Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Driver for I2C adapter in Rockchip RK3xxx SoC
 *
 * Max Schwarz <max.schwarz@online.de>
 * based on the patches by Rockchip Inc.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/spinlock.h>
#include <linux/clk.h>
#include <linux/wait.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <linux/math64.h>


/* Register Map */
#define REG_CON        0x00 /* control register */
#define REG_CLKDIV     0x04 /* clock divisor register */
#define REG_MRXADDR    0x08 /* slave address for REGISTER_TX */
#define REG_MRXRADDR   0x0c /* slave register address for REGISTER_TX */
#define REG_MTXCNT     0x10 /* number of bytes to be transmitted */
#define REG_MRXCNT     0x14 /* number of bytes to be received */
#define REG_IEN        0x18 /* interrupt enable */
#define REG_IPD        0x1c /* interrupt pending */
#define REG_FCNT       0x20 /* finished count */

/* Data buffer offsets */
#define TXBUFFER_BASE 0x100
#define RXBUFFER_BASE 0x200

/* REG_CON bits */
#define REG_CON_EN        BIT(0)
enum {
	REG_CON_MOD_TX = 0,      /* transmit data */
	REG_CON_MOD_REGISTER_TX, /* select register and restart */
	REG_CON_MOD_RX,          /* receive data */
	REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes
				  * register addr */
};
#define REG_CON_MOD(mod)  ((mod) << 1)
#define REG_CON_MOD_MASK  (BIT(1) | BIT(2))
#define REG_CON_START     BIT(3)
#define REG_CON_STOP      BIT(4)
#define REG_CON_LASTACK   BIT(5) /* 1: send NACK after last received byte */
#define REG_CON_ACTACK    BIT(6) /* 1: stop if NACK is received */

#define REG_CON_TUNING_MASK GENMASK_ULL(15, 8)

#define REG_CON_SDA_CFG(cfg) ((cfg) << 8)
#define REG_CON_STA_CFG(cfg) ((cfg) << 12)
#define REG_CON_STO_CFG(cfg) ((cfg) << 14)

/* REG_MRXADDR bits */
#define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */

/* REG_IEN/REG_IPD bits */
#define REG_INT_BTF       BIT(0) /* a byte was transmitted */
#define REG_INT_BRF       BIT(1) /* a byte was received */
#define REG_INT_MBTF      BIT(2) /* master data transmit finished */
#define REG_INT_MBRF      BIT(3) /* master data receive finished */
#define REG_INT_START     BIT(4) /* START condition generated */
#define REG_INT_STOP      BIT(5) /* STOP condition generated */
#define REG_INT_NAKRCV    BIT(6) /* NACK received */
#define REG_INT_ALL       0x7f

/* Constants */
#define WAIT_TIMEOUT      1000 /* ms */
#define DEFAULT_SCL_RATE  (100 * 1000) /* Hz */

/**
 * struct i2c_spec_values:
 * @min_hold_start_ns: min hold time (repeated) START condition
 * @min_low_ns: min LOW period of the SCL clock
 * @min_high_ns: min HIGH period of the SCL cloc
 * @min_setup_start_ns: min set-up time for a repeated START conditio
 * @max_data_hold_ns: max data hold time
 * @min_data_setup_ns: min data set-up time
 * @min_setup_stop_ns: min set-up time for STOP condition
 * @min_hold_buffer_ns: min bus free time between a STOP and
 * START condition
 */
struct i2c_spec_values {
	unsigned long min_hold_start_ns;
	unsigned long min_low_ns;
	unsigned long min_high_ns;
	unsigned long min_setup_start_ns;
	unsigned long max_data_hold_ns;
	unsigned long min_data_setup_ns;
	unsigned long min_setup_stop_ns;
	unsigned long min_hold_buffer_ns;
};

static const struct i2c_spec_values standard_mode_spec = {
	.min_hold_start_ns = 4000,
	.min_low_ns = 4700,
	.min_high_ns = 4000,
	.min_setup_start_ns = 4700,
	.max_data_hold_ns = 3450,
	.min_data_setup_ns = 250,
	.min_setup_stop_ns = 4000,
	.min_hold_buffer_ns = 4700,
};

