spi)->name;
	indio_dev->info = &ad5758_info;
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->num_channels = 1;

	ret = ad5758_parse_dt(st);
	if (ret < 0)
		return ret;

	if (st->dc_dc_mode == AD5758_DCDC_MODE_DPC_VOLTAGE)
		indio_dev->channels = ad5758_voltage_ch;
	else
		indio_dev->channels = ad5758_current_ch;

	ret = ad5758_init(st);
	if (ret < 0) {
		dev_err(&spi->dev, "AD5758 init failed\n");
		return ret;
	}

	return devm_iio_device_register(&st->spi->dev, indio_dev);
}

static const struct spi_device_id ad5758_id[] = {
	{ "ad5758", 0 },
	{}
};
MODULE_DEVICE_TABLE(spi, ad5758_id);

static const struct of_device_id ad5758_of_match[] = {
        { .compatible = "adi,ad5758" },
        { },
};
MODULE_DEVICE_TABLE(of, ad5758_of_match);

static struct spi_driver ad5758_driver = {
	.driver = {
		.name = KBUILD_MODNAME,
		.of_match_table = ad5758_of_match,
	},
	.probe = ad5758_probe,
	.id_table = ad5758_id,
};

module_spi_driver(ad5758_driver);

MODULE_AUTHOR("Stefan Popa <stefan.popa@analog.com>");
MODULE_DESCRIPTION("Analog Devices AD5758 DAC");
MODULE_LICENSE("GPL v2");