Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2017-2018 MediaTek Inc.

/*
 * Driver for MediaTek High-Speed DMA Controller
 *
 * Author: Sean Wang <sean.wang@mediatek.com>
 *
 */

#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/iopoll.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/refcount.h>
#include <linux/slab.h>

#include "../virt-dma.h"

#define MTK_HSDMA_USEC_POLL		20
#define MTK_HSDMA_TIMEOUT_POLL		200000
#define MTK_HSDMA_DMA_BUSWIDTHS		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)

/* The default number of virtual channel */
#define MTK_HSDMA_NR_VCHANS		3

/* Only one physical channel supported */
#define MTK_HSDMA_NR_MAX_PCHANS		1

/* Macro for physical descriptor (PD) manipulation */
/* The number of PD which must be 2 of power */
#define MTK_DMA_SIZE			64
#define MTK_HSDMA_NEXT_DESP_IDX(x, y)	(((x) + 1) & ((y) - 1))
#define MTK_HSDMA_LAST_DESP_IDX(x, y)	(((x) - 1) & ((y) - 1))
#define MTK_HSDMA_MAX_LEN		0x3f80
#define MTK_HSDMA_ALIGN_SIZE		4
#define MTK_HSDMA_PLEN_MASK		0x3fff
#define MTK_HSDMA_DESC_PLEN(x)		(((x) & MTK_HSDMA_PLEN_MASK) << 16)
#define MTK_HSDMA_DESC_PLEN_GET(x)	(((x) >> 16) & MTK_HSDMA_PLEN_MASK)

/* Registers for underlying ring manipulation */
#define MTK_HSDMA_TX_BASE		0x0
#define MTK_HSDMA_TX_CNT		0x4
#define MTK_HSDMA_TX_CPU		0x8
#define MTK_HSDMA_TX_DMA		0xc
#define MTK_HSDMA_RX_BASE		0x100
#define MTK_HSDMA_RX_CNT		0x104
#define MTK_HSDMA_RX_CPU		0x108
#define MTK_HSDMA_RX_DMA		0x10c

/* Registers for global setup */
#define MTK_HSDMA_GLO			0x204
#define MTK_HSDMA_GLO_MULTI_DMA		BIT(10)
#define MTK_HSDMA_TX_WB_DDONE		BIT(6)
#define MTK_HSDMA_BURST_64BYTES		(0x2 << 4)
#define MTK_HSDMA_GLO_RX_BUSY		BIT(3)
#define MTK_HSDMA_GLO_RX_DMA		BIT(2)
#define MTK_HSDMA_GLO_TX_BUSY		BIT(1)
#define MTK_HSDMA_GLO_TX_DMA		BIT(0)
#define MTK_HSDMA_GLO_DMA		(MTK_HSDMA_GLO_TX_DMA |	\
					 MTK_HSDMA_GLO_RX_DMA)
#define MTK_HSDMA_GLO_BUSY		(MTK_HSDMA_GLO_RX_BUSY | \
					 MTK_HSDMA_GLO_TX_BUSY)
#define MTK_HSDMA_GLO_DEFAULT		(MTK_HSDMA_GLO_TX_DMA | \
					 MTK_HSDMA_GLO_RX_DMA | \
					 MTK_HSDMA_TX_WB_DDONE | \
					 MTK_HSDMA_BURST_64BYTES | \
					 MTK_HSDMA_GLO_MULTI_DMA)

/* Registers for reset */
#define MTK_HSDMA_RESET			0x208
#define MTK_HSDMA_RST_TX		BIT(0)
#define MTK_HSDMA_RST_RX		BIT(16)

/* Registers for interrupt control */
#define MTK_HSDMA_DLYINT		0x20c
#define MTK_HSDMA_RXDLY_INT_EN		BIT(15)

/* Interrupt fires when the pending number's more than the specified */
#define MTK_HSDMA_RXMAX_PINT(x)		(((x) & 0x7f) << 8)

/* Interrupt fires when the pending time's more than the specified in 20 us */
#define MTK_HSDMA_RXMAX_PTIME(x)	((x) & 0x7f)
#define MTK_HSDMA_DLYINT_DEFAULT	(MTK_HSDMA_RXDLY_INT_EN | \
					 MTK_HSDMA_RXMAX_PINT(20) | \
					 MTK_HSDMA_RXMAX_PTIME(20))
#define MTK_HSDMA_INT_STATUS		0x220
#define MTK_HSDMA_INT_ENABLE		0x228
#define MTK_HSDMA_INT_RXDONE		BIT(16)

enum mtk_hsdma_vdesc_flag {
	MTK_HSDMA_VDESC_FINISHED	= 0x01,
};

