Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
// SPDX-License-Identifier: GPL-2.0+
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/types.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/mfd/core.h>
#include <linux/platform_device.h>
#include <linux/ioport.h>
#include <linux/uio_driver.h>
#include "pcie.h"

/*  Core (Resource) Table Layout:
 *      one Resource per record (8 bytes)
 *                 6         5         4         3         2         1         0
 *              3210987654321098765432109876543210987654321098765432109876543210
 *              IIIIIIIIIIII                                                        Core Type    [up to 4095 types]
 *                          D                                                       S2C DMA Present
 *                           DDD                                                    S2C DMA Channel Number    [up to 8 channels]
 *                              LLLLLLLLLLLLLLLL                                    Register Count (64-bit registers)    [up to 65535 registers]
 *                                              OOOOOOOOOOOOOOOO                    Core Offset (in 4kB blocks)    [up to 65535 cores]
 *                                                              D                   C2S DMA Present
 *                                                               DDD                C2S DMA Channel Number    [up to 8 channels]
 *                                                                  II              IRQ Count [0 to 3 IRQs per core]
 *                                                                    1111111000
 *                                                                    IIIIIII       IRQ Base Number [up to 128 IRQs per card]
 *                                                                           ___    Spare
 *
 */

#define KPC_OLD_DMA_CH_NUM(present, channel)   ((present) ? (0x8 | ((channel) & 0x7)) : 0)
#define KPC_OLD_S2C_DMA_CH_NUM(cte)   KPC_OLD_DMA_CH_NUM(cte.s2c_dma_present, cte.s2c_dma_channel_num)
#define KPC_OLD_C2S_DMA_CH_NUM(cte)   KPC_OLD_DMA_CH_NUM(cte.c2s_dma_present, cte.c2s_dma_channel_num)

#define KP_CORE_ID_INVALID      0
#define KP_CORE_ID_I2C          3
#define KP_CORE_ID_SPI          5

struct core_table_entry {
	u16  type;
	u32  offset;
	u32  length;
	bool s2c_dma_present;
	u8   s2c_dma_channel_num;
	bool c2s_dma_present;
	u8   c2s_dma_channel_num;
	u8   irq_count;
	u8   irq_base_num;
};

static
void  parse_core_table_entry_v0(struct core_table_entry *cte, const u64 read_val)
{
	cte->type                = ((read_val & 0xFFF0000000000000UL) >> 52);
	cte->offset              = ((read_val & 0x00000000FFFF0000UL) >> 16) * 4096;
	cte->length              = ((read_val & 0x0000FFFF00000000UL) >> 32) * 8;
	cte->s2c_dma_present     = ((read_val & 0x0008000000000000UL) >> 51);
	cte->s2c_dma_channel_num = ((read_val & 0x0007000000000000UL) >> 48);
	cte->c2s_dma_present     = ((read_val & 0x0000000000008000UL) >> 15);
	cte->c2s_dma_channel_num = ((read_val & 0x0000000000007000UL) >> 12);
	cte->irq_count           = ((read_val & 0x0000000000000C00UL) >> 10);
	cte->irq_base_num        = ((read_val & 0x00000000000003F8UL) >>  3);
}

static
void dbg_cte(struct kp2000_device *pcard, struct core_table_entry *cte)
{
	dev_dbg(&pcard->pdev->dev, "CTE: type:%3d  offset:%3d (%3d)  length:%3d (%3d)  s2c:%d  c2s:%d  irq_count:%d  base_irq:%d\n",
		cte->type,
		cte->offset,
		cte->offset / 4096,
		cte->length,
		cte->length / 8,
		(cte->s2c_dma_present ? cte->s2c_dma_channel_num : -1),
		(cte->c2s_dma_present ? cte->c2s_dma_channel_num : -1),
		cte->irq_count,
		cte->irq_base_num
	);
}