static const struct i2c_spec_values fast_mode_spec = {
	.min_hold_start_ns = 600,
	.min_low_ns = 1300,
	.min_high_ns = 600,
	.min_setup_start_ns = 600,
	.max_data_hold_ns = 900,
	.min_data_setup_ns = 100,
	.min_setup_stop_ns = 600,
	.min_hold_buffer_ns = 1300,
};

static const struct i2c_spec_values fast_mode_plus_spec = {
	.min_hold_start_ns = 260,
	.min_low_ns = 500,
	.min_high_ns = 260,
	.min_setup_start_ns = 260,
	.max_data_hold_ns = 400,
	.min_data_setup_ns = 50,
	.min_setup_stop_ns = 260,
	.min_hold_buffer_ns = 500,
};

/**
 * struct rk3x_i2c_calced_timings:
 * @div_low: Divider output for low
 * @div_high: Divider output for high
 * @tuning: Used to adjust setup/hold data time,
 * setup/hold start time and setup stop time for
 * v1's calc_timings, the tuning should all be 0
 * for old hardware anyone using v0's calc_timings.
 */
struct rk3x_i2c_calced_timings {
	unsigned long div_low;
	unsigned long div_high;
	unsigned int tuning;
};

enum rk3x_i2c_state {
	STATE_IDLE,
	STATE_START,
	STATE_READ,
	STATE_WRITE,
	STATE_STOP
};

/**
 * struct rk3x_i2c_soc_data:
 * @grf_offset: offset inside the grf regmap for setting the i2c type
 * @calc_timings: Callback function for i2c timing information calculated
 */
struct rk3x_i2c_soc_data {
	int grf_offset;
	int (*calc_timings)(unsigned long, struct i2c_timings *,
			    struct rk3x_i2c_calced_timings *);
};

/**
 * struct rk3x_i2c - private data of the controller
 * @adap: corresponding I2C adapter
 * @dev: device for this controller
 * @soc_data: related soc data struct
 * @regs: virtual memory area
 * @clk: function clk for rk3399 or function & Bus clks for others
 * @pclk: Bus clk for rk3399
 * @clk_rate_nb: i2c clk rate change notify
 * @t: I2C known timing information
 * @lock: spinlock for the i2c bus
 * @wait: the waitqueue to wait for i2c transfer
 * @busy: the condition for the event to wait for
 * @msg: current i2c message
 * @addr: addr of i2c slave device
 * @mode: mode of i2c transfer
 * @is_last_msg: flag determines whether it is the last msg in this transfer
 * @state: state of i2c transfer
 * @processed: byte length which has been send or received
 * @error: error code for i2c transfer
 */
struct rk3x_i2c {
	struct i2c_adapter adap;
	struct device *dev;
	const struct rk3x_i2c_soc_data *soc_data;

	/* Hardware resources */
	void __iomem *regs;
	struct clk *clk;
	struct clk *pclk;
	struct notifier_block clk_rate_nb;

	/* Settings */
	struct i2c_timings t;

	/* Synchronization & notification */
	spinlock_t lock;
	wait_queue_head_t wait;
	bool busy;

	/* Current message */
	struct i2c_msg *msg;
	u8 addr;
	unsigned int mode;
	bool is_last_msg;

	/* I2C state machine */
	enum rk3x_i2c_state state;
	unsigned int processed;
	int error;
};

static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value,
			      unsigned int offset)
{
	writel(value, i2c->regs + offset);
}

static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset)
{
	return readl(i2c->regs + offset);
}

/* Reset all interrupt pending bits */
static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
{
	i2c_writel(i2c, REG_INT_ALL, REG_IPD);
}

/**
 * Generate a START condition, which triggers a REG_INT_START interrupt.
 */
static void rk3x_i2c_start(struct rk3x_i2c *i2c)
{
	u32 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;

	i2c_writel(i2c, REG_INT_START, REG_IEN);

	/* enable adapter with correct mode, send START condition */
	val |= REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;

