Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
// SPDX-License-Identifier: GPL-2.0
/*
 * Tegra30 SoC Thermal Sensor driver
 *
 * Based on downstream HWMON driver from NVIDIA.
 * Copyright (C) 2011 NVIDIA Corporation
 *
 * Author: Dmitry Osipenko <digetx@gmail.com>
 * Copyright (C) 2021 GRATE-DRIVER project
 */

#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/math.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <linux/thermal.h>
#include <linux/types.h>

#include <soc/tegra/fuse.h>

#include "../thermal_core.h"
#include "../thermal_hwmon.h"

#define TSENSOR_SENSOR0_CONFIG0				0x0
#define TSENSOR_SENSOR0_CONFIG0_SENSOR_STOP		BIT(0)
#define TSENSOR_SENSOR0_CONFIG0_HW_FREQ_DIV_EN		BIT(1)
#define TSENSOR_SENSOR0_CONFIG0_THERMAL_RST_EN		BIT(2)
#define TSENSOR_SENSOR0_CONFIG0_DVFS_EN			BIT(3)
#define TSENSOR_SENSOR0_CONFIG0_INTR_OVERFLOW_EN	BIT(4)
#define TSENSOR_SENSOR0_CONFIG0_INTR_HW_FREQ_DIV_EN	BIT(5)
#define TSENSOR_SENSOR0_CONFIG0_INTR_THERMAL_RST_EN	BIT(6)
#define TSENSOR_SENSOR0_CONFIG0_M			GENMASK(23,  8)
#define TSENSOR_SENSOR0_CONFIG0_N			GENMASK(31, 24)

#define TSENSOR_SENSOR0_CONFIG1				0x8
#define TSENSOR_SENSOR0_CONFIG1_TH1			GENMASK(15,  0)
#define TSENSOR_SENSOR0_CONFIG1_TH2			GENMASK(31, 16)

#define TSENSOR_SENSOR0_CONFIG2				0xc
#define TSENSOR_SENSOR0_CONFIG2_TH3			GENMASK(15,  0)

#define TSENSOR_SENSOR0_STATUS0				0x18
#define TSENSOR_SENSOR0_STATUS0_STATE			GENMASK(2, 0)
#define TSENSOR_SENSOR0_STATUS0_INTR			BIT(8)
#define TSENSOR_SENSOR0_STATUS0_CURRENT_VALID		BIT(9)

#define TSENSOR_SENSOR0_TS_STATUS1			0x1c
#define TSENSOR_SENSOR0_TS_STATUS1_CURRENT_COUNT	GENMASK(31, 16)

#define TEGRA30_FUSE_TEST_PROG_VER			0x28

#define TEGRA30_FUSE_TSENSOR_CALIB			0x98
#define TEGRA30_FUSE_TSENSOR_CALIB_LOW			GENMASK(15,  0)
#define TEGRA30_FUSE_TSENSOR_CALIB_HIGH			GENMASK(31, 16)

#define TEGRA30_FUSE_SPARE_BIT				0x144

struct tegra_tsensor;

struct tegra_tsensor_calibration_data {
	int a, b, m, n, p, r;
};

struct tegra_tsensor_channel {
	void __iomem *regs;
	unsigned int id;
	struct tegra_tsensor *ts;
	struct thermal_zone_device *tzd;
};

struct tegra_tsensor {
	void __iomem *regs;
	bool swap_channels;
	struct clk *clk;
	struct device *dev;
	struct reset_control *rst;
	struct tegra_tsensor_channel ch[2];
	struct tegra_tsensor_calibration_data calib;
};

static int tegra_tsensor_hw_enable(const struct tegra_tsensor *ts)
{
	u32 val;
	int err;

	err = reset_control_assert(ts->rst);
	if (err) {
		dev_err(ts->dev, "failed to assert hardware reset: %d\n", err);
		return err;
	}

	err = clk_prepare_enable(ts->clk);
	if (err) {
		dev_err(ts->dev, "failed to enable clock: %d\n", err);
		return err;
	}

	fsleep(1000);

	err = reset_control_deassert(ts->rst);
	if (err) {
		dev_err(ts->dev, "failed to deassert hardware reset: %d\n", err);
		goto disable_clk;
	}

	/*
	 * Sensors are enabled after reset by default, but not gauging
	 * until clock counter is programmed.
	 *
	 * M: number of reference clock pulses after which every
	 *    temperature / voltage measurement is made
	 *
	 * N: number of reference clock counts for which the counter runs
	 */
	val  = FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_M, 12500);
	val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_N, 255);