static
void parse_core_table_entry(struct core_table_entry *cte, const u64 read_val, const u8 entry_rev)
{
	switch (entry_rev) {
	case 0:
		parse_core_table_entry_v0(cte, read_val);
		break;
	default:
		cte->type = 0;
		break;
	}
}

static int probe_core_basic(unsigned int core_num, struct kp2000_device *pcard,
			    char *name, const struct core_table_entry cte)
{
	struct mfd_cell  cell = { .id = core_num, .name = name };
	struct resource resources[2];

	struct kpc_core_device_platdata core_pdata = {
		.card_id           = pcard->card_id,
		.build_version     = pcard->build_version,
		.hardware_revision = pcard->hardware_revision,
		.ssid              = pcard->ssid,
		.ddna              = pcard->ddna,
	};

	dev_dbg(&pcard->pdev->dev, "Found Basic core: type = %02d  dma = %02x / %02x  offset = 0x%x  length = 0x%x (%d regs)\n", cte.type, KPC_OLD_S2C_DMA_CH_NUM(cte), KPC_OLD_C2S_DMA_CH_NUM(cte), cte.offset, cte.length, cte.length / 8);

	cell.platform_data = &core_pdata;
	cell.pdata_size = sizeof(struct kpc_core_device_platdata);
	cell.num_resources = 2;

	memset(&resources, 0, sizeof(resources));

	resources[0].start = cte.offset;
	resources[0].end   = cte.offset + (cte.length - 1);
	resources[0].flags = IORESOURCE_MEM;

	resources[1].start = pcard->pdev->irq;
	resources[1].end   = pcard->pdev->irq;
	resources[1].flags = IORESOURCE_IRQ;

	cell.resources = resources;

	return mfd_add_devices(PCARD_TO_DEV(pcard),    // parent
			       pcard->card_num * 100,  // id
			       &cell,                  // struct mfd_cell *
			       1,                      // ndevs
			       &pcard->regs_base_resource,
			       0,                      // irq_base
			       NULL);                  // struct irq_domain *
}

struct kpc_uio_device {
	struct list_head list;
	struct kp2000_device *pcard;
	struct device  *dev;
	struct uio_info uioinfo;
	struct core_table_entry cte;
	u16 core_num;
};

static ssize_t offset_show(struct device *dev, struct device_attribute *attr,
			   char *buf)
{
	struct kpc_uio_device *kudev = dev_get_drvdata(dev);

	return sprintf(buf, "%u\n", kudev->cte.offset);
}
static DEVICE_ATTR_RO(offset);

static ssize_t size_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
{
	struct kpc_uio_device *kudev = dev_get_drvdata(dev);

	return sprintf(buf, "%u\n", kudev->cte.length);
}
static DEVICE_ATTR_RO(size);

static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
{
	struct kpc_uio_device *kudev = dev_get_drvdata(dev);

	return sprintf(buf, "%u\n", kudev->cte.type);
}
static DEVICE_ATTR_RO(type);

static ssize_t s2c_dma_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct kpc_uio_device *kudev = dev_get_drvdata(dev);

	if (!kudev->cte.s2c_dma_present)
		return sprintf(buf, "%s", "not present\n");

	return sprintf(buf, "%u\n", kudev->cte.s2c_dma_channel_num);
}
static DEVICE_ATTR_RO(s2c_dma);

static ssize_t c2s_dma_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct kpc_uio_device *kudev = dev_get_drvdata(dev);

	if (!kudev->cte.c2s_dma_present)
		return sprintf(buf, "%s", "not present\n");

	return sprintf(buf, "%u\n", kudev->cte.c2s_dma_channel_num);
}
static DEVICE_ATTR_RO(c2s_dma);

static ssize_t irq_count_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
{
	struct kpc_uio_device *kudev = dev_get_drvdata(dev);

	return sprintf(buf, "%u\n", kudev->cte.irq_count);
}
static DEVICE_ATTR_RO(irq_count);

static ssize_t irq_base_num_show(struct device *dev,
				 struct device_attribute *attr, char *buf)
{
	struct kpc_uio_device *kudev = dev_get_drvdata(dev);