	/* if we want to react to NACK, set ACTACK bit */
	if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
		val |= REG_CON_ACTACK;

	i2c_writel(i2c, val, REG_CON);
}

/**
 * Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
 *
 * @error: Error code to return in rk3x_i2c_xfer
 */
static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
{
	unsigned int ctrl;

	i2c->processed = 0;
	i2c->msg = NULL;
	i2c->error = error;

	if (i2c->is_last_msg) {
		/* Enable stop interrupt */
		i2c_writel(i2c, REG_INT_STOP, REG_IEN);

		i2c->state = STATE_STOP;

		ctrl = i2c_readl(i2c, REG_CON);
		ctrl |= REG_CON_STOP;
		i2c_writel(i2c, ctrl, REG_CON);
	} else {
		/* Signal rk3x_i2c_xfer to start the next message. */
		i2c->busy = false;
		i2c->state = STATE_IDLE;

		/*
		 * The HW is actually not capable of REPEATED START. But we can
		 * get the intended effect by resetting its internal state
		 * and issuing an ordinary START.
		 */
		ctrl = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
		i2c_writel(i2c, ctrl, REG_CON);

		/* signal that we are finished with the current msg */
		wake_up(&i2c->wait);
	}
}

/**
 * Setup a read according to i2c->msg
 */
static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c)
{
	unsigned int len = i2c->msg->len - i2c->processed;
	u32 con;

	con = i2c_readl(i2c, REG_CON);

	/*
	 * The hw can read up to 32 bytes at a time. If we need more than one
	 * chunk, send an ACK after the last byte of the current chunk.
	 */
	if (len > 32) {
		len = 32;
		con &= ~REG_CON_LASTACK;
	} else {
		con |= REG_CON_LASTACK;
	}

	/* make sure we are in plain RX mode if we read a second chunk */
	if (i2c->processed != 0) {
		con &= ~REG_CON_MOD_MASK;
		con |= REG_CON_MOD(REG_CON_MOD_RX);
	}

	i2c_writel(i2c, con, REG_CON);
	i2c_writel(i2c, len, REG_MRXCNT);
}

/**
 * Fill the transmit buffer with data from i2c->msg
 */
static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c)
{
	unsigned int i, j;
	u32 cnt = 0;
	u32 val;
	u8 byte;

	for (i = 0; i < 8; ++i) {
		val = 0;
		for (j = 0; j < 4; ++j) {
			if ((i2c->processed == i2c->msg->len) && (cnt != 0))
				break;

			if (i2c->processed == 0 && cnt == 0)
				byte = (i2c->addr & 0x7f) << 1;
			else
				byte = i2c->msg->buf[i2c->processed++];

			val |= byte << (j * 8);
			cnt++;
		}

		i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i);

		if (i2c->processed == i2c->msg->len)
			break;
	}

	i2c_writel(i2c, cnt, REG_MTXCNT);
}


/* IRQ handlers for individual states */

static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd)
{
	if (!(ipd & REG_INT_START)) {
		rk3x_i2c_stop(i2c, -EIO);
		dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd);
		rk3x_i2c_clean_ipd(i2c);
		return;
	}

	/* ack interrupt */
	i2c_writel(i2c, REG_INT_START, REG_IPD);

	/* disable start bit */
	i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON);

	/* enable appropriate interrupts and transition */
	if (i2c->mode == REG_CON_MOD_TX) {
		i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN);
		i2c->state = STATE_WRITE;
		rk3x_i2c_fill_transmit_buf(i2c);
	} else {
		/* in any other case, we are going to be reading. */
		i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN);
		i2c->state = STATE_READ;
		rk3x_i2c_prepare_read(i2c);
	}
}

static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd)
{
	if (!(ipd & REG_INT_MBTF)) {
		rk3x_i2c_stop(i2c, -EIO);
		dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd);
		rk3x_i2c_clean_ipd(i2c);
		return;
	}

	/* ack interrupt */
	i2c_writel(i2c, REG_INT_MBTF, REG_IPD);

	/* are we finished? */
	if (i2c->processed == i2c->msg->len)
		rk3x_i2c_stop(i2c, i2c->error);
	else
		rk3x_i2c_fill_transmit_buf(i2c);
}

static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd)
{
	unsigned int i;
	unsigned int len = i2c->msg->len - i2c->processed;
	u32 val;
	u8 byte;

	/* we only care for MBRF here. */
	if (!(ipd & REG_INT_MBRF))
		return;

	/* ack interrupt (read also produces a spurious START flag, clear it too) */
	i2c_writel(i2c, REG_INT_MBRF | REG_INT_START, REG_IPD);

