Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
// SPDX-License-Identifier: GPL-2.0+
/*
 * pcmmio.c
 * Driver for Winsystems PC-104 based multifunction IO board.
 *
 * COMEDI - Linux Control and Measurement Device Interface
 * Copyright (C) 2007 Calin A. Culianu <calin@ajvar.org>
 */

/*
 * Driver: pcmmio
 * Description: A driver for the PCM-MIO multifunction board
 * Devices: [Winsystems] PCM-MIO (pcmmio)
 * Author: Calin Culianu <calin@ajvar.org>
 * Updated: Wed, May 16 2007 16:21:10 -0500
 * Status: works
 *
 * A driver for the PCM-MIO multifunction board from Winsystems. This
 * is a PC-104 based I/O board. It contains four subdevices:
 *
 *	subdevice 0 - 16 channels of 16-bit AI
 *	subdevice 1 - 8 channels of 16-bit AO
 *	subdevice 2 - first 24 channels of the 48 channel of DIO
 *			(with edge-triggered interrupt support)
 *	subdevice 3 - last 24 channels of the 48 channel DIO
 *			(no interrupt support for this bank of channels)
 *
 * Some notes:
 *
 * Synchronous reads and writes are the only things implemented for analog
 * input and output. The hardware itself can do streaming acquisition, etc.
 *
 * Asynchronous I/O for the DIO subdevices *is* implemented, however! They
 * are basically edge-triggered interrupts for any configuration of the
 * channels in subdevice 2.
 *
 * Also note that this interrupt support is untested.
 *
 * A few words about edge-detection IRQ support (commands on DIO):
 *
 * To use edge-detection IRQ support for the DIO subdevice, pass the IRQ
 * of the board to the comedi_config command. The board IRQ is not jumpered
 * but rather configured through software, so any IRQ from 1-15 is OK.
 *
 * Due to the genericity of the comedi API, you need to create a special
 * comedi_command in order to use edge-triggered interrupts for DIO.
 *
 * Use comedi_commands with TRIG_NOW.  Your callback will be called each
 * time an edge is detected on the specified DIO line(s), and the data
 * values will be two sample_t's, which should be concatenated to form
 * one 32-bit unsigned int. This value is the mask of channels that had
 * edges detected from your channel list. Note that the bits positions
 * in the mask correspond to positions in your chanlist when you
 * specified the command and *not* channel id's!
 *
 * To set the polarity of the edge-detection interrupts pass a nonzero value
 * for either CR_RANGE or CR_AREF for edge-up polarity, or a zero
 * value for both CR_RANGE and CR_AREF if you want edge-down polarity.
 *
 * Configuration Options:
 *   [0] - I/O port base address
 *   [1] - IRQ (optional -- for edge-detect interrupt support only,
 *		leave out if you don't need this feature)
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/slab.h>

#include "../comedidev.h"

/*
 * Register I/O map
 */
#define PCMMIO_AI_LSB_REG			0x00
#define PCMMIO_AI_MSB_REG			0x01
#define PCMMIO_AI_CMD_REG			0x02
#define PCMMIO_AI_CMD_SE			BIT(7)
#define PCMMIO_AI_CMD_ODD_CHAN			BIT(6)
#define PCMMIO_AI_CMD_CHAN_SEL(x)		(((x) & 0x3) << 4)
#define PCMMIO_AI_CMD_RANGE(x)			(((x) & 0x3) << 2)
#define PCMMIO_RESOURCE_REG			0x02
#define PCMMIO_RESOURCE_IRQ(x)			(((x) & 0xf) << 0)
#define PCMMIO_AI_STATUS_REG			0x03
#define PCMMIO_AI_STATUS_DATA_READY		BIT(7)
#define PCMMIO_AI_STATUS_DATA_DMA_PEND		BIT(6)
#define PCMMIO_AI_STATUS_CMD_DMA_PEND		BIT(5)
#define PCMMIO_AI_STATUS_IRQ_PEND		BIT(4)
#define PCMMIO_AI_STATUS_DATA_DRQ_ENA		BIT(2)
#define PCMMIO_AI_STATUS_REG_SEL		BIT(3)
#define PCMMIO_AI_STATUS_CMD_DRQ_ENA		BIT(1)
#define PCMMIO_AI_STATUS_IRQ_ENA		BIT(0)
#define PCMMIO_AI_RES_ENA_REG			0x03
#define PCMMIO_AI_RES_ENA_CMD_REG_ACCESS	(0 << 3)
#define PCMMIO_AI_RES_ENA_AI_RES_ACCESS		BIT(3)
#define PCMMIO_AI_RES_ENA_DIO_RES_ACCESS	BIT(4)
#define PCMMIO_AI_2ND_ADC_OFFSET		0x04