	return sprintf(buf, "%u\n", kudev->cte.irq_base_num);
}
static DEVICE_ATTR_RO(irq_base_num);

static ssize_t core_num_show(struct device *dev, struct device_attribute *attr,
			     char *buf)
{
	struct kpc_uio_device *kudev = dev_get_drvdata(dev);

	return sprintf(buf, "%u\n", kudev->core_num);
}
static DEVICE_ATTR_RO(core_num);

struct attribute *kpc_uio_class_attrs[] = {
	&dev_attr_offset.attr,
	&dev_attr_size.attr,
	&dev_attr_type.attr,
	&dev_attr_s2c_dma.attr,
	&dev_attr_c2s_dma.attr,
	&dev_attr_irq_count.attr,
	&dev_attr_irq_base_num.attr,
	&dev_attr_core_num.attr,
	NULL,
};

static
int  kp2000_check_uio_irq(struct kp2000_device *pcard, u32 irq_num)
{
	u64 interrupt_active   =  readq(pcard->sysinfo_regs_base + REG_INTERRUPT_ACTIVE);
	u64 interrupt_mask_inv = ~readq(pcard->sysinfo_regs_base + REG_INTERRUPT_MASK);
	u64 irq_check_mask = BIT_ULL(irq_num);

	if (interrupt_active & irq_check_mask) { // if it's active (interrupt pending)
		if (interrupt_mask_inv & irq_check_mask) {    // and if it's not masked off
			return 1;
		}
	}
	return 0;
}

static
irqreturn_t  kuio_handler(int irq, struct uio_info *uioinfo)
{
	struct kpc_uio_device *kudev = uioinfo->priv;

	if (irq != kudev->pcard->pdev->irq)
		return IRQ_NONE;

	if (kp2000_check_uio_irq(kudev->pcard, kudev->cte.irq_base_num)) {
		/* Clear the active flag */
		writeq(BIT_ULL(kudev->cte.irq_base_num),
		       kudev->pcard->sysinfo_regs_base + REG_INTERRUPT_ACTIVE);
		return IRQ_HANDLED;
	}
	return IRQ_NONE;
}

static
int kuio_irqcontrol(struct uio_info *uioinfo, s32 irq_on)
{
	struct kpc_uio_device *kudev = uioinfo->priv;
	struct kp2000_device *pcard = kudev->pcard;
	u64 mask;

	mutex_lock(&pcard->sem);
	mask = readq(pcard->sysinfo_regs_base + REG_INTERRUPT_MASK);
	if (irq_on)
		mask &= ~(BIT_ULL(kudev->cte.irq_base_num));
	else
		mask |= BIT_ULL(kudev->cte.irq_base_num);
	writeq(mask, pcard->sysinfo_regs_base + REG_INTERRUPT_MASK);
	mutex_unlock(&pcard->sem);

	return 0;
}

static int probe_core_uio(unsigned int core_num, struct kp2000_device *pcard,
			  char *name, const struct core_table_entry cte)
{
	struct kpc_uio_device *kudev;
	int rv;

	dev_dbg(&pcard->pdev->dev, "Found UIO core:   type = %02d  dma = %02x / %02x  offset = 0x%x  length = 0x%x (%d regs)\n", cte.type, KPC_OLD_S2C_DMA_CH_NUM(cte), KPC_OLD_C2S_DMA_CH_NUM(cte), cte.offset, cte.length, cte.length / 8);

	kudev = kzalloc(sizeof(*kudev), GFP_KERNEL);
	if (!kudev)
		return -ENOMEM;