#define IS_MTK_HSDMA_VDESC_FINISHED(x) ((x) == MTK_HSDMA_VDESC_FINISHED)

/**
 * struct mtk_hsdma_pdesc - This is the struct holding info describing physical
 *			    descriptor (PD) and its placement must be kept at
 *			    4-bytes alignment in little endian order.
 * @desc1:		    | The control pad used to indicate hardware how to
 * @desc2:		    | deal with the descriptor such as source and
 * @desc3:		    | destination address and data length. The maximum
 * @desc4:		    | data length each pdesc can handle is 0x3f80 bytes
 */
struct mtk_hsdma_pdesc {
	__le32 desc1;
	__le32 desc2;
	__le32 desc3;
	__le32 desc4;
} __packed __aligned(4);

/**
 * struct mtk_hsdma_vdesc - This is the struct holding info describing virtual
 *			    descriptor (VD)
 * @vd:			    An instance for struct virt_dma_desc
 * @len:		    The total data size device wants to move
 * @residue:		    The remaining data size device will move
 * @dest:		    The destination address device wants to move to
 * @src:		    The source address device wants to move from
 */
struct mtk_hsdma_vdesc {
	struct virt_dma_desc vd;
	size_t len;
	size_t residue;
	dma_addr_t dest;
	dma_addr_t src;
};

/**
 * struct mtk_hsdma_cb - This is the struct holding extra info required for RX
 *			 ring to know what relevant VD the the PD is being
 *			 mapped to.
 * @vd:			 Pointer to the relevant VD.
 * @flag:		 Flag indicating what action should be taken when VD
 *			 is completed.
 */
struct mtk_hsdma_cb {
	struct virt_dma_desc *vd;
	enum mtk_hsdma_vdesc_flag flag;
};

/**
 * struct mtk_hsdma_ring - This struct holds info describing underlying ring
 *			   space
 * @txd:		   The descriptor TX ring which describes DMA source
 *			   information
 * @rxd:		   The descriptor RX ring which describes DMA
 *			   destination information
 * @cb:			   The extra information pointed at by RX ring
 * @tphys:		   The physical addr of TX ring
 * @rphys:		   The physical addr of RX ring
 * @cur_tptr:		   Pointer to the next free descriptor used by the host
 * @cur_rptr:		   Pointer to the last done descriptor by the device
 */
struct mtk_hsdma_ring {
	struct mtk_hsdma_pdesc *txd;
	struct mtk_hsdma_pdesc *rxd;
	struct mtk_hsdma_cb *cb;
	dma_addr_t tphys;
	dma_addr_t rphys;
	u16 cur_tptr;
	u16 cur_rptr;
};

/**
 * struct mtk_hsdma_pchan - This is the struct holding info describing physical
 *			   channel (PC)
 * @ring:		   An instance for the underlying ring
 * @sz_ring:		   Total size allocated for the ring
 * @nr_free:		   Total number of free rooms in the ring. It would
 *			   be accessed and updated frequently between IRQ
 *			   context and user context to reflect whether ring
 *			   can accept requests from VD.
 */
struct mtk_hsdma_pchan {
	struct mtk_hsdma_ring ring;
	size_t sz_ring;
	atomic_t nr_free;
};

/**
 * struct mtk_hsdma_vchan - This is the struct holding info describing virtual
 *			   channel (VC)
 * @vc:			   An instance for struct virt_dma_chan
 * @issue_completion:	   The wait for all issued descriptors completited
 * @issue_synchronize:	   Bool indicating channel synchronization starts
 * @desc_hw_processing:	   List those descriptors the hardware is processing,
 *			   which is protected by vc.lock
 */
struct mtk_hsdma_vchan {
	struct virt_dma_chan vc;
	struct completion issue_completion;
	bool issue_synchronize;
	struct list_head desc_hw_processing;
};

/**
 * struct mtk_hsdma_soc - This is the struct holding differences among SoCs
 * @ddone:		  Bit mask for DDONE
 * @ls0:		  Bit mask for LS0
 */
struct mtk_hsdma_soc {
	__le32 ddone;
	__le32 ls0;
};

