Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
// SPDX-License-Identifier: GPL-2.0-only
// Copyright (c) 2020, The Linux Foundation. All rights reserved.

#include <linux/module.h>
#include <linux/of_irq.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/of_regulator.h>

#define REG_PERPH_TYPE                  0x04

#define QCOM_LAB_TYPE			0x24
#define QCOM_IBB_TYPE			0x20

#define PMI8998_LAB_REG_BASE		0xde00
#define PMI8998_IBB_REG_BASE		0xdc00
#define PMI8998_IBB_LAB_REG_OFFSET	0x200

#define REG_LABIBB_STATUS1		0x08
 #define LABIBB_STATUS1_SC_BIT		BIT(6)
 #define LABIBB_STATUS1_VREG_OK_BIT	BIT(7)

#define REG_LABIBB_INT_SET_TYPE		0x11
#define REG_LABIBB_INT_POLARITY_HIGH	0x12
#define REG_LABIBB_INT_POLARITY_LOW	0x13
#define REG_LABIBB_INT_LATCHED_CLR	0x14
#define REG_LABIBB_INT_EN_SET		0x15
#define REG_LABIBB_INT_EN_CLR		0x16
 #define LABIBB_INT_VREG_OK		BIT(0)
 #define LABIBB_INT_VREG_TYPE_LEVEL	0

#define REG_LABIBB_VOLTAGE		0x41
 #define LABIBB_VOLTAGE_OVERRIDE_EN	BIT(7)
 #define LAB_VOLTAGE_SET_MASK		GENMASK(3, 0)
 #define IBB_VOLTAGE_SET_MASK		GENMASK(5, 0)

#define REG_LABIBB_ENABLE_CTL		0x46
 #define LABIBB_CONTROL_ENABLE		BIT(7)

#define REG_LABIBB_PD_CTL		0x47
 #define LAB_PD_CTL_MASK		GENMASK(1, 0)
 #define IBB_PD_CTL_MASK		(BIT(0) | BIT(7))
 #define LAB_PD_CTL_STRONG_PULL		BIT(0)
 #define IBB_PD_CTL_HALF_STRENGTH	BIT(0)
 #define IBB_PD_CTL_EN			BIT(7)

#define REG_LABIBB_CURRENT_LIMIT	0x4b
 #define LAB_CURRENT_LIMIT_MASK		GENMASK(2, 0)
 #define IBB_CURRENT_LIMIT_MASK		GENMASK(4, 0)
 #define LAB_CURRENT_LIMIT_OVERRIDE_EN	BIT(3)
 #define LABIBB_CURRENT_LIMIT_EN	BIT(7)

#define REG_IBB_PWRUP_PWRDN_CTL_1	0x58
 #define IBB_CTL_1_DISCHARGE_EN		BIT(2)

#define REG_LABIBB_SOFT_START_CTL	0x5f
#define REG_LABIBB_SEC_ACCESS		0xd0
 #define LABIBB_SEC_UNLOCK_CODE		0xa5

#define LAB_ENABLE_CTL_MASK		BIT(7)
#define IBB_ENABLE_CTL_MASK		(BIT(7) | BIT(6))

#define LABIBB_OFF_ON_DELAY		1000
#define LAB_ENABLE_TIME			(LABIBB_OFF_ON_DELAY * 2)
#define IBB_ENABLE_TIME			(LABIBB_OFF_ON_DELAY * 10)
#define LABIBB_POLL_ENABLED_TIME	1000
#define OCP_RECOVERY_INTERVAL_MS	500
#define SC_RECOVERY_INTERVAL_MS		250
#define LABIBB_MAX_OCP_COUNT		4
#define LABIBB_MAX_SC_COUNT		3
#define LABIBB_MAX_FATAL_COUNT		2

struct labibb_current_limits {
	u32				uA_min;
	u32				uA_step;
	u8				ovr_val;
};

struct labibb_regulator {
	struct regulator_desc		desc;
	struct device			*dev;
	struct regmap			*regmap;
	struct regulator_dev		*rdev;
	struct labibb_current_limits	uA_limits;
	struct delayed_work		ocp_recovery_work;
	struct delayed_work		sc_recovery_work;
	u16				base;
	u8				type;
	u8				dischg_sel;
	u8				soft_start_sel;
	int				sc_irq;
	int				sc_count;
	int				ocp_irq;
	int				ocp_irq_count;
	int				fatal_count;
};

struct labibb_regulator_data {
	const char			*name;
	u8				type;
	u16				base;
	const struct regulator_desc	*desc;
};

static int qcom_labibb_ocp_hw_enable(struct regulator_dev *rdev)
{
	struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
	int ret;