	INIT_LIST_HEAD(&kudev->list);
	kudev->pcard = pcard;
	kudev->cte = cte;
	kudev->core_num = core_num;

	kudev->uioinfo.priv = kudev;
	kudev->uioinfo.name = name;
	kudev->uioinfo.version = "0.0";
	if (cte.irq_count > 0) {
		kudev->uioinfo.irq_flags = IRQF_SHARED;
		kudev->uioinfo.irq = pcard->pdev->irq;
		kudev->uioinfo.handler = kuio_handler;
		kudev->uioinfo.irqcontrol = kuio_irqcontrol;
	} else {
		kudev->uioinfo.irq = 0;
	}

	kudev->uioinfo.mem[0].name = "uiomap";
	kudev->uioinfo.mem[0].addr = pci_resource_start(pcard->pdev, REG_BAR) + cte.offset;
	kudev->uioinfo.mem[0].size = (cte.length + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); // Round up to nearest PAGE_SIZE boundary
	kudev->uioinfo.mem[0].memtype = UIO_MEM_PHYS;

	kudev->dev = device_create(kpc_uio_class, &pcard->pdev->dev, MKDEV(0, 0), kudev, "%s.%d.%d.%d", kudev->uioinfo.name, pcard->card_num, cte.type, kudev->core_num);
	if (IS_ERR(kudev->dev)) {
		dev_err(&pcard->pdev->dev, "%s: device_create failed!\n",
			__func__);
		kfree(kudev);
		return -ENODEV;
	}
	dev_set_drvdata(kudev->dev, kudev);

	rv = uio_register_device(kudev->dev, &kudev->uioinfo);
	if (rv) {
		dev_err(&pcard->pdev->dev, "%s: failed uio_register_device: %d\n",
			__func__, rv);
		put_device(kudev->dev);
		kfree(kudev);
		return rv;
	}

	list_add_tail(&kudev->list, &pcard->uio_devices_list);

	return 0;
}

static int  create_dma_engine_core(struct kp2000_device *pcard, size_t engine_regs_offset, int engine_num, int irq_num)
{
	struct mfd_cell  cell = { .id = engine_num };
	struct resource  resources[2];

	cell.platform_data = NULL;
	cell.pdata_size = 0;
	cell.name = KP_DRIVER_NAME_DMA_CONTROLLER;
	cell.num_resources = 2;

	memset(&resources, 0, sizeof(resources));

	resources[0].start = engine_regs_offset;
	resources[0].end   = engine_regs_offset + (KPC_DMA_ENGINE_SIZE - 1);
	resources[0].flags = IORESOURCE_MEM;

	resources[1].start = irq_num;
	resources[1].end   = irq_num;
	resources[1].flags = IORESOURCE_IRQ;

	cell.resources = resources;

	return mfd_add_devices(PCARD_TO_DEV(pcard),    // parent
			       pcard->card_num * 100,  // id
			       &cell,                  // struct mfd_cell *
			       1,                      // ndevs
			       &pcard->dma_base_resource,
			       0,                      // irq_base
			       NULL);                  // struct irq_domain *
}

static int  kp2000_setup_dma_controller(struct kp2000_device *pcard)
{
	int err;
	unsigned int i;
	u64 capabilities_reg;

	// S2C Engines
	for (i = 0 ; i < 32 ; i++) {
		capabilities_reg = readq(pcard->dma_bar_base + KPC_DMA_S2C_BASE_OFFSET + (KPC_DMA_ENGINE_SIZE * i));
		if (capabilities_reg & ENGINE_CAP_PRESENT_MASK) {
			err = create_dma_engine_core(pcard, (KPC_DMA_S2C_BASE_OFFSET + (KPC_DMA_ENGINE_SIZE * i)), i,  pcard->pdev->irq);
			if (err)
				goto err_out;
		}
	}
	// C2S Engines
	for (i = 0 ; i < 32 ; i++) {
		capabilities_reg = readq(pcard->dma_bar_base + KPC_DMA_C2S_BASE_OFFSET + (KPC_DMA_ENGINE_SIZE * i));
		if (capabilities_reg & ENGINE_CAP_PRESENT_MASK) {
			err = create_dma_engine_core(pcard, (KPC_DMA_C2S_BASE_OFFSET + (KPC_DMA_ENGINE_SIZE * i)), 32 + i,  pcard->pdev->irq);
			if (err)
				goto err_out;
		}
	}