/**
 * struct mtk_hsdma_device - This is the struct holding info describing HSDMA
 *			     device
 * @ddev:		     An instance for struct dma_device
 * @base:		     The mapped register I/O base
 * @clk:		     The clock that device internal is using
 * @irq:		     The IRQ that device are using
 * @dma_requests:	     The number of VCs the device supports to
 * @vc:			     The pointer to all available VCs
 * @pc:			     The pointer to the underlying PC
 * @pc_refcnt:		     Track how many VCs are using the PC
 * @lock:		     Lock protect agaisting multiple VCs access PC
 * @soc:		     The pointer to area holding differences among
 *			     vaious platform
 */
struct mtk_hsdma_device {
	struct dma_device ddev;
	void __iomem *base;
	struct clk *clk;
	u32 irq;

	u32 dma_requests;
	struct mtk_hsdma_vchan *vc;
	struct mtk_hsdma_pchan *pc;
	refcount_t pc_refcnt;

	/* Lock used to protect against multiple VCs access PC */
	spinlock_t lock;

	const struct mtk_hsdma_soc *soc;
};

static struct mtk_hsdma_device *to_hsdma_dev(struct dma_chan *chan)
{
	return container_of(chan->device, struct mtk_hsdma_device, ddev);
}

static inline struct mtk_hsdma_vchan *to_hsdma_vchan(struct dma_chan *chan)
{
	return container_of(chan, struct mtk_hsdma_vchan, vc.chan);
}

static struct mtk_hsdma_vdesc *to_hsdma_vdesc(struct virt_dma_desc *vd)
{
	return container_of(vd, struct mtk_hsdma_vdesc, vd);
}

static struct device *hsdma2dev(struct mtk_hsdma_device *hsdma)
{
	return hsdma->ddev.dev;
}

static u32 mtk_dma_read(struct mtk_hsdma_device *hsdma, u32 reg)
{
	return readl(hsdma->base + reg);
}

static void mtk_dma_write(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
{
	writel(val, hsdma->base + reg);
}

static void mtk_dma_rmw(struct mtk_hsdma_device *hsdma, u32 reg,
			u32 mask, u32 set)
{
	u32 val;

	val = mtk_dma_read(hsdma, reg);
	val &= ~mask;
	val |= set;
	mtk_dma_write(hsdma, reg, val);
}

static void mtk_dma_set(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
{
	mtk_dma_rmw(hsdma, reg, 0, val);
}

static void mtk_dma_clr(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
{
	mtk_dma_rmw(hsdma, reg, val, 0);
}

static void mtk_hsdma_vdesc_free(struct virt_dma_desc *vd)
{
	kfree(container_of(vd, struct mtk_hsdma_vdesc, vd));
}

static int mtk_hsdma_busy_wait(struct mtk_hsdma_device *hsdma)
{
	u32 status = 0;

	return readl_poll_timeout(hsdma->base + MTK_HSDMA_GLO, status,
				  !(status & MTK_HSDMA_GLO_BUSY),
				  MTK_HSDMA_USEC_POLL,
				  MTK_HSDMA_TIMEOUT_POLL);
}

static int mtk_hsdma_alloc_pchan(struct mtk_hsdma_device *hsdma,
				 struct mtk_hsdma_pchan *pc)
{
	struct mtk_hsdma_ring *ring = &pc->ring;
	int err;

	memset(pc, 0, sizeof(*pc));

	/*
	 * Allocate ring space where [0 ... MTK_DMA_SIZE - 1] is for TX ring
	 * and [MTK_DMA_SIZE ... 2 * MTK_DMA_SIZE - 1] is for RX ring.
	 */
	pc->sz_ring = 2 * MTK_DMA_SIZE * sizeof(*ring->txd);
	ring->txd = dma_alloc_coherent(hsdma2dev(hsdma), pc->sz_ring,
				       &ring->tphys, GFP_NOWAIT);
	if (!ring->txd)
		return -ENOMEM;

	ring->rxd = &ring->txd[MTK_DMA_SIZE];
	ring->rphys = ring->tphys + MTK_DMA_SIZE * sizeof(*ring->txd);
	ring->cur_tptr = 0;
	ring->cur_rptr = MTK_DMA_SIZE - 1;

	ring->cb = kcalloc(MTK_DMA_SIZE, sizeof(*ring->cb), GFP_NOWAIT);
	if (!ring->cb) {
		err = -ENOMEM;
		goto err_free_dma;
	}

	atomic_set(&pc->nr_free, MTK_DMA_SIZE - 1);

	/* Disable HSDMA and wait for the completion */
	mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
	err = mtk_hsdma_busy_wait(hsdma);
	if (err)
		goto err_free_cb;

	/* Reset */
	mtk_dma_set(hsdma, MTK_HSDMA_RESET,
		    MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);
	mtk_dma_clr(hsdma, MTK_HSDMA_RESET,
		    MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);

