Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
// SPDX-License-Identifier: GPL-2.0
/*
 * Analog Devices ADF4371 SPI Wideband Synthesizer driver
 *
 * Copyright 2019 Analog Devices Inc.
 */
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/gcd.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/sysfs.h>
#include <linux/spi/spi.h>

#include <linux/iio/iio.h>

/* Registers address macro */
#define ADF4371_REG(x)			(x)

/* ADF4371_REG0 */
#define ADF4371_ADDR_ASC_MSK		BIT(2)
#define ADF4371_ADDR_ASC(x)		FIELD_PREP(ADF4371_ADDR_ASC_MSK, x)
#define ADF4371_ADDR_ASC_R_MSK		BIT(5)
#define ADF4371_ADDR_ASC_R(x)		FIELD_PREP(ADF4371_ADDR_ASC_R_MSK, x)
#define ADF4371_RESET_CMD		0x81

/* ADF4371_REG17 */
#define ADF4371_FRAC2WORD_L_MSK		GENMASK(7, 1)
#define ADF4371_FRAC2WORD_L(x)		FIELD_PREP(ADF4371_FRAC2WORD_L_MSK, x)
#define ADF4371_FRAC1WORD_MSK		BIT(0)
#define ADF4371_FRAC1WORD(x)		FIELD_PREP(ADF4371_FRAC1WORD_MSK, x)

/* ADF4371_REG18 */
#define ADF4371_FRAC2WORD_H_MSK		GENMASK(6, 0)
#define ADF4371_FRAC2WORD_H(x)		FIELD_PREP(ADF4371_FRAC2WORD_H_MSK, x)

/* ADF4371_REG1A */
#define ADF4371_MOD2WORD_MSK		GENMASK(5, 0)
#define ADF4371_MOD2WORD(x)		FIELD_PREP(ADF4371_MOD2WORD_MSK, x)

/* ADF4371_REG24 */
#define ADF4371_RF_DIV_SEL_MSK		GENMASK(6, 4)
#define ADF4371_RF_DIV_SEL(x)		FIELD_PREP(ADF4371_RF_DIV_SEL_MSK, x)

/* ADF4371_REG25 */
#define ADF4371_MUTE_LD_MSK		BIT(7)
#define ADF4371_MUTE_LD(x)		FIELD_PREP(ADF4371_MUTE_LD_MSK, x)

/* ADF4371_REG32 */
#define ADF4371_TIMEOUT_MSK		GENMASK(1, 0)
#define ADF4371_TIMEOUT(x)		FIELD_PREP(ADF4371_TIMEOUT_MSK, x)

/* ADF4371_REG34 */
#define ADF4371_VCO_ALC_TOUT_MSK	GENMASK(4, 0)
#define ADF4371_VCO_ALC_TOUT(x)		FIELD_PREP(ADF4371_VCO_ALC_TOUT_MSK, x)

/* Specifications */
#define ADF4371_MIN_VCO_FREQ		4000000000ULL /* 4000 MHz */
#define ADF4371_MAX_VCO_FREQ		8000000000ULL /* 8000 MHz */
#define ADF4371_MAX_OUT_RF8_FREQ	ADF4371_MAX_VCO_FREQ /* Hz */
#define ADF4371_MIN_OUT_RF8_FREQ	(ADF4371_MIN_VCO_FREQ / 64) /* Hz */
#define ADF4371_MAX_OUT_RF16_FREQ	(ADF4371_MAX_VCO_FREQ * 2) /* Hz */
#define ADF4371_MIN_OUT_RF16_FREQ	(ADF4371_MIN_VCO_FREQ * 2) /* Hz */
#define ADF4371_MAX_OUT_RF32_FREQ	(ADF4371_MAX_VCO_FREQ * 4) /* Hz */
#define ADF4371_MIN_OUT_RF32_FREQ	(ADF4371_MIN_VCO_FREQ * 4) /* Hz */