#define PCMMIO_AO_LSB_REG			0x08
#define PCMMIO_AO_LSB_SPAN(x)			(((x) & 0xf) << 0)
#define PCMMIO_AO_MSB_REG			0x09
#define PCMMIO_AO_CMD_REG			0x0a
#define PCMMIO_AO_CMD_WR_SPAN			(0x2 << 4)
#define PCMMIO_AO_CMD_WR_CODE			(0x3 << 4)
#define PCMMIO_AO_CMD_UPDATE			(0x4 << 4)
#define PCMMIO_AO_CMD_UPDATE_ALL		(0x5 << 4)
#define PCMMIO_AO_CMD_WR_SPAN_UPDATE		(0x6 << 4)
#define PCMMIO_AO_CMD_WR_CODE_UPDATE		(0x7 << 4)
#define PCMMIO_AO_CMD_WR_SPAN_UPDATE_ALL	(0x8 << 4)
#define PCMMIO_AO_CMD_WR_CODE_UPDATE_ALL	(0x9 << 4)
#define PCMMIO_AO_CMD_RD_B1_SPAN		(0xa << 4)
#define PCMMIO_AO_CMD_RD_B1_CODE		(0xb << 4)
#define PCMMIO_AO_CMD_RD_B2_SPAN		(0xc << 4)
#define PCMMIO_AO_CMD_RD_B2_CODE		(0xd << 4)
#define PCMMIO_AO_CMD_NOP			(0xf << 4)
#define PCMMIO_AO_CMD_CHAN_SEL(x)		(((x) & 0x03) << 1)
#define PCMMIO_AO_CMD_CHAN_SEL_ALL		(0x0f << 0)
#define PCMMIO_AO_STATUS_REG			0x0b
#define PCMMIO_AO_STATUS_DATA_READY		BIT(7)
#define PCMMIO_AO_STATUS_DATA_DMA_PEND		BIT(6)
#define PCMMIO_AO_STATUS_CMD_DMA_PEND		BIT(5)
#define PCMMIO_AO_STATUS_IRQ_PEND		BIT(4)
#define PCMMIO_AO_STATUS_DATA_DRQ_ENA		BIT(2)
#define PCMMIO_AO_STATUS_REG_SEL		BIT(3)
#define PCMMIO_AO_STATUS_CMD_DRQ_ENA		BIT(1)
#define PCMMIO_AO_STATUS_IRQ_ENA		BIT(0)
#define PCMMIO_AO_RESOURCE_ENA_REG		0x0b
#define PCMMIO_AO_2ND_DAC_OFFSET		0x04