	/* Can only handle a maximum of 32 bytes at a time */
	if (len > 32)
		len = 32;

	/* read the data from receive buffer */
	for (i = 0; i < len; ++i) {
		if (i % 4 == 0)
			val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4);

		byte = (val >> ((i % 4) * 8)) & 0xff;
		i2c->msg->buf[i2c->processed++] = byte;
	}

	/* are we finished? */
	if (i2c->processed == i2c->msg->len)
		rk3x_i2c_stop(i2c, i2c->error);
	else
		rk3x_i2c_prepare_read(i2c);
}

static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd)
{
	unsigned int con;

	if (!(ipd & REG_INT_STOP)) {
		rk3x_i2c_stop(i2c, -EIO);
		dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd);
		rk3x_i2c_clean_ipd(i2c);
		return;
	}

	/* ack interrupt */
	i2c_writel(i2c, REG_INT_STOP, REG_IPD);

	/* disable STOP bit */
	con = i2c_readl(i2c, REG_CON);
	con &= ~REG_CON_STOP;
	i2c_writel(i2c, con, REG_CON);

	i2c->busy = false;
	i2c->state = STATE_IDLE;

	/* signal rk3x_i2c_xfer that we are finished */
	wake_up(&i2c->wait);
}

static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id)
{
	struct rk3x_i2c *i2c = dev_id;
	unsigned int ipd;

	spin_lock(&i2c->lock);

	ipd = i2c_readl(i2c, REG_IPD);
	if (i2c->state == STATE_IDLE) {
		dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd);
		rk3x_i2c_clean_ipd(i2c);
		goto out;
	}

	dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd);

	/* Clean interrupt bits we don't care about */
	ipd &= ~(REG_INT_BRF | REG_INT_BTF);

	if (ipd & REG_INT_NAKRCV) {
		/*
		 * We got a NACK in the last operation. Depending on whether
		 * IGNORE_NAK is set, we have to stop the operation and report
		 * an error.
		 */
		i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD);

		ipd &= ~REG_INT_NAKRCV;

		if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
			rk3x_i2c_stop(i2c, -ENXIO);
	}

	/* is there anything left to handle? */
	if ((ipd & REG_INT_ALL) == 0)
		goto out;

	switch (i2c->state) {
	case STATE_START:
		rk3x_i2c_handle_start(i2c, ipd);
		break;
	case STATE_WRITE:
		rk3x_i2c_handle_write(i2c, ipd);
		break;
	case STATE_READ:
		rk3x_i2c_handle_read(i2c, ipd);
		break;
	case STATE_STOP:
		rk3x_i2c_handle_stop(i2c, ipd);
		break;
	case STATE_IDLE:
		break;
	}

out:
	spin_unlock(&i2c->lock);
	return IRQ_HANDLED;
}

/**
 * Get timing values of I2C specification
 *
 * @speed: Desired SCL frequency
 *
 * Returns: Matched i2c spec values.
 */
static const struct i2c_spec_values *rk3x_i2c_get_spec(unsigned int speed)
{
	if (speed <= I2C_MAX_STANDARD_MODE_FREQ)
		return &standard_mode_spec;
	else if (speed <= I2C_MAX_FAST_MODE_FREQ)
		return &fast_mode_spec;
	else
		return &fast_mode_plus_spec;
}

/**
 * Calculate divider values for desired SCL frequency
 *
 * @clk_rate: I2C input clock rate
 * @t: Known I2C timing information
 * @t_calc: Caculated rk3x private timings that would be written into regs
 *
 * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
 * a best-effort divider value is returned in divs. If the target rate is
 * too high, we silently use the highest possible rate.
 */
static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate,
				    struct i2c_timings *t,
				    struct rk3x_i2c_calced_timings *t_calc)
{
	unsigned long min_low_ns, min_high_ns;
	unsigned long max_low_ns, min_total_ns;

	unsigned long clk_rate_khz, scl_rate_khz;

	unsigned long min_low_div, min_high_div;
	unsigned long max_low_div;

	unsigned long min_div_for_hold, min_total_div;
	unsigned long extra_div, extra_low_div, ideal_low_div;

	unsigned long data_hold_buffer_ns = 50;
	const struct i2c_spec_values *spec;
	int ret = 0;