	/* Clear irq latch status to avoid spurious event */
	ret = regmap_update_bits(rdev->regmap,
				 vreg->base + REG_LABIBB_INT_LATCHED_CLR,
				 LABIBB_INT_VREG_OK, 1);
	if (ret)
		return ret;

	/* Enable OCP HW interrupt */
	return regmap_update_bits(rdev->regmap,
				  vreg->base + REG_LABIBB_INT_EN_SET,
				  LABIBB_INT_VREG_OK, 1);
}

static int qcom_labibb_ocp_hw_disable(struct regulator_dev *rdev)
{
	struct labibb_regulator *vreg = rdev_get_drvdata(rdev);

	return regmap_update_bits(rdev->regmap,
				  vreg->base + REG_LABIBB_INT_EN_CLR,
				  LABIBB_INT_VREG_OK, 1);
}

/**
 * qcom_labibb_check_ocp_status - Check the Over-Current Protection status
 * @vreg: Main driver structure
 *
 * This function checks the STATUS1 register for the VREG_OK bit: if it is
 * set, then there is no Over-Current event.
 *
 * Returns: Zero if there is no over-current, 1 if in over-current or
 *          negative number for error
 */
static int qcom_labibb_check_ocp_status(struct labibb_regulator *vreg)
{
	u32 cur_status;
	int ret;

	ret = regmap_read(vreg->rdev->regmap, vreg->base + REG_LABIBB_STATUS1,
			  &cur_status);
	if (ret)
		return ret;

	return !(cur_status & LABIBB_STATUS1_VREG_OK_BIT);
}

/**
 * qcom_labibb_ocp_recovery_worker - Handle OCP event
 * @work: OCP work structure
 *
 * This is the worker function to handle the Over Current Protection
 * hardware event; This will check if the hardware is still
 * signaling an over-current condition and will eventually stop
 * the regulator if such condition is still signaled after
 * LABIBB_MAX_OCP_COUNT times.
 *
 * If the driver that is consuming the regulator did not take action
 * for the OCP condition, or the hardware did not stabilize, a cut
 * of the LAB and IBB regulators will be forced (regulators will be
 * disabled).
 *
 * As last, if the writes to shut down the LAB/IBB regulators fail
 * for more than LABIBB_MAX_FATAL_COUNT, then a kernel panic will be
 * triggered, as a last resort to protect the hardware from burning;
 * this, however, is expected to never happen, but this is kept to
 * try to further ensure that we protect the hardware at all costs.
 */
static void qcom_labibb_ocp_recovery_worker(struct work_struct *work)
{
	struct labibb_regulator *vreg;
	const struct regulator_ops *ops;
	int ret;

	vreg = container_of(work, struct labibb_regulator,
			    ocp_recovery_work.work);
	ops = vreg->rdev->desc->ops;

	if (vreg->ocp_irq_count >= LABIBB_MAX_OCP_COUNT) {
		/*
		 * If we tried to disable the regulator multiple times but
		 * we kept failing, there's only one last hope to save our
		 * hardware from the death: raise a kernel bug, reboot and
		 * hope that the bootloader kindly saves us. This, though
		 * is done only as paranoid checking, because failing the
		 * regmap write to disable the vreg is almost impossible,
		 * since we got here after multiple regmap R/W.
		 */
		BUG_ON(vreg->fatal_count > LABIBB_MAX_FATAL_COUNT);
		dev_err(&vreg->rdev->dev, "LABIBB: CRITICAL: Disabling regulator\n");

		/* Disable the regulator immediately to avoid damage */
		ret = ops->disable(vreg->rdev);
		if (ret) {
			vreg->fatal_count++;
			goto reschedule;
		}
		enable_irq(vreg->ocp_irq);
		vreg->fatal_count = 0;
		return;
	}

	ret = qcom_labibb_check_ocp_status(vreg);
	if (ret != 0) {
		vreg->ocp_irq_count++;
		goto reschedule;
	}

	ret = qcom_labibb_ocp_hw_enable(vreg->rdev);
	if (ret) {
		/* We cannot trust it without OCP enabled. */
		dev_err(vreg->dev, "Cannot enable OCP IRQ\n");
		vreg->ocp_irq_count++;
		goto reschedule;
	}

	enable_irq(vreg->ocp_irq);
	/* Everything went fine: reset the OCP count! */
	vreg->ocp_irq_count = 0;
	return;

reschedule:
	mod_delayed_work(system_wq, &vreg->ocp_recovery_work,
			 msecs_to_jiffies(OCP_RECOVERY_INTERVAL_MS));
}