/*
 * WinSystems WS16C48
 *
 * Offset    Page 0       Page 1       Page 2       Page 3
 * ------  -----------  -----------  -----------  -----------
 *  0x10   Port 0 I/O   Port 0 I/O   Port 0 I/O   Port 0 I/O
 *  0x11   Port 1 I/O   Port 1 I/O   Port 1 I/O   Port 1 I/O
 *  0x12   Port 2 I/O   Port 2 I/O   Port 2 I/O   Port 2 I/O
 *  0x13   Port 3 I/O   Port 3 I/O   Port 3 I/O   Port 3 I/O
 *  0x14   Port 4 I/O   Port 4 I/O   Port 4 I/O   Port 4 I/O
 *  0x15   Port 5 I/O   Port 5 I/O   Port 5 I/O   Port 5 I/O
 *  0x16   INT_PENDING  INT_PENDING  INT_PENDING  INT_PENDING
 *  0x17    Page/Lock    Page/Lock    Page/Lock    Page/Lock
 *  0x18       N/A         POL_0       ENAB_0       INT_ID0
 *  0x19       N/A         POL_1       ENAB_1       INT_ID1
 *  0x1a       N/A         POL_2       ENAB_2       INT_ID2
 */
#define PCMMIO_PORT_REG(x)			(0x10 + (x))
#define PCMMIO_INT_PENDING_REG			0x16
#define PCMMIO_PAGE_LOCK_REG			0x17
#define PCMMIO_LOCK_PORT(x)			((1 << (x)) & 0x3f)
#define PCMMIO_PAGE(x)				(((x) & 0x3) << 6)
#define PCMMIO_PAGE_MASK			PCMUIO_PAGE(3)
#define PCMMIO_PAGE_POL				1
#define PCMMIO_PAGE_ENAB			2
#define PCMMIO_PAGE_INT_ID			3
#define PCMMIO_PAGE_REG(x)			(0x18 + (x))

static const struct comedi_lrange pcmmio_ai_ranges = {
	4, {
		BIP_RANGE(5),
		BIP_RANGE(10),
		UNI_RANGE(5),
		UNI_RANGE(10)
	}
};

static const struct comedi_lrange pcmmio_ao_ranges = {
	6, {
		UNI_RANGE(5),
		UNI_RANGE(10),
		BIP_RANGE(5),
		BIP_RANGE(10),
		BIP_RANGE(2.5),
		RANGE(-2.5, 7.5)
	}
};

struct pcmmio_private {
	spinlock_t pagelock;	/* protects the page registers */
	spinlock_t spinlock;	/* protects the member variables */
	unsigned int enabled_mask;
	unsigned int active:1;
};

static void pcmmio_dio_write(struct comedi_device *dev, unsigned int val,
			     int page, int port)
{
	struct pcmmio_private *devpriv = dev->private;
	unsigned long iobase = dev->iobase;
	unsigned long flags;

	spin_lock_irqsave(&devpriv->pagelock, flags);
	if (page == 0) {
		/* Port registers are valid for any page */
		outb(val & 0xff, iobase + PCMMIO_PORT_REG(port + 0));
		outb((val >> 8) & 0xff, iobase + PCMMIO_PORT_REG(port + 1));
		outb((val >> 16) & 0xff, iobase + PCMMIO_PORT_REG(port + 2));
	} else {
		outb(PCMMIO_PAGE(page), iobase + PCMMIO_PAGE_LOCK_REG);
		outb(val & 0xff, iobase + PCMMIO_PAGE_REG(0));
		outb((val >> 8) & 0xff, iobase + PCMMIO_PAGE_REG(1));
		outb((val >> 16) & 0xff, iobase + PCMMIO_PAGE_REG(2));
	}
	spin_unlock_irqrestore(&devpriv->pagelock, flags);
}

static unsigned int pcmmio_dio_read(struct comedi_device *dev,
				    int page, int port)
{
	struct pcmmio_private *devpriv = dev->private;
	unsigned long iobase = dev->iobase;
	unsigned long flags;
	unsigned int val;

	spin_lock_irqsave(&devpriv->pagelock, flags);
	if (page == 0) {
		/* Port registers are valid for any page */
		val = inb(iobase + PCMMIO_PORT_REG(port + 0));
		val |= (inb(iobase + PCMMIO_PORT_REG(port + 1)) << 8);
		val |= (inb(iobase + PCMMIO_PORT_REG(port + 2)) << 16);
	} else {
		outb(PCMMIO_PAGE(page), iobase + PCMMIO_PAGE_LOCK_REG);
		val = inb(iobase + PCMMIO_PAGE_REG(0));
		val |= (inb(iobase + PCMMIO_PAGE_REG(1)) << 8);
		val |= (inb(iobase + PCMMIO_PAGE_REG(2)) << 16);
	}
	spin_unlock_irqrestore(&devpriv->pagelock, flags);