	/* Only support standard-mode and fast-mode */
	if (WARN_ON(t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ))
		t->bus_freq_hz = I2C_MAX_FAST_MODE_FREQ;

	/* prevent scl_rate_khz from becoming 0 */
	if (WARN_ON(t->bus_freq_hz < 1000))
		t->bus_freq_hz = 1000;

	/*
	 * min_low_ns:  The minimum number of ns we need to hold low to
	 *		meet I2C specification, should include fall time.
	 * min_high_ns: The minimum number of ns we need to hold high to
	 *		meet I2C specification, should include rise time.
	 * max_low_ns:  The maximum number of ns we can hold low to meet
	 *		I2C specification.
	 *
	 * Note: max_low_ns should be (maximum data hold time * 2 - buffer)
	 *	 This is because the i2c host on Rockchip holds the data line
	 *	 for half the low time.
	 */
	spec = rk3x_i2c_get_spec(t->bus_freq_hz);
	min_high_ns = t->scl_rise_ns + spec->min_high_ns;

	/*
	 * Timings for repeated start:
	 * - controller appears to drop SDA at .875x (7/8) programmed clk high.
	 * - controller appears to keep SCL high for 2x programmed clk high.
	 *
	 * We need to account for those rules in picking our "high" time so
	 * we meet tSU;STA and tHD;STA times.
	 */
	min_high_ns = max(min_high_ns, DIV_ROUND_UP(
		(t->scl_rise_ns + spec->min_setup_start_ns) * 1000, 875));
	min_high_ns = max(min_high_ns, DIV_ROUND_UP(
		(t->scl_rise_ns + spec->min_setup_start_ns + t->sda_fall_ns +
		spec->min_high_ns), 2));

	min_low_ns = t->scl_fall_ns + spec->min_low_ns;
	max_low_ns =  spec->max_data_hold_ns * 2 - data_hold_buffer_ns;
	min_total_ns = min_low_ns + min_high_ns;

	/* Adjust to avoid overflow */
	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
	scl_rate_khz = t->bus_freq_hz / 1000;

	/*
	 * We need the total div to be >= this number
	 * so we don't clock too fast.
	 */
	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);

	/* These are the min dividers needed for min hold times. */
	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
	min_div_for_hold = (min_low_div + min_high_div);

	/*
	 * This is the maximum divider so we don't go over the maximum.
	 * We don't round up here (we round down) since this is a maximum.
	 */
	max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000);

	if (min_low_div > max_low_div) {
		WARN_ONCE(true,
			  "Conflicting, min_low_div %lu, max_low_div %lu\n",
			  min_low_div, max_low_div);
		max_low_div = min_low_div;
	}

	if (min_div_for_hold > min_total_div) {
		/*
		 * Time needed to meet hold requirements is important.
		 * Just use that.
		 */
		t_calc->div_low = min_low_div;
		t_calc->div_high = min_high_div;
	} else {
		/*
		 * We've got to distribute some time among the low and high
		 * so we don't run too fast.
		 */
		extra_div = min_total_div - min_div_for_hold;

		/*
		 * We'll try to split things up perfectly evenly,
		 * biasing slightly towards having a higher div
		 * for low (spend more time low).
		 */
		ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns,
					     scl_rate_khz * 8 * min_total_ns);

		/* Don't allow it to go over the maximum */
		if (ideal_low_div > max_low_div)
			ideal_low_div = max_low_div;

		/*
		 * Handle when the ideal low div is going to take up
		 * more than we have.
		 */
		if (ideal_low_div > min_low_div + extra_div)
			ideal_low_div = min_low_div + extra_div;

		/* Give low the "ideal" and give high whatever extra is left */
		extra_low_div = ideal_low_div - min_low_div;
		t_calc->div_low = ideal_low_div;
		t_calc->div_high = min_high_div + (extra_div - extra_low_div);
	}

	/*
	 * Adjust to the fact that the hardware has an implicit "+1".
	 * NOTE: Above calculations always produce div_low > 0 and div_high > 0.
	 */
	t_calc->div_low--;
	t_calc->div_high--;