	/* apply the same configuration to both channels */
	writel_relaxed(val, ts->regs + 0x40 + TSENSOR_SENSOR0_CONFIG0);
	writel_relaxed(val, ts->regs + 0x80 + TSENSOR_SENSOR0_CONFIG0);

	return 0;

disable_clk:
	clk_disable_unprepare(ts->clk);

	return err;
}

static int tegra_tsensor_hw_disable(const struct tegra_tsensor *ts)
{
	int err;

	err = reset_control_assert(ts->rst);
	if (err) {
		dev_err(ts->dev, "failed to assert hardware reset: %d\n", err);
		return err;
	}

	clk_disable_unprepare(ts->clk);

	return 0;
}

static void devm_tegra_tsensor_hw_disable(void *data)
{
	const struct tegra_tsensor *ts = data;

	tegra_tsensor_hw_disable(ts);
}

static int tegra_tsensor_get_temp(void *data, int *temp)
{
	const struct tegra_tsensor_channel *tsc = data;
	const struct tegra_tsensor *ts = tsc->ts;
	int err, c1, c2, c3, c4, counter;
	u32 val;

	/*
	 * Counter will be invalid if hardware is misprogrammed or not enough
	 * time passed since the time when sensor was enabled.
	 */
	err = readl_relaxed_poll_timeout(tsc->regs + TSENSOR_SENSOR0_STATUS0, val,
					 val & TSENSOR_SENSOR0_STATUS0_CURRENT_VALID,
					 21 * USEC_PER_MSEC,
					 21 * USEC_PER_MSEC * 50);
	if (err) {
		dev_err_once(ts->dev, "ch%u: counter invalid\n", tsc->id);
		return err;
	}

	val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_TS_STATUS1);
	counter = FIELD_GET(TSENSOR_SENSOR0_TS_STATUS1_CURRENT_COUNT, val);

	/*
	 * This shouldn't happen with a valid counter status, nevertheless
	 * lets verify the value since it's in a separate (from status)
	 * register.
	 */
	if (counter == 0xffff) {
		dev_err_once(ts->dev, "ch%u: counter overflow\n", tsc->id);
		return -EINVAL;
	}

	/*
	 * temperature = a * counter + b
	 * temperature = m * (temperature ^ 2) + n * temperature + p
	 */
	c1 = DIV_ROUND_CLOSEST(ts->calib.a * counter + ts->calib.b, 1000000);
	c1 = c1 ?: 1;
	c2 = DIV_ROUND_CLOSEST(ts->calib.p, c1);
	c3 = c1 * ts->calib.m;
	c4 = ts->calib.n;

	*temp = DIV_ROUND_CLOSEST(c1 * (c2 + c3 + c4), 1000);

	return 0;
}

static int tegra_tsensor_temp_to_counter(const struct tegra_tsensor *ts, int temp)
{
	int c1, c2;

	c1 = DIV_ROUND_CLOSEST(ts->calib.p - temp * 1000, ts->calib.m);
	c2 = -ts->calib.r - int_sqrt(ts->calib.r * ts->calib.r - c1);

	return DIV_ROUND_CLOSEST(c2 * 1000000 - ts->calib.b, ts->calib.a);
}

static int tegra_tsensor_set_trips(void *data, int low, int high)
{
	const struct tegra_tsensor_channel *tsc = data;
	const struct tegra_tsensor *ts = tsc->ts;
	u32 val;

	/*
	 * TSENSOR doesn't trigger interrupt on the "low" temperature breach,
	 * hence bail out if high temperature is unspecified.
	 */
	if (high == INT_MAX)
		return 0;

	val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_CONFIG1);
	val &= ~TSENSOR_SENSOR0_CONFIG1_TH1;

	high = tegra_tsensor_temp_to_counter(ts, high);
	val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG1_TH1, high);
	writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_CONFIG1);

	return 0;
}

static const struct thermal_zone_of_device_ops ops = {
	.get_temp = tegra_tsensor_get_temp,
	.set_trips = tegra_tsensor_set_trips,
};

static bool
tegra_tsensor_handle_channel_interrupt(const struct tegra_tsensor *ts,
				       unsigned int id)
{
	const struct tegra_tsensor_channel *tsc = &ts->ch[id];
	u32 val;

	val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_STATUS0);
	writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_STATUS0);

	if (FIELD_GET(TSENSOR_SENSOR0_STATUS0_STATE, val) == 5)
		dev_err_ratelimited(ts->dev, "ch%u: counter overflowed\n", id);

	if (!FIELD_GET(TSENSOR_SENSOR0_STATUS0_INTR, val))
		return false;