	return val;
}

/*
 * Each channel can be individually programmed for input or output.
 * Writing a '0' to a channel causes the corresponding output pin
 * to go to a high-z state (pulled high by an external 10K resistor).
 * This allows it to be used as an input. When used in the input mode,
 * a read reflects the inverted state of the I/O pin, such that a
 * high on the pin will read as a '0' in the register. Writing a '1'
 * to a bit position causes the pin to sink current (up to 12mA),
 * effectively pulling it low.
 */
static int pcmmio_dio_insn_bits(struct comedi_device *dev,
				struct comedi_subdevice *s,
				struct comedi_insn *insn,
				unsigned int *data)
{
	/* subdevice 2 uses ports 0-2, subdevice 3 uses ports 3-5 */
	int port = s->index == 2 ? 0 : 3;
	unsigned int chanmask = (1 << s->n_chan) - 1;
	unsigned int mask;
	unsigned int val;

	mask = comedi_dio_update_state(s, data);
	if (mask) {
		/*
		 * Outputs are inverted, invert the state and
		 * update the channels.
		 *
		 * The s->io_bits mask makes sure the input channels
		 * are '0' so that the outputs pins stay in a high
		 * z-state.
		 */
		val = ~s->state & chanmask;
		val &= s->io_bits;
		pcmmio_dio_write(dev, val, 0, port);
	}

	/* get inverted state of the channels from the port */
	val = pcmmio_dio_read(dev, 0, port);

	/* return the true state of the channels */
	data[1] = ~val & chanmask;

	return insn->n;
}

static int pcmmio_dio_insn_config(struct comedi_device *dev,
				  struct comedi_subdevice *s,
				  struct comedi_insn *insn,
				  unsigned int *data)
{
	/* subdevice 2 uses ports 0-2, subdevice 3 uses ports 3-5 */
	int port = s->index == 2 ? 0 : 3;
	int ret;

	ret = comedi_dio_insn_config(dev, s, insn, data, 0);
	if (ret)
		return ret;

	if (data[0] == INSN_CONFIG_DIO_INPUT)
		pcmmio_dio_write(dev, s->io_bits, 0, port);

	return insn->n;
}

static void pcmmio_reset(struct comedi_device *dev)
{
	/* Clear all the DIO port bits */
	pcmmio_dio_write(dev, 0, 0, 0);
	pcmmio_dio_write(dev, 0, 0, 3);

	/* Clear all the paged registers */
	pcmmio_dio_write(dev, 0, PCMMIO_PAGE_POL, 0);
	pcmmio_dio_write(dev, 0, PCMMIO_PAGE_ENAB, 0);
	pcmmio_dio_write(dev, 0, PCMMIO_PAGE_INT_ID, 0);
}

/* devpriv->spinlock is already locked */
static void pcmmio_stop_intr(struct comedi_device *dev,
			     struct comedi_subdevice *s)
{
	struct pcmmio_private *devpriv = dev->private;

	devpriv->enabled_mask = 0;
	devpriv->active = 0;
	s->async->inttrig = NULL;