	/* Give the tuning value 0, that would not update con register */
	t_calc->tuning = 0;
	/* Maximum divider supported by hw is 0xffff */
	if (t_calc->div_low > 0xffff) {
		t_calc->div_low = 0xffff;
		ret = -EINVAL;
	}

	if (t_calc->div_high > 0xffff) {
		t_calc->div_high = 0xffff;
		ret = -EINVAL;
	}

	return ret;
}

/**
 * Calculate timing values for desired SCL frequency
 *
 * @clk_rate: I2C input clock rate
 * @t: Known I2C timing information
 * @t_calc: Caculated rk3x private timings that would be written into regs
 *
 * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
 * a best-effort divider value is returned in divs. If the target rate is
 * too high, we silently use the highest possible rate.
 * The following formulas are v1's method to calculate timings.
 *
 * l = divl + 1;
 * h = divh + 1;
 * s = sda_update_config + 1;
 * u = start_setup_config + 1;
 * p = stop_setup_config + 1;
 * T = Tclk_i2c;
 *
 * tHigh = 8 * h * T;
 * tLow = 8 * l * T;
 *
 * tHD;sda = (l * s + 1) * T;
 * tSU;sda = [(8 - s) * l + 1] * T;
 * tI2C = 8 * (l + h) * T;
 *
 * tSU;sta = (8h * u + 1) * T;
 * tHD;sta = [8h * (u + 1) - 1] * T;
 * tSU;sto = (8h * p + 1) * T;
 */
static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate,
				    struct i2c_timings *t,
				    struct rk3x_i2c_calced_timings *t_calc)
{
	unsigned long min_low_ns, min_high_ns;
	unsigned long min_setup_start_ns, min_setup_data_ns;
	unsigned long min_setup_stop_ns, max_hold_data_ns;

	unsigned long clk_rate_khz, scl_rate_khz;

	unsigned long min_low_div, min_high_div;

	unsigned long min_div_for_hold, min_total_div;
	unsigned long extra_div, extra_low_div;
	unsigned long sda_update_cfg, stp_sta_cfg, stp_sto_cfg;

	const struct i2c_spec_values *spec;
	int ret = 0;

	/* Support standard-mode, fast-mode and fast-mode plus */
	if (WARN_ON(t->bus_freq_hz > I2C_MAX_FAST_MODE_PLUS_FREQ))
		t->bus_freq_hz = I2C_MAX_FAST_MODE_PLUS_FREQ;

	/* prevent scl_rate_khz from becoming 0 */
	if (WARN_ON(t->bus_freq_hz < 1000))
		t->bus_freq_hz = 1000;

	/*
	 * min_low_ns: The minimum number of ns we need to hold low to
	 *	       meet I2C specification, should include fall time.
	 * min_high_ns: The minimum number of ns we need to hold high to
	 *	        meet I2C specification, should include rise time.
	 */
	spec = rk3x_i2c_get_spec(t->bus_freq_hz);

	/* calculate min-divh and min-divl */
	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
	scl_rate_khz = t->bus_freq_hz / 1000;
	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);

	min_high_ns = t->scl_rise_ns + spec->min_high_ns;
	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);

	min_low_ns = t->scl_fall_ns + spec->min_low_ns;
	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);

	/*
	 * Final divh and divl must be greater than 0, otherwise the
	 * hardware would not output the i2c clk.
	 */
	min_high_div = (min_high_div < 1) ? 2 : min_high_div;
	min_low_div = (min_low_div < 1) ? 2 : min_low_div;

	/* These are the min dividers needed for min hold times. */
	min_div_for_hold = (min_low_div + min_high_div);

	/*
	 * This is the maximum divider so we don't go over the maximum.
	 * We don't round up here (we round down) since this is a maximum.
	 */
	if (min_div_for_hold >= min_total_div) {
		/*
		 * Time needed to meet hold requirements is important.
		 * Just use that.
		 */
		t_calc->div_low = min_low_div;
		t_calc->div_high = min_high_div;
	} else {
		/*
		 * We've got to distribute some time among the low and high
		 * so we don't run too fast.
		 * We'll try to split things up by the scale of min_low_div and
		 * min_high_div, biasing slightly towards having a higher div
		 * for low (spend more time low).
		 */
		extra_div = min_total_div - min_div_for_hold;
		extra_low_div = DIV_ROUND_UP(min_low_div * extra_div,
					     min_div_for_hold);

		t_calc->div_low = min_low_div + extra_low_div;
		t_calc->div_high = min_high_div + (extra_div - extra_low_div);
	}