	/* Setup HSDMA initial pointer in the ring */
	mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, ring->tphys);
	mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, MTK_DMA_SIZE);
	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);
	mtk_dma_write(hsdma, MTK_HSDMA_TX_DMA, 0);
	mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, ring->rphys);
	mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, MTK_DMA_SIZE);
	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, ring->cur_rptr);
	mtk_dma_write(hsdma, MTK_HSDMA_RX_DMA, 0);

	/* Enable HSDMA */
	mtk_dma_set(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);

	/* Setup delayed interrupt */
	mtk_dma_write(hsdma, MTK_HSDMA_DLYINT, MTK_HSDMA_DLYINT_DEFAULT);

	/* Enable interrupt */
	mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);

	return 0;

err_free_cb:
	kfree(ring->cb);

err_free_dma:
	dma_free_coherent(hsdma2dev(hsdma),
			  pc->sz_ring, ring->txd, ring->tphys);
	return err;
}

static void mtk_hsdma_free_pchan(struct mtk_hsdma_device *hsdma,
				 struct mtk_hsdma_pchan *pc)
{
	struct mtk_hsdma_ring *ring = &pc->ring;

	/* Disable HSDMA and then wait for the completion */
	mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
	mtk_hsdma_busy_wait(hsdma);

	/* Reset pointer in the ring */
	mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
	mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, 0);
	mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, 0);
	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, 0);
	mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, 0);
	mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, 0);
	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, MTK_DMA_SIZE - 1);

	kfree(ring->cb);

	dma_free_coherent(hsdma2dev(hsdma),
			  pc->sz_ring, ring->txd, ring->tphys);
}

static int mtk_hsdma_issue_pending_vdesc(struct mtk_hsdma_device *hsdma,
					 struct mtk_hsdma_pchan *pc,
					 struct mtk_hsdma_vdesc *hvd)
{
	struct mtk_hsdma_ring *ring = &pc->ring;
	struct mtk_hsdma_pdesc *txd, *rxd;
	u16 reserved, prev, tlen, num_sgs;
	unsigned long flags;

	/* Protect against PC is accessed by multiple VCs simultaneously */
	spin_lock_irqsave(&hsdma->lock, flags);

	/*
	 * Reserve rooms, where pc->nr_free is used to track how many free
	 * rooms in the ring being updated in user and IRQ context.
	 */
	num_sgs = DIV_ROUND_UP(hvd->len, MTK_HSDMA_MAX_LEN);
	reserved = min_t(u16, num_sgs, atomic_read(&pc->nr_free));

	if (!reserved) {
		spin_unlock_irqrestore(&hsdma->lock, flags);
		return -ENOSPC;
	}

	atomic_sub(reserved, &pc->nr_free);

	while (reserved--) {
		/* Limit size by PD capability for valid data moving */
		tlen = (hvd->len > MTK_HSDMA_MAX_LEN) ?
		       MTK_HSDMA_MAX_LEN : hvd->len;

		/*
		 * Setup PDs using the remaining VD info mapped on those
		 * reserved rooms. And since RXD is shared memory between the
		 * host and the device allocated by dma_alloc_coherent call,
		 * the helper macro WRITE_ONCE can ensure the data written to
		 * RAM would really happens.
		 */
		txd = &ring->txd[ring->cur_tptr];
		WRITE_ONCE(txd->desc1, hvd->src);
		WRITE_ONCE(txd->desc2,
			   hsdma->soc->ls0 | MTK_HSDMA_DESC_PLEN(tlen));

		rxd = &ring->rxd[ring->cur_tptr];
		WRITE_ONCE(rxd->desc1, hvd->dest);
		WRITE_ONCE(rxd->desc2, MTK_HSDMA_DESC_PLEN(tlen));

		/* Associate VD, the PD belonged to */
		ring->cb[ring->cur_tptr].vd = &hvd->vd;

		/* Move forward the pointer of TX ring */
		ring->cur_tptr = MTK_HSDMA_NEXT_DESP_IDX(ring->cur_tptr,
							 MTK_DMA_SIZE);

		/* Update VD with remaining data */
		hvd->src  += tlen;
		hvd->dest += tlen;
		hvd->len  -= tlen;
	}

	/*
	 * Tagging flag for the last PD for VD will be responsible for
	 * completing VD.
	 */
	if (!hvd->len) {
		prev = MTK_HSDMA_LAST_DESP_IDX(ring->cur_tptr, MTK_DMA_SIZE);
		ring->cb[prev].flag = MTK_HSDMA_VDESC_FINISHED;
	}

	/* Ensure all changes indeed done before we're going on */
	wmb();