/**
 * qcom_labibb_ocp_isr - Interrupt routine for OverCurrent Protection
 * @irq:  Interrupt number
 * @chip: Main driver structure
 *
 * Over Current Protection (OCP) will signal to the client driver
 * that an over-current event has happened and then will schedule
 * a recovery worker.
 *
 * Disabling and eventually re-enabling the regulator is expected
 * to be done by the driver, as some hardware may be triggering an
 * over-current condition only at first initialization or it may
 * be expected only for a very brief amount of time, after which
 * the attached hardware may be expected to stabilize its current
 * draw.
 *
 * Returns: IRQ_HANDLED for success or IRQ_NONE for failure.
 */
static irqreturn_t qcom_labibb_ocp_isr(int irq, void *chip)
{
	struct labibb_regulator *vreg = chip;
	const struct regulator_ops *ops = vreg->rdev->desc->ops;
	int ret;

	/* If the regulator is not enabled, this is a fake event */
	if (!ops->is_enabled(vreg->rdev))
		return IRQ_HANDLED;

	/* If we tried to recover for too many times it's not getting better */
	if (vreg->ocp_irq_count > LABIBB_MAX_OCP_COUNT)
		return IRQ_NONE;

	/*
	 * If we (unlikely) can't read this register, to prevent hardware
	 * damage at all costs, we assume that the overcurrent event was
	 * real; Moreover, if the status register is not signaling OCP,
	 * it was a spurious event, so it's all ok.
	 */
	ret = qcom_labibb_check_ocp_status(vreg);
	if (ret == 0) {
		vreg->ocp_irq_count = 0;
		goto end;
	}
	vreg->ocp_irq_count++;

	/*
	 * Disable the interrupt temporarily, or it will fire continuously;
	 * we will re-enable it in the recovery worker function.
	 */
	disable_irq_nosync(irq);

	/* Warn the user for overcurrent */
	dev_warn(vreg->dev, "Over-Current interrupt fired!\n");

	/* Disable the interrupt to avoid hogging */
	ret = qcom_labibb_ocp_hw_disable(vreg->rdev);
	if (ret)
		goto end;

	/* Signal overcurrent event to drivers */
	regulator_notifier_call_chain(vreg->rdev,
				      REGULATOR_EVENT_OVER_CURRENT, NULL);

end:
	/* Schedule the recovery work */
	schedule_delayed_work(&vreg->ocp_recovery_work,
			      msecs_to_jiffies(OCP_RECOVERY_INTERVAL_MS));
	if (ret)
		return IRQ_NONE;

	return IRQ_HANDLED;
}

static int qcom_labibb_set_ocp(struct regulator_dev *rdev, int lim,
			       int severity, bool enable)
{
	struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
	char *ocp_irq_name;
	u32 irq_flags = IRQF_ONESHOT;
	int irq_trig_low, ret;

	/*
	 * labibb supports only protection - and does not support setting
	 * limit. Furthermore, we don't support disabling protection.
	 */
	if (lim || severity != REGULATOR_SEVERITY_PROT || !enable)
		return -EINVAL;

	/* If there is no OCP interrupt, there's nothing to set */
	if (vreg->ocp_irq <= 0)
		return -EINVAL;

	ocp_irq_name = devm_kasprintf(vreg->dev, GFP_KERNEL, "%s-over-current",
				      vreg->desc.name);
	if (!ocp_irq_name)
		return -ENOMEM;

	/* IRQ polarities - LAB: trigger-low, IBB: trigger-high */
	switch (vreg->type) {
	case QCOM_LAB_TYPE:
		irq_flags |= IRQF_TRIGGER_LOW;
		irq_trig_low = 1;
		break;
	case QCOM_IBB_TYPE:
		irq_flags |= IRQF_TRIGGER_HIGH;
		irq_trig_low = 0;
		break;
	default:
		return -EINVAL;
	}