	thermal_zone_device_update(tsc->tzd, THERMAL_EVENT_UNSPECIFIED);

	return true;
}

static irqreturn_t tegra_tsensor_isr(int irq, void *data)
{
	const struct tegra_tsensor *ts = data;
	bool handled = false;
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(ts->ch); i++)
		handled |= tegra_tsensor_handle_channel_interrupt(ts, i);

	return handled ? IRQ_HANDLED : IRQ_NONE;
}

static int tegra_tsensor_disable_hw_channel(const struct tegra_tsensor *ts,
					    unsigned int id)
{
	const struct tegra_tsensor_channel *tsc = &ts->ch[id];
	struct thermal_zone_device *tzd = tsc->tzd;
	u32 val;
	int err;

	if (!tzd)
		goto stop_channel;

	err = thermal_zone_device_disable(tzd);
	if (err) {
		dev_err(ts->dev, "ch%u: failed to disable zone: %d\n", id, err);
		return err;
	}

stop_channel:
	/* stop channel gracefully */
	val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_CONFIG0);
	val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_SENSOR_STOP, 1);
	writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_CONFIG0);

	return 0;
}

static void tegra_tsensor_get_hw_channel_trips(struct thermal_zone_device *tzd,
					       int *hot_trip, int *crit_trip)
{
	unsigned int i;

	/*
	 * 90C is the maximal critical temperature of all Tegra30 SoC variants,
	 * use it for the default trip if unspecified in a device-tree.
	 */
	*hot_trip  = 85000;
	*crit_trip = 90000;

	for (i = 0; i < tzd->trips; i++) {
		enum thermal_trip_type type;
		int trip_temp;

		tzd->ops->get_trip_temp(tzd, i, &trip_temp);
		tzd->ops->get_trip_type(tzd, i, &type);

		if (type == THERMAL_TRIP_HOT)
			*hot_trip = trip_temp;

		if (type == THERMAL_TRIP_CRITICAL)
			*crit_trip = trip_temp;
	}

	/* clamp hardware trips to the calibration limits */
	*hot_trip = clamp(*hot_trip, 25000, 90000);

	/*
	 * Kernel will perform a normal system shut down if it will
	 * see that critical temperature is breached, hence set the
	 * hardware limit by 5C higher in order to allow system to
	 * shut down gracefully before sending signal to the Power
	 * Management controller.
	 */
	*crit_trip = clamp(*crit_trip + 5000, 25000, 90000);
}

static int tegra_tsensor_enable_hw_channel(const struct tegra_tsensor *ts,
					   unsigned int id)
{
	const struct tegra_tsensor_channel *tsc = &ts->ch[id];
	struct thermal_zone_device *tzd = tsc->tzd;
	int err, hot_trip = 0, crit_trip = 0;
	u32 val;

	if (!tzd) {
		val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_CONFIG0);
		val &= ~TSENSOR_SENSOR0_CONFIG0_SENSOR_STOP;
		writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_CONFIG0);

		return 0;
	}

	tegra_tsensor_get_hw_channel_trips(tzd, &hot_trip, &crit_trip);

	/* prevent potential racing with tegra_tsensor_set_trips() */
	mutex_lock(&tzd->lock);

	dev_info_once(ts->dev, "ch%u: PMC emergency shutdown trip set to %dC\n",
		      id, DIV_ROUND_CLOSEST(crit_trip, 1000));

	hot_trip  = tegra_tsensor_temp_to_counter(ts, hot_trip);
	crit_trip = tegra_tsensor_temp_to_counter(ts, crit_trip);

	/* program LEVEL2 counter threshold */
	val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_CONFIG1);
	val &= ~TSENSOR_SENSOR0_CONFIG1_TH2;
	val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG1_TH2, hot_trip);
	writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_CONFIG1);

	/* program LEVEL3 counter threshold */
	val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_CONFIG2);
	val &= ~TSENSOR_SENSOR0_CONFIG2_TH3;
	val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG2_TH3, crit_trip);
	writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_CONFIG2);