	/*
	 * calculate sda data hold count by the rules, data_upd_st:3
	 * is a appropriate value to reduce calculated times.
	 */
	for (sda_update_cfg = 3; sda_update_cfg > 0; sda_update_cfg--) {
		max_hold_data_ns =  DIV_ROUND_UP((sda_update_cfg
						 * (t_calc->div_low) + 1)
						 * 1000000, clk_rate_khz);
		min_setup_data_ns =  DIV_ROUND_UP(((8 - sda_update_cfg)
						 * (t_calc->div_low) + 1)
						 * 1000000, clk_rate_khz);
		if ((max_hold_data_ns < spec->max_data_hold_ns) &&
		    (min_setup_data_ns > spec->min_data_setup_ns))
			break;
	}

	/* calculate setup start config */
	min_setup_start_ns = t->scl_rise_ns + spec->min_setup_start_ns;
	stp_sta_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns
			   - 1000000, 8 * 1000000 * (t_calc->div_high));

	/* calculate setup stop config */
	min_setup_stop_ns = t->scl_rise_ns + spec->min_setup_stop_ns;
	stp_sto_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_stop_ns
			   - 1000000, 8 * 1000000 * (t_calc->div_high));

	t_calc->tuning = REG_CON_SDA_CFG(--sda_update_cfg) |
			 REG_CON_STA_CFG(--stp_sta_cfg) |
			 REG_CON_STO_CFG(--stp_sto_cfg);

	t_calc->div_low--;
	t_calc->div_high--;

	/* Maximum divider supported by hw is 0xffff */
	if (t_calc->div_low > 0xffff) {
		t_calc->div_low = 0xffff;
		ret = -EINVAL;
	}

	if (t_calc->div_high > 0xffff) {
		t_calc->div_high = 0xffff;
		ret = -EINVAL;
	}

	return ret;
}

static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate)
{
	struct i2c_timings *t = &i2c->t;
	struct rk3x_i2c_calced_timings calc;
	u64 t_low_ns, t_high_ns;
	unsigned long flags;
	u32 val;
	int ret;

	ret = i2c->soc_data->calc_timings(clk_rate, t, &calc);
	WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz);

	clk_enable(i2c->pclk);

	spin_lock_irqsave(&i2c->lock, flags);
	val = i2c_readl(i2c, REG_CON);
	val &= ~REG_CON_TUNING_MASK;
	val |= calc.tuning;
	i2c_writel(i2c, val, REG_CON);
	i2c_writel(i2c, (calc.div_high << 16) | (calc.div_low & 0xffff),
		   REG_CLKDIV);
	spin_unlock_irqrestore(&i2c->lock, flags);

	clk_disable(i2c->pclk);

	t_low_ns = div_u64(((u64)calc.div_low + 1) * 8 * 1000000000, clk_rate);
	t_high_ns = div_u64(((u64)calc.div_high + 1) * 8 * 1000000000,
			    clk_rate);
	dev_dbg(i2c->dev,
		"CLK %lukhz, Req %uns, Act low %lluns high %lluns\n",
		clk_rate / 1000,
		1000000000 / t->bus_freq_hz,
		t_low_ns, t_high_ns);
}

/**
 * rk3x_i2c_clk_notifier_cb - Clock rate change callback
 * @nb:		Pointer to notifier block
 * @event:	Notification reason
 * @data:	Pointer to notification data object
 *
 * The callback checks whether a valid bus frequency can be generated after the
 * change. If so, the change is acknowledged, otherwise the change is aborted.
 * New dividers are written to the HW in the pre- or post change notification
 * depending on the scaling direction.
 *
 * Code adapted from i2c-cadence.c.
 *
 * Return:	NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK
 *		to acknowledge the change, NOTIFY_DONE if the notification is
 *		considered irrelevant.
 */
static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long
				    event, void *data)
{
	struct clk_notifier_data *ndata = data;
	struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb);
	struct rk3x_i2c_calced_timings calc;

	switch (event) {
	case PRE_RATE_CHANGE:
		/*
		 * Try the calculation (but don't store the result) ahead of
		 * time to see if we need to block the clock change.  Timings
		 * shouldn't actually take effect until rk3x_i2c_adapt_div().
		 */
		if (i2c->soc_data->calc_timings(ndata->new_rate, &i2c->t,
						&calc) != 0)
			return NOTIFY_STOP;