	/* Activate OCP HW level interrupt */
	ret = regmap_update_bits(rdev->regmap,
				 vreg->base + REG_LABIBB_INT_SET_TYPE,
				 LABIBB_INT_VREG_OK,
				 LABIBB_INT_VREG_TYPE_LEVEL);
	if (ret)
		return ret;

	/* Set OCP interrupt polarity */
	ret = regmap_update_bits(rdev->regmap,
				 vreg->base + REG_LABIBB_INT_POLARITY_HIGH,
				 LABIBB_INT_VREG_OK, !irq_trig_low);
	if (ret)
		return ret;
	ret = regmap_update_bits(rdev->regmap,
				 vreg->base + REG_LABIBB_INT_POLARITY_LOW,
				 LABIBB_INT_VREG_OK, irq_trig_low);
	if (ret)
		return ret;

	ret = qcom_labibb_ocp_hw_enable(rdev);
	if (ret)
		return ret;

	return devm_request_threaded_irq(vreg->dev, vreg->ocp_irq, NULL,
					 qcom_labibb_ocp_isr, irq_flags,
					 ocp_irq_name, vreg);
}

/**
 * qcom_labibb_check_sc_status - Check the Short Circuit Protection status
 * @vreg: Main driver structure
 *
 * This function checks the STATUS1 register on both LAB and IBB regulators
 * for the ShortCircuit bit: if it is set on *any* of them, then we have
 * experienced a short-circuit event.
 *
 * Returns: Zero if there is no short-circuit, 1 if in short-circuit or
 *          negative number for error
 */
static int qcom_labibb_check_sc_status(struct labibb_regulator *vreg)
{
	u32 ibb_status, ibb_reg, lab_status, lab_reg;
	int ret;

	/* We have to work on both regulators due to PBS... */
	lab_reg = ibb_reg = vreg->base + REG_LABIBB_STATUS1;
	if (vreg->type == QCOM_LAB_TYPE)
		ibb_reg -= PMI8998_IBB_LAB_REG_OFFSET;
	else
		lab_reg += PMI8998_IBB_LAB_REG_OFFSET;

	ret = regmap_read(vreg->rdev->regmap, lab_reg, &lab_status);
	if (ret)
		return ret;
	ret = regmap_read(vreg->rdev->regmap, ibb_reg, &ibb_status);
	if (ret)
		return ret;

	return !!(lab_status & LABIBB_STATUS1_SC_BIT) ||
	       !!(ibb_status & LABIBB_STATUS1_SC_BIT);
}

/**
 * qcom_labibb_sc_recovery_worker - Handle Short Circuit event
 * @work: SC work structure
 *
 * This is the worker function to handle the Short Circuit Protection
 * hardware event; This will check if the hardware is still
 * signaling a short-circuit condition and will eventually never
 * re-enable the regulator if such condition is still signaled after
 * LABIBB_MAX_SC_COUNT times.
 *
 * If the driver that is consuming the regulator did not take action
 * for the SC condition, or the hardware did not stabilize, this
 * worker will stop rescheduling, leaving the regulators disabled
 * as already done by the Portable Batch System (PBS).
 *
 * Returns: IRQ_HANDLED for success or IRQ_NONE for failure.
 */
static void qcom_labibb_sc_recovery_worker(struct work_struct *work)
{
	struct labibb_regulator *vreg;
	const struct regulator_ops *ops;
	u32 lab_reg, ibb_reg, lab_val, ibb_val, val;
	bool pbs_cut = false;
	int i, sc, ret;

	vreg = container_of(work, struct labibb_regulator,
			    sc_recovery_work.work);
	ops = vreg->rdev->desc->ops;

	/*
	 * If we tried to check the regulator status multiple times but we
	 * kept failing, then just bail out, as the Portable Batch System
	 * (PBS) will disable the vregs for us, preventing hardware damage.
	 */
	if (vreg->fatal_count > LABIBB_MAX_FATAL_COUNT)
		return;

	/* Too many short-circuit events. Throw in the towel. */
	if (vreg->sc_count > LABIBB_MAX_SC_COUNT)
		return;