	return 0;

err_out:
	dev_err(&pcard->pdev->dev, "%s: failed to add a DMA Engine: %d\n",
		__func__, err);
	return err;
}

int  kp2000_probe_cores(struct kp2000_device *pcard)
{
	int err = 0;
	int i;
	int current_type_id;
	u64 read_val;
	unsigned int highest_core_id = 0;
	struct core_table_entry cte;

	err = kp2000_setup_dma_controller(pcard);
	if (err)
		return err;

	INIT_LIST_HEAD(&pcard->uio_devices_list);

	// First, iterate the core table looking for the highest CORE_ID
	for (i = 0 ; i < pcard->core_table_length ; i++) {
		read_val = readq(pcard->sysinfo_regs_base + ((pcard->core_table_offset + i) * 8));
		parse_core_table_entry(&cte, read_val, pcard->core_table_rev);
		dbg_cte(pcard, &cte);
		if (cte.type > highest_core_id)
			highest_core_id = cte.type;
		if (cte.type == KP_CORE_ID_INVALID)
			dev_info(&pcard->pdev->dev, "Found Invalid core: %016llx\n", read_val);
	}
	// Then, iterate over the possible core types.
	for (current_type_id = 1 ; current_type_id <= highest_core_id ; current_type_id++) {
		unsigned int core_num = 0;
		// Foreach core type, iterate the whole table and instantiate subdevices for each core.
		// Yes, this is O(n*m) but the actual runtime is small enough that it's an acceptable tradeoff.
		for (i = 0 ; i < pcard->core_table_length ; i++) {
			read_val = readq(pcard->sysinfo_regs_base + ((pcard->core_table_offset + i) * 8));
			parse_core_table_entry(&cte, read_val, pcard->core_table_rev);

			if (cte.type != current_type_id)
				continue;

			switch (cte.type) {
			case KP_CORE_ID_I2C:
				err = probe_core_basic(core_num, pcard,
						       KP_DRIVER_NAME_I2C, cte);
				break;

			case KP_CORE_ID_SPI:
				err = probe_core_basic(core_num, pcard,
						       KP_DRIVER_NAME_SPI, cte);
				break;

			default:
				err = probe_core_uio(core_num, pcard, "kpc_uio", cte);
				break;
			}
			if (err) {
				dev_err(&pcard->pdev->dev,
					"%s: failed to add core %d: %d\n",
					__func__, i, err);
				goto error;
			}
			core_num++;
		}
	}

	// Finally, instantiate a UIO device for the core_table.
	cte.type                = 0; // CORE_ID_BOARD_INFO
	cte.offset              = 0; // board info is always at the beginning
	cte.length              = 512 * 8;
	cte.s2c_dma_present     = false;
	cte.s2c_dma_channel_num = 0;
	cte.c2s_dma_present     = false;
	cte.c2s_dma_channel_num = 0;
	cte.irq_count           = 0;
	cte.irq_base_num        = 0;
	err = probe_core_uio(0, pcard, "kpc_uio", cte);
	if (err) {
		dev_err(&pcard->pdev->dev, "%s: failed to add board_info core: %d\n",
			__func__, err);
		goto error;
	}

	return 0;

error:
	kp2000_remove_cores(pcard);
	mfd_remove_devices(PCARD_TO_DEV(pcard));
	return err;
}

void  kp2000_remove_cores(struct kp2000_device *pcard)
{
	struct list_head *ptr;
	struct list_head *next;

	list_for_each_safe(ptr, next, &pcard->uio_devices_list) {
		struct kpc_uio_device *kudev = list_entry(ptr, struct kpc_uio_device, list);

		uio_unregister_device(&kudev->uioinfo);
		device_unregister(kudev->dev);
		list_del(&kudev->list);
		kfree(kudev);
	}
}