#define ADF4371_MAX_FREQ_PFD		250000000UL /* Hz */
#define ADF4371_MAX_FREQ_REFIN		600000000UL /* Hz */

/* MOD1 is a 24-bit primary modulus with fixed value of 2^25 */
#define ADF4371_MODULUS1		33554432ULL
/* MOD2 is the programmable, 14-bit auxiliary fractional modulus */
#define ADF4371_MAX_MODULUS2		BIT(14)

#define ADF4371_CHECK_RANGE(freq, range) \
	((freq > ADF4371_MAX_ ## range) || (freq < ADF4371_MIN_ ## range))

enum {
	ADF4371_FREQ,
	ADF4371_POWER_DOWN,
	ADF4371_CHANNEL_NAME
};

enum {
	ADF4371_CH_RF8,
	ADF4371_CH_RFAUX8,
	ADF4371_CH_RF16,
	ADF4371_CH_RF32
};

enum adf4371_variant {
	ADF4371,
	ADF4372
};

struct adf4371_pwrdown {
	unsigned int reg;
	unsigned int bit;
};

static const char * const adf4371_ch_names[] = {
	"RF8x", "RFAUX8x", "RF16x", "RF32x"
};

static const struct adf4371_pwrdown adf4371_pwrdown_ch[4] = {
	[ADF4371_CH_RF8] = { ADF4371_REG(0x25), 2 },
	[ADF4371_CH_RFAUX8] = { ADF4371_REG(0x72), 3 },
	[ADF4371_CH_RF16] = { ADF4371_REG(0x25), 3 },
	[ADF4371_CH_RF32] = { ADF4371_REG(0x25), 4 },
};

static const struct reg_sequence adf4371_reg_defaults[] = {
	{ ADF4371_REG(0x0),  0x18 },
	{ ADF4371_REG(0x12), 0x40 },
	{ ADF4371_REG(0x1E), 0x48 },
	{ ADF4371_REG(0x20), 0x14 },
	{ ADF4371_REG(0x22), 0x00 },
	{ ADF4371_REG(0x23), 0x00 },
	{ ADF4371_REG(0x24), 0x80 },
	{ ADF4371_REG(0x25), 0x07 },
	{ ADF4371_REG(0x27), 0xC5 },
	{ ADF4371_REG(0x28), 0x83 },
	{ ADF4371_REG(0x2C), 0x44 },
	{ ADF4371_REG(0x2D), 0x11 },
	{ ADF4371_REG(0x2E), 0x12 },
	{ ADF4371_REG(0x2F), 0x94 },
	{ ADF4371_REG(0x32), 0x04 },
	{ ADF4371_REG(0x35), 0xFA },
	{ ADF4371_REG(0x36), 0x30 },
	{ ADF4371_REG(0x39), 0x07 },
	{ ADF4371_REG(0x3A), 0x55 },
	{ ADF4371_REG(0x3E), 0x0C },
	{ ADF4371_REG(0x3F), 0x80 },
	{ ADF4371_REG(0x40), 0x50 },
	{ ADF4371_REG(0x41), 0x28 },
	{ ADF4371_REG(0x47), 0xC0 },
	{ ADF4371_REG(0x52), 0xF4 },
	{ ADF4371_REG(0x70), 0x03 },
	{ ADF4371_REG(0x71), 0x60 },
	{ ADF4371_REG(0x72), 0x32 },
};

static const struct regmap_config adf4371_regmap_config = {
	.reg_bits = 16,
	.val_bits = 8,
	.read_flag_mask = BIT(7),
};

struct adf4371_chip_info {
	unsigned int num_channels;
	const struct iio_chan_spec *channels;
};

struct adf4371_state {
	struct spi_device *spi;
	struct regmap *regmap;
	struct clk *clkin;
	/*
	 * Lock for accessing device registers. Some operations require
	 * multiple consecutive R/W operations, during which the device
	 * shouldn't be interrupted. The buffers are also shared across
	 * all operations so need to be protected on stand alone reads and
	 * writes.
	 */
	struct mutex lock;
	const struct adf4371_chip_info *chip_info;
	unsigned long clkin_freq;
	unsigned long fpfd;
	unsigned int integer;
	unsigned int fract1;
	unsigned int fract2;
	unsigned int mod2;
	unsigned int rf_div_sel;
	unsigned int ref_div_factor;
	u8 buf[10] ____cacheline_aligned;
};