	/*
	 * The Portable Batch System (PBS) automatically disables LAB
	 * and IBB when a short-circuit event is detected, so we have to
	 * check and work on both of them at the same time.
	 */
	lab_reg = ibb_reg = vreg->base + REG_LABIBB_ENABLE_CTL;
	if (vreg->type == QCOM_LAB_TYPE)
		ibb_reg -= PMI8998_IBB_LAB_REG_OFFSET;
	else
		lab_reg += PMI8998_IBB_LAB_REG_OFFSET;

	sc = qcom_labibb_check_sc_status(vreg);
	if (sc)
		goto reschedule;

	for (i = 0; i < LABIBB_MAX_SC_COUNT; i++) {
		ret = regmap_read(vreg->regmap, lab_reg, &lab_val);
		if (ret) {
			vreg->fatal_count++;
			goto reschedule;
		}

		ret = regmap_read(vreg->regmap, ibb_reg, &ibb_val);
		if (ret) {
			vreg->fatal_count++;
			goto reschedule;
		}
		val = lab_val & ibb_val;

		if (!(val & LABIBB_CONTROL_ENABLE)) {
			pbs_cut = true;
			break;
		}
		usleep_range(5000, 6000);
	}
	if (pbs_cut)
		goto reschedule;


	/*
	 * If we have reached this point, we either have successfully
	 * recovered from the SC condition or we had a spurious SC IRQ,
	 * which means that we can re-enable the regulators, if they
	 * have ever been disabled by the PBS.
	 */
	ret = ops->enable(vreg->rdev);
	if (ret)
		goto reschedule;

	/* Everything went fine: reset the OCP count! */
	vreg->sc_count = 0;
	enable_irq(vreg->sc_irq);
	return;

reschedule:
	/*
	 * Now that we have done basic handling of the short-circuit,
	 * reschedule this worker in the regular system workqueue, as
	 * taking action is not truly urgent anymore.
	 */
	vreg->sc_count++;
	mod_delayed_work(system_wq, &vreg->sc_recovery_work,
			 msecs_to_jiffies(SC_RECOVERY_INTERVAL_MS));
}

/**
 * qcom_labibb_sc_isr - Interrupt routine for Short Circuit Protection
 * @irq:  Interrupt number
 * @chip: Main driver structure
 *
 * Short Circuit Protection (SCP) will signal to the client driver
 * that a regulation-out event has happened and then will schedule
 * a recovery worker.
 *
 * The LAB and IBB regulators will be automatically disabled by the
 * Portable Batch System (PBS) and they will be enabled again by
 * the worker function if the hardware stops signaling the short
 * circuit event.
 *
 * Returns: IRQ_HANDLED for success or IRQ_NONE for failure.
 */
static irqreturn_t qcom_labibb_sc_isr(int irq, void *chip)
{
	struct labibb_regulator *vreg = chip;

	if (vreg->sc_count > LABIBB_MAX_SC_COUNT)
		return IRQ_NONE;

	/* Warn the user for short circuit */
	dev_warn(vreg->dev, "Short-Circuit interrupt fired!\n");

	/*
	 * Disable the interrupt temporarily, or it will fire continuously;
	 * we will re-enable it in the recovery worker function.
	 */
	disable_irq_nosync(irq);

	/* Signal out of regulation event to drivers */
	regulator_notifier_call_chain(vreg->rdev,
				      REGULATOR_EVENT_REGULATION_OUT, NULL);

	/* Schedule the short-circuit handling as high-priority work */
	mod_delayed_work(system_highpri_wq, &vreg->sc_recovery_work,
			 msecs_to_jiffies(SC_RECOVERY_INTERVAL_MS));
	return IRQ_HANDLED;
}


static int qcom_labibb_set_current_limit(struct regulator_dev *rdev,
					 int min_uA, int max_uA)
{
	struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
	struct regulator_desc *desc = &vreg->desc;
	struct labibb_current_limits *lim = &vreg->uA_limits;
	u32 mask, val;
	int i, ret, sel = -1;

	if (min_uA < lim->uA_min || max_uA < lim->uA_min)
		return -EINVAL;

	for (i = 0; i < desc->n_current_limits; i++) {
		int uA_limit = (lim->uA_step * i) + lim->uA_min;

		if (max_uA >= uA_limit && min_uA <= uA_limit)
			sel = i;
	}
	if (sel < 0)
		return -EINVAL;