	/* disable all dio interrupts */
	pcmmio_dio_write(dev, 0, PCMMIO_PAGE_ENAB, 0);
}

static void pcmmio_handle_dio_intr(struct comedi_device *dev,
				   struct comedi_subdevice *s,
				   unsigned int triggered)
{
	struct pcmmio_private *devpriv = dev->private;
	struct comedi_cmd *cmd = &s->async->cmd;
	unsigned int val = 0;
	unsigned long flags;
	int i;

	spin_lock_irqsave(&devpriv->spinlock, flags);

	if (!devpriv->active)
		goto done;

	if (!(triggered & devpriv->enabled_mask))
		goto done;

	for (i = 0; i < cmd->chanlist_len; i++) {
		unsigned int chan = CR_CHAN(cmd->chanlist[i]);

		if (triggered & (1 << chan))
			val |= (1 << i);
	}

	comedi_buf_write_samples(s, &val, 1);

	if (cmd->stop_src == TRIG_COUNT &&
	    s->async->scans_done >= cmd->stop_arg)
		s->async->events |= COMEDI_CB_EOA;

done:
	spin_unlock_irqrestore(&devpriv->spinlock, flags);

	comedi_handle_events(dev, s);
}

static irqreturn_t interrupt_pcmmio(int irq, void *d)
{
	struct comedi_device *dev = d;
	struct comedi_subdevice *s = dev->read_subdev;
	unsigned int triggered;
	unsigned char int_pend;

	/* are there any interrupts pending */
	int_pend = inb(dev->iobase + PCMMIO_INT_PENDING_REG) & 0x07;
	if (!int_pend)
		return IRQ_NONE;

	/* get, and clear, the pending interrupts */
	triggered = pcmmio_dio_read(dev, PCMMIO_PAGE_INT_ID, 0);
	pcmmio_dio_write(dev, 0, PCMMIO_PAGE_INT_ID, 0);

	pcmmio_handle_dio_intr(dev, s, triggered);

	return IRQ_HANDLED;
}

/* devpriv->spinlock is already locked */
static void pcmmio_start_intr(struct comedi_device *dev,
			      struct comedi_subdevice *s)
{
	struct pcmmio_private *devpriv = dev->private;
	struct comedi_cmd *cmd = &s->async->cmd;
	unsigned int bits = 0;
	unsigned int pol_bits = 0;
	int i;

	devpriv->enabled_mask = 0;
	devpriv->active = 1;
	if (cmd->chanlist) {
		for (i = 0; i < cmd->chanlist_len; i++) {
			unsigned int chanspec = cmd->chanlist[i];
			unsigned int chan = CR_CHAN(chanspec);
			unsigned int range = CR_RANGE(chanspec);
			unsigned int aref = CR_AREF(chanspec);

			bits |= (1 << chan);
			pol_bits |= (((aref || range) ? 1 : 0) << chan);
		}
	}
	bits &= ((1 << s->n_chan) - 1);
	devpriv->enabled_mask = bits;

	/* set polarity and enable interrupts */
	pcmmio_dio_write(dev, pol_bits, PCMMIO_PAGE_POL, 0);
	pcmmio_dio_write(dev, bits, PCMMIO_PAGE_ENAB, 0);
}

static int pcmmio_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
{
	struct pcmmio_private *devpriv = dev->private;
	unsigned long flags;

	spin_lock_irqsave(&devpriv->spinlock, flags);
	if (devpriv->active)
		pcmmio_stop_intr(dev, s);
	spin_unlock_irqrestore(&devpriv->spinlock, flags);

	return 0;
}

static int pcmmio_inttrig_start_intr(struct comedi_device *dev,
				     struct comedi_subdevice *s,
				     unsigned int trig_num)
{
	struct pcmmio_private *devpriv = dev->private;
	struct comedi_cmd *cmd = &s->async->cmd;
	unsigned long flags;

	if (trig_num != cmd->start_arg)
		return -EINVAL;

	spin_lock_irqsave(&devpriv->spinlock, flags);
	s->async->inttrig = NULL;
	if (devpriv->active)
		pcmmio_start_intr(dev, s);
	spin_unlock_irqrestore(&devpriv->spinlock, flags);

	return 1;
}

/*
 * 'do_cmd' function for an 'INTERRUPT' subdevice.
 */
static int pcmmio_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
{
	struct pcmmio_private *devpriv = dev->private;
	struct comedi_cmd *cmd = &s->async->cmd;
	unsigned long flags;

	spin_lock_irqsave(&devpriv->spinlock, flags);
	devpriv->active = 1;