static unsigned long long adf4371_pll_fract_n_get_rate(struct adf4371_state *st,
						       u32 channel)
{
	unsigned long long val, tmp;
	unsigned int ref_div_sel;

	val = (((u64)st->integer * ADF4371_MODULUS1) + st->fract1) * st->fpfd;
	tmp = (u64)st->fract2 * st->fpfd;
	do_div(tmp, st->mod2);
	val += tmp + ADF4371_MODULUS1 / 2;

	if (channel == ADF4371_CH_RF8 || channel == ADF4371_CH_RFAUX8)
		ref_div_sel = st->rf_div_sel;
	else
		ref_div_sel = 0;

	do_div(val, ADF4371_MODULUS1 * (1 << ref_div_sel));

	if (channel == ADF4371_CH_RF16)
		val <<= 1;
	else if (channel == ADF4371_CH_RF32)
		val <<= 2;

	return val;
}

static void adf4371_pll_fract_n_compute(unsigned long long vco,
				       unsigned long long pfd,
				       unsigned int *integer,
				       unsigned int *fract1,
				       unsigned int *fract2,
				       unsigned int *mod2)
{
	unsigned long long tmp;
	u32 gcd_div;

	tmp = do_div(vco, pfd);
	tmp = tmp * ADF4371_MODULUS1;
	*fract2 = do_div(tmp, pfd);

	*integer = vco;
	*fract1 = tmp;

	*mod2 = pfd;

	while (*mod2 > ADF4371_MAX_MODULUS2) {
		*mod2 >>= 1;
		*fract2 >>= 1;
	}

	gcd_div = gcd(*fract2, *mod2);
	*mod2 /= gcd_div;
	*fract2 /= gcd_div;
}

static int adf4371_set_freq(struct adf4371_state *st, unsigned long long freq,
			    unsigned int channel)
{
	u32 cp_bleed;
	u8 int_mode = 0;
	int ret;

	switch (channel) {
	case ADF4371_CH_RF8:
	case ADF4371_CH_RFAUX8:
		if (ADF4371_CHECK_RANGE(freq, OUT_RF8_FREQ))
			return -EINVAL;

		st->rf_div_sel = 0;

		while (freq < ADF4371_MIN_VCO_FREQ) {
			freq <<= 1;
			st->rf_div_sel++;
		}
		break;
	case ADF4371_CH_RF16:
		/* ADF4371 RF16 8000...16000 MHz */
		if (ADF4371_CHECK_RANGE(freq, OUT_RF16_FREQ))
			return -EINVAL;

		freq >>= 1;
		break;
	case ADF4371_CH_RF32:
		/* ADF4371 RF32 16000...32000 MHz */
		if (ADF4371_CHECK_RANGE(freq, OUT_RF32_FREQ))
			return -EINVAL;

		freq >>= 2;
		break;
	default:
		return -EINVAL;
	}

	adf4371_pll_fract_n_compute(freq, st->fpfd, &st->integer, &st->fract1,
				    &st->fract2, &st->mod2);
	st->buf[0] = st->integer >> 8;
	st->buf[1] = 0x40; /* REG12 default */
	st->buf[2] = 0x00;
	st->buf[3] = st->fract1 & 0xFF;
	st->buf[4] = st->fract1 >> 8;
	st->buf[5] = st->fract1 >> 16;
	st->buf[6] = ADF4371_FRAC2WORD_L(st->fract2 & 0x7F) |
		     ADF4371_FRAC1WORD(st->fract1 >> 24);
	st->buf[7] = ADF4371_FRAC2WORD_H(st->fract2 >> 7);
	st->buf[8] = st->mod2 & 0xFF;
	st->buf[9] = ADF4371_MOD2WORD(st->mod2 >> 8);