	/* Current limit setting needs secure access */
	ret = regmap_write(vreg->regmap, vreg->base + REG_LABIBB_SEC_ACCESS,
			   LABIBB_SEC_UNLOCK_CODE);
	if (ret)
		return ret;

	mask = desc->csel_mask | lim->ovr_val;
	mask |= LABIBB_CURRENT_LIMIT_EN;
	val = (u32)sel | lim->ovr_val;
	val |= LABIBB_CURRENT_LIMIT_EN;

	return regmap_update_bits(vreg->regmap, desc->csel_reg, mask, val);
}

static int qcom_labibb_get_current_limit(struct regulator_dev *rdev)
{
	struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
	struct regulator_desc *desc = &vreg->desc;
	struct labibb_current_limits *lim = &vreg->uA_limits;
	unsigned int cur_step;
	int ret;

	ret = regmap_read(vreg->regmap, desc->csel_reg, &cur_step);
	if (ret)
		return ret;
	cur_step &= desc->csel_mask;

	return (cur_step * lim->uA_step) + lim->uA_min;
}

static int qcom_labibb_set_soft_start(struct regulator_dev *rdev)
{
	struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
	u32 val = 0;

	if (vreg->type == QCOM_IBB_TYPE)
		val = vreg->dischg_sel;
	else
		val = vreg->soft_start_sel;

	return regmap_write(rdev->regmap, rdev->desc->soft_start_reg, val);
}

static int qcom_labibb_get_table_sel(const int *table, int sz, u32 value)
{
	int i;

	for (i = 0; i < sz; i++)
		if (table[i] == value)
			return i;
	return -EINVAL;
}

/* IBB discharge resistor values in KOhms */
static const int dischg_resistor_values[] = { 300, 64, 32, 16 };

/* Soft start time in microseconds */
static const int soft_start_values[] = { 200, 400, 600, 800 };

static int qcom_labibb_of_parse_cb(struct device_node *np,
				   const struct regulator_desc *desc,
				   struct regulator_config *config)
{
	struct labibb_regulator *vreg = config->driver_data;
	u32 dischg_kohms, soft_start_time;
	int ret;

	ret = of_property_read_u32(np, "qcom,discharge-resistor-kohms",
				       &dischg_kohms);
	if (ret)
		dischg_kohms = 300;

	ret = qcom_labibb_get_table_sel(dischg_resistor_values,
					ARRAY_SIZE(dischg_resistor_values),
					dischg_kohms);
	if (ret < 0)
		return ret;
	vreg->dischg_sel = (u8)ret;

	ret = of_property_read_u32(np, "qcom,soft-start-us",
				   &soft_start_time);
	if (ret)
		soft_start_time = 200;

	ret = qcom_labibb_get_table_sel(soft_start_values,
					ARRAY_SIZE(soft_start_values),
					soft_start_time);
	if (ret < 0)
		return ret;
	vreg->soft_start_sel = (u8)ret;

	return 0;
}

static const struct regulator_ops qcom_labibb_ops = {
	.enable			= regulator_enable_regmap,
	.disable		= regulator_disable_regmap,
	.is_enabled		= regulator_is_enabled_regmap,
	.set_voltage_sel	= regulator_set_voltage_sel_regmap,
	.get_voltage_sel	= regulator_get_voltage_sel_regmap,
	.list_voltage		= regulator_list_voltage_linear,
	.map_voltage		= regulator_map_voltage_linear,
	.set_active_discharge	= regulator_set_active_discharge_regmap,
	.set_pull_down		= regulator_set_pull_down_regmap,
	.set_current_limit	= qcom_labibb_set_current_limit,
	.get_current_limit	= qcom_labibb_get_current_limit,
	.set_soft_start		= qcom_labibb_set_soft_start,
	.set_over_current_protection = qcom_labibb_set_ocp,
};

static const struct regulator_desc pmi8998_lab_desc = {
	.enable_mask		= LAB_ENABLE_CTL_MASK,
	.enable_reg		= (PMI8998_LAB_REG_BASE + REG_LABIBB_ENABLE_CTL),
	.enable_val		= LABIBB_CONTROL_ENABLE,
	.enable_time		= LAB_ENABLE_TIME,
	.poll_enabled_time	= LABIBB_POLL_ENABLED_TIME,
	.soft_start_reg		= (PMI8998_LAB_REG_BASE + REG_LABIBB_SOFT_START_CTL),
	.pull_down_reg		= (PMI8998_LAB_REG_BASE + REG_LABIBB_PD_CTL),
	.pull_down_mask		= LAB_PD_CTL_MASK,
	.pull_down_val_on	= LAB_PD_CTL_STRONG_PULL,
	.vsel_reg		= (PMI8998_LAB_REG_BASE + REG_LABIBB_VOLTAGE),
	.vsel_mask		= LAB_VOLTAGE_SET_MASK,
	.apply_reg		= (PMI8998_LAB_REG_BASE + REG_LABIBB_VOLTAGE),
	.apply_bit		= LABIBB_VOLTAGE_OVERRIDE_EN,
	.csel_reg		= (PMI8998_LAB_REG_BASE + REG_LABIBB_CURRENT_LIMIT),
	.csel_mask		= LAB_CURRENT_LIMIT_MASK,
	.n_current_limits	= 8,
	.off_on_delay		= LABIBB_OFF_ON_DELAY,
	.owner			= THIS_MODULE,
	.type			= REGULATOR_VOLTAGE,
	.min_uV			= 4600000,
	.uV_step		= 100000,
	.n_voltages		= 16,
	.ops			= &qcom_labibb_ops,
	.of_parse_cb		= qcom_labibb_of_parse_cb,
};