	/*
	 * Updating into hardware the pointer of TX ring lets HSDMA to take
	 * action for those pending PDs.
	 */
	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);

	spin_unlock_irqrestore(&hsdma->lock, flags);

	return 0;
}

static void mtk_hsdma_issue_vchan_pending(struct mtk_hsdma_device *hsdma,
					  struct mtk_hsdma_vchan *hvc)
{
	struct virt_dma_desc *vd, *vd2;
	int err;

	lockdep_assert_held(&hvc->vc.lock);

	list_for_each_entry_safe(vd, vd2, &hvc->vc.desc_issued, node) {
		struct mtk_hsdma_vdesc *hvd;

		hvd = to_hsdma_vdesc(vd);

		/* Map VD into PC and all VCs shares a single PC */
		err = mtk_hsdma_issue_pending_vdesc(hsdma, hsdma->pc, hvd);

		/*
		 * Move VD from desc_issued to desc_hw_processing when entire
		 * VD is fit into available PDs. Otherwise, the uncompleted
		 * VDs would stay in list desc_issued and then restart the
		 * processing as soon as possible once underlying ring space
		 * got freed.
		 */
		if (err == -ENOSPC || hvd->len > 0)
			break;

		/*
		 * The extra list desc_hw_processing is used because
		 * hardware can't provide sufficient information allowing us
		 * to know what VDs are still working on the underlying ring.
		 * Through the additional list, it can help us to implement
		 * terminate_all, residue calculation and such thing needed
		 * to know detail descriptor status on the hardware.
		 */
		list_move_tail(&vd->node, &hvc->desc_hw_processing);
	}
}

static void mtk_hsdma_free_rooms_in_ring(struct mtk_hsdma_device *hsdma)
{
	struct mtk_hsdma_vchan *hvc;
	struct mtk_hsdma_pdesc *rxd;
	struct mtk_hsdma_vdesc *hvd;
	struct mtk_hsdma_pchan *pc;
	struct mtk_hsdma_cb *cb;
	int i = MTK_DMA_SIZE;
	__le32 desc2;
	u32 status;
	u16 next;

	/* Read IRQ status */
	status = mtk_dma_read(hsdma, MTK_HSDMA_INT_STATUS);
	if (unlikely(!(status & MTK_HSDMA_INT_RXDONE)))
		goto rx_done;

	pc = hsdma->pc;

	/*
	 * Using a fail-safe loop with iterations of up to MTK_DMA_SIZE to
	 * reclaim these finished descriptors: The most number of PDs the ISR
	 * can handle at one time shouldn't be more than MTK_DMA_SIZE so we
	 * take it as limited count instead of just using a dangerous infinite
	 * poll.
	 */
	while (i--) {
		next = MTK_HSDMA_NEXT_DESP_IDX(pc->ring.cur_rptr,
					       MTK_DMA_SIZE);
		rxd = &pc->ring.rxd[next];

		/*
		 * If MTK_HSDMA_DESC_DDONE is no specified, that means data
		 * moving for the PD is still under going.
		 */
		desc2 = READ_ONCE(rxd->desc2);
		if (!(desc2 & hsdma->soc->ddone))
			break;

		cb = &pc->ring.cb[next];
		if (unlikely(!cb->vd)) {
			dev_err(hsdma2dev(hsdma), "cb->vd cannot be null\n");
			break;
		}

		/* Update residue of VD the associated PD belonged to */
		hvd = to_hsdma_vdesc(cb->vd);
		hvd->residue -= MTK_HSDMA_DESC_PLEN_GET(rxd->desc2);

		/* Complete VD until the relevant last PD is finished */
		if (IS_MTK_HSDMA_VDESC_FINISHED(cb->flag)) {
			hvc = to_hsdma_vchan(cb->vd->tx.chan);

			spin_lock(&hvc->vc.lock);

			/* Remove VD from list desc_hw_processing */
			list_del(&cb->vd->node);

			/* Add VD into list desc_completed */
			vchan_cookie_complete(cb->vd);

			if (hvc->issue_synchronize &&
			    list_empty(&hvc->desc_hw_processing)) {
				complete(&hvc->issue_completion);
				hvc->issue_synchronize = false;
			}
			spin_unlock(&hvc->vc.lock);

			cb->flag = 0;
		}

		cb->vd = NULL;

		/*
		 * Recycle the RXD with the helper WRITE_ONCE that can ensure
		 * data written into RAM would really happens.
		 */
		WRITE_ONCE(rxd->desc1, 0);
		WRITE_ONCE(rxd->desc2, 0);
		pc->ring.cur_rptr = next;

		/* Release rooms */
		atomic_inc(&pc->nr_free);
	}

	/* Ensure all changes indeed done before we're going on */
	wmb();