	ret = regmap_bulk_write(st->regmap, ADF4371_REG(0x11), st->buf, 10);
	if (ret < 0)
		return ret;
	/*
	 * The R counter allows the input reference frequency to be
	 * divided down to produce the reference clock to the PFD
	 */
	ret = regmap_write(st->regmap, ADF4371_REG(0x1F), st->ref_div_factor);
	if (ret < 0)
		return ret;

	ret = regmap_update_bits(st->regmap, ADF4371_REG(0x24),
				 ADF4371_RF_DIV_SEL_MSK,
				 ADF4371_RF_DIV_SEL(st->rf_div_sel));
	if (ret < 0)
		return ret;

	cp_bleed = DIV_ROUND_UP(400 * 1750, st->integer * 375);
	cp_bleed = clamp(cp_bleed, 1U, 255U);
	ret = regmap_write(st->regmap, ADF4371_REG(0x26), cp_bleed);
	if (ret < 0)
		return ret;
	/*
	 * Set to 1 when in INT mode (when FRAC1 = FRAC2 = 0),
	 * and set to 0 when in FRAC mode.
	 */
	if (st->fract1 == 0 && st->fract2 == 0)
		int_mode = 0x01;

	ret = regmap_write(st->regmap, ADF4371_REG(0x2B), int_mode);
	if (ret < 0)
		return ret;

	return regmap_write(st->regmap, ADF4371_REG(0x10), st->integer & 0xFF);
}

static ssize_t adf4371_read(struct iio_dev *indio_dev,
			    uintptr_t private,
			    const struct iio_chan_spec *chan,
			    char *buf)
{
	struct adf4371_state *st = iio_priv(indio_dev);
	unsigned long long val = 0;
	unsigned int readval, reg, bit;
	int ret;

	switch ((u32)private) {
	case ADF4371_FREQ:
		val = adf4371_pll_fract_n_get_rate(st, chan->channel);
		ret = regmap_read(st->regmap, ADF4371_REG(0x7C), &readval);
		if (ret < 0)
			break;

		if (readval == 0x00) {
			dev_dbg(&st->spi->dev, "PLL un-locked\n");
			ret = -EBUSY;
		}
		break;
	case ADF4371_POWER_DOWN:
		reg = adf4371_pwrdown_ch[chan->channel].reg;
		bit = adf4371_pwrdown_ch[chan->channel].bit;

		ret = regmap_read(st->regmap, reg, &readval);
		if (ret < 0)
			break;

		val = !(readval & BIT(bit));
		break;
	case ADF4371_CHANNEL_NAME:
		return sprintf(buf, "%s\n", adf4371_ch_names[chan->channel]);
	default:
		ret = -EINVAL;
		val = 0;
		break;
	}

	return ret < 0 ? ret : sprintf(buf, "%llu\n", val);
}

static ssize_t adf4371_write(struct iio_dev *indio_dev,
			     uintptr_t private,
			     const struct iio_chan_spec *chan,
			     const char *buf, size_t len)
{
	struct adf4371_state *st = iio_priv(indio_dev);
	unsigned long long freq;
	bool power_down;
	unsigned int bit, readval, reg;
	int ret;

	mutex_lock(&st->lock);
	switch ((u32)private) {
	case ADF4371_FREQ:
		ret = kstrtoull(buf, 10, &freq);
		if (ret)
			break;

		ret = adf4371_set_freq(st, freq, chan->channel);
		break;
	case ADF4371_POWER_DOWN:
		ret = kstrtobool(buf, &power_down);
		if (ret)
			break;

		reg = adf4371_pwrdown_ch[chan->channel].reg;
		bit = adf4371_pwrdown_ch[chan->channel].bit;
		ret = regmap_read(st->regmap, reg, &readval);
		if (ret < 0)
			break;

		readval &= ~BIT(bit);
		readval |= (!power_down << bit);