	/* Set up start of acquisition. */
	if (cmd->start_src == TRIG_INT)
		s->async->inttrig = pcmmio_inttrig_start_intr;
	else	/* TRIG_NOW */
		pcmmio_start_intr(dev, s);

	spin_unlock_irqrestore(&devpriv->spinlock, flags);

	return 0;
}

static int pcmmio_cmdtest(struct comedi_device *dev,
			  struct comedi_subdevice *s,
			  struct comedi_cmd *cmd)
{
	int err = 0;

	/* Step 1 : check if triggers are trivially valid */

	err |= comedi_check_trigger_src(&cmd->start_src, TRIG_NOW | TRIG_INT);
	err |= comedi_check_trigger_src(&cmd->scan_begin_src, TRIG_EXT);
	err |= comedi_check_trigger_src(&cmd->convert_src, TRIG_NOW);
	err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
	err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);

	if (err)
		return 1;

	/* Step 2a : make sure trigger sources are unique */

	err |= comedi_check_trigger_is_unique(cmd->start_src);
	err |= comedi_check_trigger_is_unique(cmd->stop_src);

	/* Step 2b : and mutually compatible */

	if (err)
		return 2;

	/* Step 3: check if arguments are trivially valid */

	err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);
	err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, 0);
	err |= comedi_check_trigger_arg_is(&cmd->convert_arg, 0);
	err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg,
					   cmd->chanlist_len);

	if (cmd->stop_src == TRIG_COUNT)
		err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1);
	else	/* TRIG_NONE */
		err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0);

	if (err)
		return 3;

	/* step 4: fix up any arguments */

	/* if (err) return 4; */

	return 0;
}

static int pcmmio_ai_eoc(struct comedi_device *dev,
			 struct comedi_subdevice *s,
			 struct comedi_insn *insn,
			 unsigned long context)
{
	unsigned char status;

	status = inb(dev->iobase + PCMMIO_AI_STATUS_REG);
	if (status & PCMMIO_AI_STATUS_DATA_READY)
		return 0;
	return -EBUSY;
}

static int pcmmio_ai_insn_read(struct comedi_device *dev,
			       struct comedi_subdevice *s,
			       struct comedi_insn *insn,
			       unsigned int *data)
{
	unsigned long iobase = dev->iobase;
	unsigned int chan = CR_CHAN(insn->chanspec);
	unsigned int range = CR_RANGE(insn->chanspec);
	unsigned int aref = CR_AREF(insn->chanspec);
	unsigned char cmd = 0;
	unsigned int val;
	int ret;
	int i;

	/*
	 * The PCM-MIO uses two Linear Tech LTC1859CG 8-channel A/D converters.
	 * The devices use a full duplex serial interface which transmits and
	 * receives data simultaneously. An 8-bit command is shifted into the
	 * ADC interface to configure it for the next conversion. At the same
	 * time, the data from the previous conversion is shifted out of the
	 * device. Consequently, the conversion result is delayed by one
	 * conversion from the command word.
	 *
	 * Setup the cmd for the conversions then do a dummy conversion to
	 * flush the junk data. Then do each conversion requested by the
	 * comedi_insn. Note that the last conversion will leave junk data
	 * in ADC which will get flushed on the next comedi_insn.
	 */

	if (chan > 7) {
		chan -= 8;
		iobase += PCMMIO_AI_2ND_ADC_OFFSET;
	}

	if (aref == AREF_GROUND)
		cmd |= PCMMIO_AI_CMD_SE;
	if (chan % 2)
		cmd |= PCMMIO_AI_CMD_ODD_CHAN;
	cmd |= PCMMIO_AI_CMD_CHAN_SEL(chan / 2);
	cmd |= PCMMIO_AI_CMD_RANGE(range);

	outb(cmd, iobase + PCMMIO_AI_CMD_REG);