static const struct regulator_desc pmi8998_ibb_desc = {
	.enable_mask		= IBB_ENABLE_CTL_MASK,
	.enable_reg		= (PMI8998_IBB_REG_BASE + REG_LABIBB_ENABLE_CTL),
	.enable_val		= LABIBB_CONTROL_ENABLE,
	.enable_time		= IBB_ENABLE_TIME,
	.poll_enabled_time	= LABIBB_POLL_ENABLED_TIME,
	.soft_start_reg		= (PMI8998_IBB_REG_BASE + REG_LABIBB_SOFT_START_CTL),
	.active_discharge_off	= 0,
	.active_discharge_on	= IBB_CTL_1_DISCHARGE_EN,
	.active_discharge_mask	= IBB_CTL_1_DISCHARGE_EN,
	.active_discharge_reg	= (PMI8998_IBB_REG_BASE + REG_IBB_PWRUP_PWRDN_CTL_1),
	.pull_down_reg		= (PMI8998_IBB_REG_BASE + REG_LABIBB_PD_CTL),
	.pull_down_mask		= IBB_PD_CTL_MASK,
	.pull_down_val_on	= IBB_PD_CTL_HALF_STRENGTH | IBB_PD_CTL_EN,
	.vsel_reg		= (PMI8998_IBB_REG_BASE + REG_LABIBB_VOLTAGE),
	.vsel_mask		= IBB_VOLTAGE_SET_MASK,
	.apply_reg		= (PMI8998_IBB_REG_BASE + REG_LABIBB_VOLTAGE),
	.apply_bit		= LABIBB_VOLTAGE_OVERRIDE_EN,
	.csel_reg		= (PMI8998_IBB_REG_BASE + REG_LABIBB_CURRENT_LIMIT),
	.csel_mask		= IBB_CURRENT_LIMIT_MASK,
	.n_current_limits	= 32,
	.off_on_delay		= LABIBB_OFF_ON_DELAY,
	.owner			= THIS_MODULE,
	.type			= REGULATOR_VOLTAGE,
	.min_uV			= 1400000,
	.uV_step		= 100000,
	.n_voltages		= 64,
	.ops			= &qcom_labibb_ops,
	.of_parse_cb		= qcom_labibb_of_parse_cb,
};

static const struct labibb_regulator_data pmi8998_labibb_data[] = {
	{"lab", QCOM_LAB_TYPE, PMI8998_LAB_REG_BASE, &pmi8998_lab_desc},
	{"ibb", QCOM_IBB_TYPE, PMI8998_IBB_REG_BASE, &pmi8998_ibb_desc},
	{ },
};

static const struct of_device_id qcom_labibb_match[] = {
	{ .compatible = "qcom,pmi8998-lab-ibb", .data = &pmi8998_labibb_data},
	{ },
};
MODULE_DEVICE_TABLE(of, qcom_labibb_match);

static int qcom_labibb_regulator_probe(struct platform_device *pdev)
{
	struct labibb_regulator *vreg;
	struct device *dev = &pdev->dev;
	struct regulator_config cfg = {};
	struct device_node *reg_node;
	const struct of_device_id *match;
	const struct labibb_regulator_data *reg_data;
	struct regmap *reg_regmap;
	unsigned int type;
	int ret;

	reg_regmap = dev_get_regmap(pdev->dev.parent, NULL);
	if (!reg_regmap) {
		dev_err(&pdev->dev, "Couldn't get parent's regmap\n");
		return -ENODEV;
	}

	match = of_match_device(qcom_labibb_match, &pdev->dev);
	if (!match)
		return -ENODEV;

	for (reg_data = match->data; reg_data->name; reg_data++) {
		char *sc_irq_name;
		int irq = 0;