		ret = regmap_write(st->regmap, reg, readval);
		break;
	default:
		ret = -EINVAL;
		break;
	}
	mutex_unlock(&st->lock);

	return ret ? ret : len;
}

#define _ADF4371_EXT_INFO(_name, _ident) { \
		.name = _name, \
		.read = adf4371_read, \
		.write = adf4371_write, \
		.private = _ident, \
		.shared = IIO_SEPARATE, \
}

static const struct iio_chan_spec_ext_info adf4371_ext_info[] = {
	/*
	 * Ideally we use IIO_CHAN_INFO_FREQUENCY, but there are
	 * values > 2^32 in order to support the entire frequency range
	 * in Hz. Using scale is a bit ugly.
	 */
	_ADF4371_EXT_INFO("frequency", ADF4371_FREQ),
	_ADF4371_EXT_INFO("powerdown", ADF4371_POWER_DOWN),
	_ADF4371_EXT_INFO("name", ADF4371_CHANNEL_NAME),
	{ },
};

#define ADF4371_CHANNEL(index) { \
		.type = IIO_ALTVOLTAGE, \
		.output = 1, \
		.channel = index, \
		.ext_info = adf4371_ext_info, \
		.indexed = 1, \
	}

static const struct iio_chan_spec adf4371_chan[] = {
	ADF4371_CHANNEL(ADF4371_CH_RF8),
	ADF4371_CHANNEL(ADF4371_CH_RFAUX8),
	ADF4371_CHANNEL(ADF4371_CH_RF16),
	ADF4371_CHANNEL(ADF4371_CH_RF32),
};

static const struct adf4371_chip_info adf4371_chip_info[] = {
	[ADF4371] = {
		.channels = adf4371_chan,
		.num_channels = 4,
	},
	[ADF4372] = {
		.channels = adf4371_chan,
		.num_channels = 3,
	}
};

static int adf4371_reg_access(struct iio_dev *indio_dev,
			      unsigned int reg,
			      unsigned int writeval,
			      unsigned int *readval)
{
	struct adf4371_state *st = iio_priv(indio_dev);

	if (readval)
		return regmap_read(st->regmap, reg, readval);
	else
		return regmap_write(st->regmap, reg, writeval);
}

static const struct iio_info adf4371_info = {
	.debugfs_reg_access = &adf4371_reg_access,
};

static int adf4371_setup(struct adf4371_state *st)
{
	unsigned int synth_timeout = 2, timeout = 1, vco_alc_timeout = 1;
	unsigned int vco_band_div, tmp;
	int ret;

	/* Perform a software reset */
	ret = regmap_write(st->regmap, ADF4371_REG(0x0), ADF4371_RESET_CMD);
	if (ret < 0)
		return ret;

	ret = regmap_multi_reg_write(st->regmap, adf4371_reg_defaults,
				     ARRAY_SIZE(adf4371_reg_defaults));
	if (ret < 0)
		return ret;

	/* Mute to Lock Detect */
	if (device_property_read_bool(&st->spi->dev, "adi,mute-till-lock-en")) {
		ret = regmap_update_bits(st->regmap, ADF4371_REG(0x25),
					 ADF4371_MUTE_LD_MSK,
					 ADF4371_MUTE_LD(1));
		if (ret < 0)
			return ret;
	}

	/* Set address in ascending order, so the bulk_write() will work */
	ret = regmap_update_bits(st->regmap, ADF4371_REG(0x0),
				 ADF4371_ADDR_ASC_MSK | ADF4371_ADDR_ASC_R_MSK,
				 ADF4371_ADDR_ASC(1) | ADF4371_ADDR_ASC_R(1));
	if (ret < 0)
		return ret;
	/*
	 * Calculate and maximize PFD frequency
	 * fPFD = REFIN × ((1 + D)/(R × (1 + T)))
	 * Where D is the REFIN doubler bit, T is the reference divide by 2,
	 * R is the reference division factor
	 * TODO: it is assumed D and T equal 0.
	 */
	do {
		st->ref_div_factor++;
		st->fpfd = st->clkin_freq / st->ref_div_factor;
	} while (st->fpfd > ADF4371_MAX_FREQ_PFD);