	/* Update CPU pointer for those completed PDs */
	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, pc->ring.cur_rptr);

	/*
	 * Acking the pending IRQ allows hardware no longer to keep the used
	 * IRQ line in certain trigger state when software has completed all
	 * the finished physical descriptors.
	 */
	if (atomic_read(&pc->nr_free) >= MTK_DMA_SIZE - 1)
		mtk_dma_write(hsdma, MTK_HSDMA_INT_STATUS, status);

	/* ASAP handles pending VDs in all VCs after freeing some rooms */
	for (i = 0; i < hsdma->dma_requests; i++) {
		hvc = &hsdma->vc[i];
		spin_lock(&hvc->vc.lock);
		mtk_hsdma_issue_vchan_pending(hsdma, hvc);
		spin_unlock(&hvc->vc.lock);
	}

rx_done:
	/* All completed PDs are cleaned up, so enable interrupt again */
	mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
}

static irqreturn_t mtk_hsdma_irq(int irq, void *devid)
{
	struct mtk_hsdma_device *hsdma = devid;

	/*
	 * Disable interrupt until all completed PDs are cleaned up in
	 * mtk_hsdma_free_rooms call.
	 */
	mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);

	mtk_hsdma_free_rooms_in_ring(hsdma);

	return IRQ_HANDLED;
}

static struct virt_dma_desc *mtk_hsdma_find_active_desc(struct dma_chan *c,
							dma_cookie_t cookie)
{
	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
	struct virt_dma_desc *vd;

	list_for_each_entry(vd, &hvc->desc_hw_processing, node)
		if (vd->tx.cookie == cookie)
			return vd;

	list_for_each_entry(vd, &hvc->vc.desc_issued, node)
		if (vd->tx.cookie == cookie)
			return vd;

	return NULL;
}

static enum dma_status mtk_hsdma_tx_status(struct dma_chan *c,
					   dma_cookie_t cookie,
					   struct dma_tx_state *txstate)
{
	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
	struct mtk_hsdma_vdesc *hvd;
	struct virt_dma_desc *vd;
	enum dma_status ret;
	unsigned long flags;
	size_t bytes = 0;

	ret = dma_cookie_status(c, cookie, txstate);
	if (ret == DMA_COMPLETE || !txstate)
		return ret;

	spin_lock_irqsave(&hvc->vc.lock, flags);
	vd = mtk_hsdma_find_active_desc(c, cookie);
	spin_unlock_irqrestore(&hvc->vc.lock, flags);

	if (vd) {
		hvd = to_hsdma_vdesc(vd);
		bytes = hvd->residue;
	}

	dma_set_residue(txstate, bytes);

	return ret;
}

static void mtk_hsdma_issue_pending(struct dma_chan *c)
{
	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
	unsigned long flags;

	spin_lock_irqsave(&hvc->vc.lock, flags);

	if (vchan_issue_pending(&hvc->vc))
		mtk_hsdma_issue_vchan_pending(hsdma, hvc);

	spin_unlock_irqrestore(&hvc->vc.lock, flags);
}

static struct dma_async_tx_descriptor *
mtk_hsdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest,
			  dma_addr_t src, size_t len, unsigned long flags)
{
	struct mtk_hsdma_vdesc *hvd;

	hvd = kzalloc(sizeof(*hvd), GFP_NOWAIT);
	if (!hvd)
		return NULL;

	hvd->len = len;
	hvd->residue = len;
	hvd->src = src;
	hvd->dest = dest;

	return vchan_tx_prep(to_virt_chan(c), &hvd->vd, flags);
}

static int mtk_hsdma_free_inactive_desc(struct dma_chan *c)
{
	struct virt_dma_chan *vc = to_virt_chan(c);
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&vc->lock, flags);
	list_splice_tail_init(&vc->desc_allocated, &head);
	list_splice_tail_init(&vc->desc_submitted, &head);
	list_splice_tail_init(&vc->desc_issued, &head);
	spin_unlock_irqrestore(&vc->lock, flags);

	/* At the point, we don't expect users put descriptor into VC again */
	vchan_dma_desc_free_list(vc, &head);

	return 0;
}

static void mtk_hsdma_free_active_desc(struct dma_chan *c)
{
	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
	bool sync_needed = false;

	/*
	 * Once issue_synchronize is being set, which means once the hardware
	 * consumes all descriptors for the channel in the ring, the
	 * synchronization must be be notified immediately it is completed.
	 */
	spin_lock(&hvc->vc.lock);
	if (!list_empty(&hvc->desc_hw_processing)) {
		hvc->issue_synchronize = true;
		sync_needed = true;
	}
	spin_unlock(&hvc->vc.lock);

	if (sync_needed)
		wait_for_completion(&hvc->issue_completion);
	/*
	 * At the point, we expect that all remaining descriptors in the ring
	 * for the channel should be all processing done.
	 */
	WARN_ONCE(!list_empty(&hvc->desc_hw_processing),
		  "Desc pending still in list desc_hw_processing\n");