		/* Validate if the type of regulator is indeed
		 * what's mentioned in DT.
		 */
		ret = regmap_read(reg_regmap, reg_data->base + REG_PERPH_TYPE,
				  &type);
		if (ret < 0) {
			dev_err(dev,
				"Peripheral type read failed ret=%d\n",
				ret);
			return -EINVAL;
		}

		if (WARN_ON((type != QCOM_LAB_TYPE) && (type != QCOM_IBB_TYPE)) ||
		    WARN_ON(type != reg_data->type))
			return -EINVAL;

		vreg  = devm_kzalloc(&pdev->dev, sizeof(*vreg),
					   GFP_KERNEL);
		if (!vreg)
			return -ENOMEM;

		sc_irq_name = devm_kasprintf(dev, GFP_KERNEL,
					     "%s-short-circuit",
					     reg_data->name);
		if (!sc_irq_name)
			return -ENOMEM;

		reg_node = of_get_child_by_name(pdev->dev.of_node,
						reg_data->name);
		if (!reg_node)
			return -EINVAL;

		/* The Short Circuit interrupt is critical */
		irq = of_irq_get_byname(reg_node, "sc-err");
		if (irq <= 0) {
			if (irq == 0)
				irq = -EINVAL;

			return dev_err_probe(vreg->dev, irq,
					     "Short-circuit irq not found.\n");
		}
		vreg->sc_irq = irq;

		/* OverCurrent Protection IRQ is optional */
		irq = of_irq_get_byname(reg_node, "ocp");
		vreg->ocp_irq = irq;
		vreg->ocp_irq_count = 0;
		of_node_put(reg_node);

		vreg->regmap = reg_regmap;
		vreg->dev = dev;
		vreg->base = reg_data->base;
		vreg->type = reg_data->type;
		INIT_DELAYED_WORK(&vreg->sc_recovery_work,
				  qcom_labibb_sc_recovery_worker);

		if (vreg->ocp_irq > 0)
			INIT_DELAYED_WORK(&vreg->ocp_recovery_work,
					  qcom_labibb_ocp_recovery_worker);

		switch (vreg->type) {
		case QCOM_LAB_TYPE:
			/* LAB Limits: 200-1600mA */
			vreg->uA_limits.uA_min  = 200000;
			vreg->uA_limits.uA_step = 200000;
			vreg->uA_limits.ovr_val = LAB_CURRENT_LIMIT_OVERRIDE_EN;
			break;
		case QCOM_IBB_TYPE:
			/* IBB Limits: 0-1550mA */
			vreg->uA_limits.uA_min  = 0;
			vreg->uA_limits.uA_step = 50000;
			vreg->uA_limits.ovr_val = 0; /* No override bit */
			break;
		default:
			return -EINVAL;
		}

		memcpy(&vreg->desc, reg_data->desc, sizeof(vreg->desc));
		vreg->desc.of_match = reg_data->name;
		vreg->desc.name = reg_data->name;

		cfg.dev = vreg->dev;
		cfg.driver_data = vreg;
		cfg.regmap = vreg->regmap;

		vreg->rdev = devm_regulator_register(vreg->dev, &vreg->desc,
							&cfg);

		if (IS_ERR(vreg->rdev)) {
			dev_err(dev, "qcom_labibb: error registering %s : %d\n",
					reg_data->name, ret);
			return PTR_ERR(vreg->rdev);
		}

		ret = devm_request_threaded_irq(vreg->dev, vreg->sc_irq, NULL,
						qcom_labibb_sc_isr,
						IRQF_ONESHOT |
						IRQF_TRIGGER_RISING,
						sc_irq_name, vreg);
		if (ret)
			return ret;
	}

	return 0;
}

static struct platform_driver qcom_labibb_regulator_driver = {
	.driver	= {
		.name = "qcom-lab-ibb-regulator",
		.of_match_table	= qcom_labibb_match,
	},
	.probe = qcom_labibb_regulator_probe,
};
module_platform_driver(qcom_labibb_regulator_driver);

MODULE_DESCRIPTION("Qualcomm labibb driver");
MODULE_AUTHOR("Nisha Kumari <nishakumari@codeaurora.org>");
MODULE_AUTHOR("Sumit Semwal <sumit.semwal@linaro.org>");
MODULE_LICENSE("GPL v2");