	/* Calculate Timeouts */
	vco_band_div = DIV_ROUND_UP(st->fpfd, 2400000U);

	tmp = DIV_ROUND_CLOSEST(st->fpfd, 1000000U);
	do {
		timeout++;
		if (timeout > 1023) {
			timeout = 2;
			synth_timeout++;
		}
	} while (synth_timeout * 1024 + timeout <= 20 * tmp);

	do {
		vco_alc_timeout++;
	} while (vco_alc_timeout * 1024 - timeout <= 50 * tmp);

	st->buf[0] = vco_band_div;
	st->buf[1] = timeout & 0xFF;
	st->buf[2] = ADF4371_TIMEOUT(timeout >> 8) | 0x04;
	st->buf[3] = synth_timeout;
	st->buf[4] = ADF4371_VCO_ALC_TOUT(vco_alc_timeout);

	return regmap_bulk_write(st->regmap, ADF4371_REG(0x30), st->buf, 5);
}

static void adf4371_clk_disable(void *data)
{
	struct adf4371_state *st = data;

	clk_disable_unprepare(st->clkin);
}

static int adf4371_probe(struct spi_device *spi)
{
	const struct spi_device_id *id = spi_get_device_id(spi);
	struct iio_dev *indio_dev;
	struct adf4371_state *st;
	struct regmap *regmap;
	int ret;

	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
	if (!indio_dev)
		return -ENOMEM;

	regmap = devm_regmap_init_spi(spi, &adf4371_regmap_config);
	if (IS_ERR(regmap)) {
		dev_err(&spi->dev, "Error initializing spi regmap: %ld\n",
			PTR_ERR(regmap));
		return PTR_ERR(regmap);
	}

	st = iio_priv(indio_dev);
	spi_set_drvdata(spi, indio_dev);
	st->spi = spi;
	st->regmap = regmap;
	mutex_init(&st->lock);

	st->chip_info = &adf4371_chip_info[id->driver_data];
	indio_dev->dev.parent = &spi->dev;
	indio_dev->name = id->name;
	indio_dev->info = &adf4371_info;
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->channels = st->chip_info->channels;
	indio_dev->num_channels = st->chip_info->num_channels;

	st->clkin = devm_clk_get(&spi->dev, "clkin");
	if (IS_ERR(st->clkin))
		return PTR_ERR(st->clkin);

	ret = clk_prepare_enable(st->clkin);
	if (ret < 0)
		return ret;

	ret = devm_add_action_or_reset(&spi->dev, adf4371_clk_disable, st);
	if (ret)
		return ret;

	st->clkin_freq = clk_get_rate(st->clkin);

	ret = adf4371_setup(st);
	if (ret < 0) {
		dev_err(&spi->dev, "ADF4371 setup failed\n");
		return ret;
	}

	return devm_iio_device_register(&spi->dev, indio_dev);
}

static const struct spi_device_id adf4371_id_table[] = {
	{ "adf4371", ADF4371 },
	{ "adf4372", ADF4372 },
	{}
};
MODULE_DEVICE_TABLE(spi, adf4371_id_table);

static const struct of_device_id adf4371_of_match[] = {
	{ .compatible = "adi,adf4371" },
	{ .compatible = "adi,adf4372" },
	{ },
};
MODULE_DEVICE_TABLE(of, adf4371_of_match);

static struct spi_driver adf4371_driver = {
	.driver = {
		.name = "adf4371",
		.of_match_table = adf4371_of_match,
	},
	.probe = adf4371_probe,
	.id_table = adf4371_id_table,
};
module_spi_driver(adf4371_driver);

MODULE_AUTHOR("Stefan Popa <stefan.popa@analog.com>");
MODULE_DESCRIPTION("Analog Devices ADF4371 SPI PLL");
MODULE_LICENSE("GPL");