	/* Free all descriptors in list desc_completed */
	vchan_synchronize(&hvc->vc);

	WARN_ONCE(!list_empty(&hvc->vc.desc_completed),
		  "Desc pending still in list desc_completed\n");
}

static int mtk_hsdma_terminate_all(struct dma_chan *c)
{
	/*
	 * Free pending descriptors not processed yet by hardware that have
	 * previously been submitted to the channel.
	 */
	mtk_hsdma_free_inactive_desc(c);

	/*
	 * However, the DMA engine doesn't provide any way to stop these
	 * descriptors being processed currently by hardware. The only way is
	 * to just waiting until these descriptors are all processed completely
	 * through mtk_hsdma_free_active_desc call.
	 */
	mtk_hsdma_free_active_desc(c);

	return 0;
}

static int mtk_hsdma_alloc_chan_resources(struct dma_chan *c)
{
	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
	int err;

	/*
	 * Since HSDMA has only one PC, the resource for PC is being allocated
	 * when the first VC is being created and the other VCs would run on
	 * the same PC.
	 */
	if (!refcount_read(&hsdma->pc_refcnt)) {
		err = mtk_hsdma_alloc_pchan(hsdma, hsdma->pc);
		if (err)
			return err;
		/*
		 * refcount_inc would complain increment on 0; use-after-free.
		 * Thus, we need to explicitly set it as 1 initially.
		 */
		refcount_set(&hsdma->pc_refcnt, 1);
	} else {
		refcount_inc(&hsdma->pc_refcnt);
	}

	return 0;
}

static void mtk_hsdma_free_chan_resources(struct dma_chan *c)
{
	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);

	/* Free all descriptors in all lists on the VC */
	mtk_hsdma_terminate_all(c);

	/* The resource for PC is not freed until all the VCs are destroyed */
	if (!refcount_dec_and_test(&hsdma->pc_refcnt))
		return;

	mtk_hsdma_free_pchan(hsdma, hsdma->pc);
}

static int mtk_hsdma_hw_init(struct mtk_hsdma_device *hsdma)
{
	int err;

	pm_runtime_enable(hsdma2dev(hsdma));
	pm_runtime_get_sync(hsdma2dev(hsdma));

	err = clk_prepare_enable(hsdma->clk);
	if (err)
		return err;

	mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);
	mtk_dma_write(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DEFAULT);

	return 0;
}

static int mtk_hsdma_hw_deinit(struct mtk_hsdma_device *hsdma)
{
	mtk_dma_write(hsdma, MTK_HSDMA_GLO, 0);

	clk_disable_unprepare(hsdma->clk);

	pm_runtime_put_sync(hsdma2dev(hsdma));
	pm_runtime_disable(hsdma2dev(hsdma));

	return 0;
}

static const struct mtk_hsdma_soc mt7623_soc = {
	.ddone = BIT(31),
	.ls0 = BIT(30),
};

static const struct mtk_hsdma_soc mt7622_soc = {
	.ddone = BIT(15),
	.ls0 = BIT(14),
};

static const struct of_device_id mtk_hsdma_match[] = {
	{ .compatible = "mediatek,mt7623-hsdma", .data = &mt7623_soc},
	{ .compatible = "mediatek,mt7622-hsdma", .data = &mt7622_soc},
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mtk_hsdma_match);

static int mtk_hsdma_probe(struct platform_device *pdev)
{
	struct mtk_hsdma_device *hsdma;
	struct mtk_hsdma_vchan *vc;
	struct dma_device *dd;
	struct resource *res;
	int i, err;

	hsdma = devm_kzalloc(&pdev->dev, sizeof(*hsdma), GFP_KERNEL);
	if (!hsdma)
		return -ENOMEM;

	dd = &hsdma->ddev;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	hsdma->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(hsdma->base))
		return PTR_ERR(hsdma->base);

	hsdma->soc = of_device_get_match_data(&pdev->dev);
	if (!hsdma->soc) {
		dev_err(&pdev->dev, "No device match found\n");
		return -ENODEV;
	}

	hsdma->clk = devm_clk_get(&pdev->dev, "hsdma");
	if (IS_ERR(hsdma->clk)) {
		dev_err(&pdev->dev, "No clock for %s\n",
			dev_name(&pdev->dev));
		return PTR_ERR(hsdma->clk);
	}