	ret = comedi_timeout(dev, s, insn, pcmmio_ai_eoc, 0);
	if (ret)
		return ret;

	val = inb(iobase + PCMMIO_AI_LSB_REG);
	val |= inb(iobase + PCMMIO_AI_MSB_REG) << 8;

	for (i = 0; i < insn->n; i++) {
		outb(cmd, iobase + PCMMIO_AI_CMD_REG);

		ret = comedi_timeout(dev, s, insn, pcmmio_ai_eoc, 0);
		if (ret)
			return ret;

		val = inb(iobase + PCMMIO_AI_LSB_REG);
		val |= inb(iobase + PCMMIO_AI_MSB_REG) << 8;

		/* bipolar data is two's complement */
		if (comedi_range_is_bipolar(s, range))
			val = comedi_offset_munge(s, val);

		data[i] = val;
	}

	return insn->n;
}

static int pcmmio_ao_eoc(struct comedi_device *dev,
			 struct comedi_subdevice *s,
			 struct comedi_insn *insn,
			 unsigned long context)
{
	unsigned char status;

	status = inb(dev->iobase + PCMMIO_AO_STATUS_REG);
	if (status & PCMMIO_AO_STATUS_DATA_READY)
		return 0;
	return -EBUSY;
}

static int pcmmio_ao_insn_write(struct comedi_device *dev,
				struct comedi_subdevice *s,
				struct comedi_insn *insn,
				unsigned int *data)
{
	unsigned long iobase = dev->iobase;
	unsigned int chan = CR_CHAN(insn->chanspec);
	unsigned int range = CR_RANGE(insn->chanspec);
	unsigned char cmd = 0;
	int ret;
	int i;

	/*
	 * The PCM-MIO has two Linear Tech LTC2704 DAC devices. Each device
	 * is a 4-channel converter with software-selectable output range.
	 */

	if (chan > 3) {
		cmd |= PCMMIO_AO_CMD_CHAN_SEL(chan - 4);
		iobase += PCMMIO_AO_2ND_DAC_OFFSET;
	} else {
		cmd |= PCMMIO_AO_CMD_CHAN_SEL(chan);
	}

	/* set the range for the channel */
	outb(PCMMIO_AO_LSB_SPAN(range), iobase + PCMMIO_AO_LSB_REG);
	outb(0, iobase + PCMMIO_AO_MSB_REG);
	outb(cmd | PCMMIO_AO_CMD_WR_SPAN_UPDATE, iobase + PCMMIO_AO_CMD_REG);

	ret = comedi_timeout(dev, s, insn, pcmmio_ao_eoc, 0);
	if (ret)
		return ret;

	for (i = 0; i < insn->n; i++) {
		unsigned int val = data[i];

		/* write the data to the channel */
		outb(val & 0xff, iobase + PCMMIO_AO_LSB_REG);
		outb((val >> 8) & 0xff, iobase + PCMMIO_AO_MSB_REG);
		outb(cmd | PCMMIO_AO_CMD_WR_CODE_UPDATE,
		     iobase + PCMMIO_AO_CMD_REG);

		ret = comedi_timeout(dev, s, insn, pcmmio_ao_eoc, 0);
		if (ret)
			return ret;

		s->readback[chan] = val;
	}

	return insn->n;
}

static int pcmmio_attach(struct comedi_device *dev, struct comedi_devconfig *it)
{
	struct pcmmio_private *devpriv;
	struct comedi_subdevice *s;
	int ret;

	ret = comedi_request_region(dev, it->options[0], 32);
	if (ret)
		return ret;

	devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
	if (!devpriv)
		return -ENOMEM;

	spin_lock_init(&devpriv->pagelock);
	spin_lock_init(&devpriv->spinlock);

	pcmmio_reset(dev);

	if (it->options[1]) {
		ret = request_irq(it->options[1], interrupt_pcmmio, 0,
				  dev->board_name, dev);
		if (ret == 0) {
			dev->irq = it->options[1];