	/*
	 * Enable sensor, emergency shutdown, interrupts for level 1/2/3
	 * breaches and counter overflow condition.
	 *
	 * Disable DIV2 throttle for now since we need to figure out how
	 * to integrate it properly with the thermal framework.
	 *
	 * Thermal levels supported by hardware:
	 *
	 *     Level 0 = cold
	 *     Level 1 = passive cooling (cpufreq DVFS)
	 *     Level 2 = passive cooling assisted by hardware (DIV2)
	 *     Level 3 = emergency shutdown assisted by hardware (PMC)
	 */
	val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_CONFIG0);
	val &= ~TSENSOR_SENSOR0_CONFIG0_SENSOR_STOP;
	val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_DVFS_EN, 1);
	val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_HW_FREQ_DIV_EN, 0);
	val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_THERMAL_RST_EN, 1);
	val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_INTR_OVERFLOW_EN, 1);
	val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_INTR_HW_FREQ_DIV_EN, 1);
	val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_INTR_THERMAL_RST_EN, 1);
	writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_CONFIG0);

	mutex_unlock(&tzd->lock);

	err = thermal_zone_device_enable(tzd);
	if (err) {
		dev_err(ts->dev, "ch%u: failed to enable zone: %d\n", id, err);
		return err;
	}

	return 0;
}

static bool tegra_tsensor_fuse_read_spare(unsigned int spare)
{
	u32 val = 0;

	tegra_fuse_readl(TEGRA30_FUSE_SPARE_BIT + spare * 4, &val);

	return !!val;
}

static int tegra_tsensor_nvmem_setup(struct tegra_tsensor *ts)
{
	u32 i, ate_ver = 0, cal = 0, t1_25C = 0, t2_90C = 0;
	int err, c1_25C, c2_90C;

	err = tegra_fuse_readl(TEGRA30_FUSE_TEST_PROG_VER, &ate_ver);
	if (err) {
		dev_err_probe(ts->dev, err, "failed to get ATE version\n");
		return err;
	}

	if (ate_ver < 8) {
		dev_info(ts->dev, "unsupported ATE version: %u\n", ate_ver);
		return -ENODEV;
	}

	/*
	 * We have two TSENSOR channels in a two different spots on SoC.
	 * Second channel provides more accurate data on older SoC versions,
	 * use it as a primary channel.
	 */
	if (ate_ver <= 21) {
		dev_info_once(ts->dev,
			      "older ATE version detected, channels remapped\n");
		ts->swap_channels = true;
	}

	err = tegra_fuse_readl(TEGRA30_FUSE_TSENSOR_CALIB, &cal);
	if (err) {
		dev_err(ts->dev, "failed to get calibration data: %d\n", err);
		return err;
	}

	/* get calibrated counter values for 25C/90C thresholds */
	c1_25C = FIELD_GET(TEGRA30_FUSE_TSENSOR_CALIB_LOW, cal);
	c2_90C = FIELD_GET(TEGRA30_FUSE_TSENSOR_CALIB_HIGH, cal);

	/* and calibrated temperatures corresponding to the counter values */
	for (i = 0; i < 7; i++) {
		t1_25C |= tegra_tsensor_fuse_read_spare(14 + i) << i;
		t1_25C |= tegra_tsensor_fuse_read_spare(21 + i) << i;

		t2_90C |= tegra_tsensor_fuse_read_spare(0 + i) << i;
		t2_90C |= tegra_tsensor_fuse_read_spare(7 + i) << i;
	}

	if (c2_90C - c1_25C <= t2_90C - t1_25C) {
		dev_err(ts->dev, "invalid calibration data: %d %d %u %u\n",
			c2_90C, c1_25C, t2_90C, t1_25C);
		return -EINVAL;
	}

	/* all calibration coefficients are premultiplied by 1000000 */

	ts->calib.a = DIV_ROUND_CLOSEST((t2_90C - t1_25C) * 1000000,
					(c2_90C - c1_25C));

	ts->calib.b = t1_25C * 1000000 - ts->calib.a * c1_25C;

	if (tegra_sku_info.revision == TEGRA_REVISION_A01) {
		ts->calib.m =     -2775;
		ts->calib.n =   1338811;
		ts->calib.p =  -7300000;
	} else {
		ts->calib.m =     -3512;
		ts->calib.n =   1528943;
		ts->calib.p = -11100000;
	}

	/* except the coefficient of a reduced quadratic equation */
	ts->calib.r = DIV_ROUND_CLOSEST(ts->calib.n, ts->calib.m * 2);

	dev_info_once(ts->dev,
		      "calibration: %d %d %u %u ATE ver: %u SoC rev: %u\n",
		      c2_90C, c1_25C, t2_90C, t1_25C, ate_ver,
		      tegra_sku_info.revision);

	return 0;
}

static int tegra_tsensor_register_channel(struct tegra_tsensor *ts,
					  unsigned int id)
{
	struct tegra_tsensor_channel *tsc = &ts->ch[id];
	unsigned int hw_id = ts->swap_channels ? !id : id;

	tsc->ts = ts;
	tsc->id = id;
	tsc->regs = ts->regs + 0x40 * (hw_id + 1);

	tsc->tzd = devm_thermal_zone_of_sensor_register(ts->dev, id, tsc, &ops);
	if (IS_ERR(tsc->tzd)) {
		if (PTR_ERR(tsc->tzd) != -ENODEV)
			return dev_err_probe(ts->dev, PTR_ERR(tsc->tzd),
					     "failed to register thermal zone\n");