	err = platform_get_irq(pdev, 0);
	if (err < 0)
		return err;
	hsdma->irq = err;

	refcount_set(&hsdma->pc_refcnt, 0);
	spin_lock_init(&hsdma->lock);

	dma_cap_set(DMA_MEMCPY, dd->cap_mask);

	dd->copy_align = MTK_HSDMA_ALIGN_SIZE;
	dd->device_alloc_chan_resources = mtk_hsdma_alloc_chan_resources;
	dd->device_free_chan_resources = mtk_hsdma_free_chan_resources;
	dd->device_tx_status = mtk_hsdma_tx_status;
	dd->device_issue_pending = mtk_hsdma_issue_pending;
	dd->device_prep_dma_memcpy = mtk_hsdma_prep_dma_memcpy;
	dd->device_terminate_all = mtk_hsdma_terminate_all;
	dd->src_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
	dd->dst_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
	dd->directions = BIT(DMA_MEM_TO_MEM);
	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
	dd->dev = &pdev->dev;
	INIT_LIST_HEAD(&dd->channels);

	hsdma->dma_requests = MTK_HSDMA_NR_VCHANS;
	if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
						      "dma-requests",
						      &hsdma->dma_requests)) {
		dev_info(&pdev->dev,
			 "Using %u as missing dma-requests property\n",
			 MTK_HSDMA_NR_VCHANS);
	}

	hsdma->pc = devm_kcalloc(&pdev->dev, MTK_HSDMA_NR_MAX_PCHANS,
				 sizeof(*hsdma->pc), GFP_KERNEL);
	if (!hsdma->pc)
		return -ENOMEM;

	hsdma->vc = devm_kcalloc(&pdev->dev, hsdma->dma_requests,
				 sizeof(*hsdma->vc), GFP_KERNEL);
	if (!hsdma->vc)
		return -ENOMEM;

	for (i = 0; i < hsdma->dma_requests; i++) {
		vc = &hsdma->vc[i];
		vc->vc.desc_free = mtk_hsdma_vdesc_free;
		vchan_init(&vc->vc, dd);
		init_completion(&vc->issue_completion);
		INIT_LIST_HEAD(&vc->desc_hw_processing);
	}

	err = dma_async_device_register(dd);
	if (err)
		return err;

	err = of_dma_controller_register(pdev->dev.of_node,
					 of_dma_xlate_by_chan_id, hsdma);
	if (err) {
		dev_err(&pdev->dev,
			"MediaTek HSDMA OF registration failed %d\n", err);
		goto err_unregister;
	}

	mtk_hsdma_hw_init(hsdma);

	err = devm_request_irq(&pdev->dev, hsdma->irq,
			       mtk_hsdma_irq, 0,
			       dev_name(&pdev->dev), hsdma);
	if (err) {
		dev_err(&pdev->dev,
			"request_irq failed with err %d\n", err);
		goto err_free;
	}

	platform_set_drvdata(pdev, hsdma);

	dev_info(&pdev->dev, "MediaTek HSDMA driver registered\n");

	return 0;

err_free:
	mtk_hsdma_hw_deinit(hsdma);
	of_dma_controller_free(pdev->dev.of_node);
err_unregister:
	dma_async_device_unregister(dd);

	return err;
}

static int mtk_hsdma_remove(struct platform_device *pdev)
{
	struct mtk_hsdma_device *hsdma = platform_get_drvdata(pdev);
	struct mtk_hsdma_vchan *vc;
	int i;

	/* Kill VC task */
	for (i = 0; i < hsdma->dma_requests; i++) {
		vc = &hsdma->vc[i];

		list_del(&vc->vc.chan.device_node);
		tasklet_kill(&vc->vc.task);
	}

	/* Disable DMA interrupt */
	mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);

	/* Waits for any pending IRQ handlers to complete */
	synchronize_irq(hsdma->irq);

	/* Disable hardware */
	mtk_hsdma_hw_deinit(hsdma);

	dma_async_device_unregister(&hsdma->ddev);
	of_dma_controller_free(pdev->dev.of_node);

	return 0;
}

static struct platform_driver mtk_hsdma_driver = {
	.probe		= mtk_hsdma_probe,
	.remove		= mtk_hsdma_remove,
	.driver = {
		.name		= KBUILD_MODNAME,
		.of_match_table	= mtk_hsdma_match,
	},
};
module_platform_driver(mtk_hsdma_driver);

MODULE_DESCRIPTION("MediaTek High-Speed DMA Controller Driver");
MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
MODULE_LICENSE("GPL v2");