			/* configure the interrupt routing on the board */
			outb(PCMMIO_AI_RES_ENA_DIO_RES_ACCESS,
			     dev->iobase + PCMMIO_AI_RES_ENA_REG);
			outb(PCMMIO_RESOURCE_IRQ(dev->irq),
			     dev->iobase + PCMMIO_RESOURCE_REG);
		}
	}

	ret = comedi_alloc_subdevices(dev, 4);
	if (ret)
		return ret;

	/* Analog Input subdevice */
	s = &dev->subdevices[0];
	s->type		= COMEDI_SUBD_AI;
	s->subdev_flags	= SDF_READABLE | SDF_GROUND | SDF_DIFF;
	s->n_chan	= 16;
	s->maxdata	= 0xffff;
	s->range_table	= &pcmmio_ai_ranges;
	s->insn_read	= pcmmio_ai_insn_read;

	/* initialize the resource enable register by clearing it */
	outb(PCMMIO_AI_RES_ENA_CMD_REG_ACCESS,
	     dev->iobase + PCMMIO_AI_RES_ENA_REG);
	outb(PCMMIO_AI_RES_ENA_CMD_REG_ACCESS,
	     dev->iobase + PCMMIO_AI_RES_ENA_REG + PCMMIO_AI_2ND_ADC_OFFSET);

	/* Analog Output subdevice */
	s = &dev->subdevices[1];
	s->type		= COMEDI_SUBD_AO;
	s->subdev_flags	= SDF_READABLE;
	s->n_chan	= 8;
	s->maxdata	= 0xffff;
	s->range_table	= &pcmmio_ao_ranges;
	s->insn_write	= pcmmio_ao_insn_write;

	ret = comedi_alloc_subdev_readback(s);
	if (ret)
		return ret;

	/* initialize the resource enable register by clearing it */
	outb(0, dev->iobase + PCMMIO_AO_RESOURCE_ENA_REG);
	outb(0, dev->iobase + PCMMIO_AO_2ND_DAC_OFFSET +
		PCMMIO_AO_RESOURCE_ENA_REG);

	/* Digital I/O subdevice with interrupt support */
	s = &dev->subdevices[2];
	s->type		= COMEDI_SUBD_DIO;
	s->subdev_flags	= SDF_READABLE | SDF_WRITABLE;
	s->n_chan	= 24;
	s->maxdata	= 1;
	s->len_chanlist	= 1;
	s->range_table	= &range_digital;
	s->insn_bits	= pcmmio_dio_insn_bits;
	s->insn_config	= pcmmio_dio_insn_config;
	if (dev->irq) {
		dev->read_subdev = s;
		s->subdev_flags	|= SDF_CMD_READ | SDF_LSAMPL | SDF_PACKED;
		s->len_chanlist	= s->n_chan;
		s->cancel	= pcmmio_cancel;
		s->do_cmd	= pcmmio_cmd;
		s->do_cmdtest	= pcmmio_cmdtest;
	}

	/* Digital I/O subdevice */
	s = &dev->subdevices[3];
	s->type		= COMEDI_SUBD_DIO;
	s->subdev_flags	= SDF_READABLE | SDF_WRITABLE;
	s->n_chan	= 24;
	s->maxdata	= 1;
	s->range_table	= &range_digital;
	s->insn_bits	= pcmmio_dio_insn_bits;
	s->insn_config	= pcmmio_dio_insn_config;

	return 0;
}

static struct comedi_driver pcmmio_driver = {
	.driver_name	= "pcmmio",
	.module		= THIS_MODULE,
	.attach		= pcmmio_attach,
	.detach		= comedi_legacy_detach,
};
module_comedi_driver(pcmmio_driver);

MODULE_AUTHOR("Comedi http://www.comedi.org");
MODULE_DESCRIPTION("Comedi driver for Winsystems PCM-MIO PC/104 board");
MODULE_LICENSE("GPL");