		/*
		 * It's okay if sensor isn't assigned to any thermal zone
		 * in a device-tree.
		 */
		tsc->tzd = NULL;
		return 0;
	}

	if (devm_thermal_add_hwmon_sysfs(tsc->tzd))
		dev_warn(ts->dev, "failed to add hwmon sysfs attributes\n");

	return 0;
}

static int tegra_tsensor_probe(struct platform_device *pdev)
{
	struct tegra_tsensor *ts;
	unsigned int i;
	int err, irq;

	ts = devm_kzalloc(&pdev->dev, sizeof(*ts), GFP_KERNEL);
	if (!ts)
		return -ENOMEM;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

	ts->dev = &pdev->dev;
	platform_set_drvdata(pdev, ts);

	ts->regs = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(ts->regs))
		return PTR_ERR(ts->regs);

	ts->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(ts->clk))
		return dev_err_probe(&pdev->dev, PTR_ERR(ts->clk),
				     "failed to get clock\n");

	ts->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
	if (IS_ERR(ts->rst))
		return dev_err_probe(&pdev->dev, PTR_ERR(ts->rst),
				     "failed to get reset control\n");

	err = tegra_tsensor_nvmem_setup(ts);
	if (err)
		return err;

	err = tegra_tsensor_hw_enable(ts);
	if (err)
		return err;

	err = devm_add_action_or_reset(&pdev->dev,
				       devm_tegra_tsensor_hw_disable,
				       ts);
	if (err)
		return err;

	for (i = 0; i < ARRAY_SIZE(ts->ch); i++) {
		err = tegra_tsensor_register_channel(ts, i);
		if (err)
			return err;
	}

	err = devm_request_threaded_irq(&pdev->dev, irq, NULL,
					tegra_tsensor_isr, IRQF_ONESHOT,
					"tegra_tsensor", ts);
	if (err)
		return dev_err_probe(&pdev->dev, err,
				     "failed to request interrupt\n");

	for (i = 0; i < ARRAY_SIZE(ts->ch); i++) {
		err = tegra_tsensor_enable_hw_channel(ts, i);
		if (err)
			return err;
	}

	return 0;
}

static int __maybe_unused tegra_tsensor_suspend(struct device *dev)
{
	struct tegra_tsensor *ts = dev_get_drvdata(dev);
	unsigned int i;
	int err;

	for (i = 0; i < ARRAY_SIZE(ts->ch); i++) {
		err = tegra_tsensor_disable_hw_channel(ts, i);
		if (err)
			goto enable_channel;
	}

	err = tegra_tsensor_hw_disable(ts);
	if (err)
		goto enable_channel;

	return 0;

enable_channel:
	while (i--)
		tegra_tsensor_enable_hw_channel(ts, i);

	return err;
}

static int __maybe_unused tegra_tsensor_resume(struct device *dev)
{
	struct tegra_tsensor *ts = dev_get_drvdata(dev);
	unsigned int i;
	int err;

	err = tegra_tsensor_hw_enable(ts);
	if (err)
		return err;

	for (i = 0; i < ARRAY_SIZE(ts->ch); i++) {
		err = tegra_tsensor_enable_hw_channel(ts, i);
		if (err)
			return err;
	}

	return 0;
}

static const struct dev_pm_ops tegra_tsensor_pm_ops = {
	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(tegra_tsensor_suspend,
				      tegra_tsensor_resume)
};

static const struct of_device_id tegra_tsensor_of_match[] = {
	{ .compatible = "nvidia,tegra30-tsensor", },
	{},
};
MODULE_DEVICE_TABLE(of, tegra_tsensor_of_match);

static struct platform_driver tegra_tsensor_driver = {
	.probe = tegra_tsensor_probe,
	.driver = {
		.name = "tegra30-tsensor",
		.of_match_table = tegra_tsensor_of_match,
		.pm = &tegra_tsensor_pm_ops,
	},
};
module_platform_driver(tegra_tsensor_driver);

MODULE_DESCRIPTION("NVIDIA Tegra30 Thermal Sensor driver");
MODULE_AUTHOR("Dmitry Osipenko <digetx@gmail.com>");
MODULE_LICENSE("GPL");