		/* scale up */
		if (ndata->new_rate > ndata->old_rate)
			rk3x_i2c_adapt_div(i2c, ndata->new_rate);

		return NOTIFY_OK;
	case POST_RATE_CHANGE:
		/* scale down */
		if (ndata->new_rate < ndata->old_rate)
			rk3x_i2c_adapt_div(i2c, ndata->new_rate);
		return NOTIFY_OK;
	case ABORT_RATE_CHANGE:
		/* scale up */
		if (ndata->new_rate > ndata->old_rate)
			rk3x_i2c_adapt_div(i2c, ndata->old_rate);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

/**
 * Setup I2C registers for an I2C operation specified by msgs, num.
 *
 * Must be called with i2c->lock held.
 *
 * @msgs: I2C msgs to process
 * @num: Number of msgs
 *
 * returns: Number of I2C msgs processed or negative in case of error
 */
static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num)
{
	u32 addr = (msgs[0].addr & 0x7f) << 1;
	int ret = 0;

	/*
	 * The I2C adapter can issue a small (len < 4) write packet before
	 * reading. This speeds up SMBus-style register reads.
	 * The MRXADDR/MRXRADDR hold the slave address and the slave register
	 * address in this case.
	 */

	if (num >= 2 && msgs[0].len < 4 &&
	    !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) {
		u32 reg_addr = 0;
		int i;

		dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n",
			addr >> 1);

		/* Fill MRXRADDR with the register address(es) */
		for (i = 0; i < msgs[0].len; ++i) {
			reg_addr |= msgs[0].buf[i] << (i * 8);
			reg_addr |= REG_MRXADDR_VALID(i);
		}

		/* msgs[0] is handled by hw. */
		i2c->msg = &msgs[1];

		i2c->mode = REG_CON_MOD_REGISTER_TX;

		i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR);
		i2c_writel(i2c, reg_addr, REG_MRXRADDR);

		ret = 2;
	} else {
		/*
		 * We'll have to do it the boring way and process the msgs
		 * one-by-one.
		 */

		if (msgs[0].flags & I2C_M_RD) {
			addr |= 1; /* set read bit */

			/*
			 * We have to transmit the slave addr first. Use
			 * MOD_REGISTER_TX for that purpose.
			 */
			i2c->mode = REG_CON_MOD_REGISTER_TX;
			i2c_writel(i2c, addr | REG_MRXADDR_VALID(0),
				   REG_MRXADDR);
			i2c_writel(i2c, 0, REG_MRXRADDR);
		} else {
			i2c->mode = REG_CON_MOD_TX;
		}

		i2c->msg = &msgs[0];

		ret = 1;
	}

	i2c->addr = msgs[0].addr;
	i2c->busy = true;
	i2c->state = STATE_START;
	i2c->processed = 0;
	i2c->error = 0;

	rk3x_i2c_clean_ipd(i2c);

	return ret;
}

static int rk3x_i2c_wait_xfer_poll(struct rk3x_i2c *i2c)
{
	ktime_t timeout = ktime_add_ms(ktime_get(), WAIT_TIMEOUT);

	while (READ_ONCE(i2c->busy) &&
	       ktime_compare(ktime_get(), timeout) < 0) {
		udelay(5);
		rk3x_i2c_irq(0, i2c);
	}

	return !i2c->busy;
}

static int rk3x_i2c_xfer_common(struct i2c_adapter *adap,
				struct i2c_msg *msgs, int num, bool polling)
{
	struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data;
	unsigned long timeout, flags;
	u32 val;
	int ret = 0;
	int i;

	spin_lock_irqsave(&i2c->lock, flags);

	clk_enable(i2c->clk);
	clk_enable(i2c->pclk);

	i2c->is_last_msg = false;

	/*
	 * Process msgs. We can handle more than one message at once (see
	 * rk3x_i2c_setup()).
	 */
	for (i = 0; i < num; i += ret) {
		ret = rk3x_i2c_setup(i2c, msgs + i, num - i);

		if (ret < 0) {
			dev_err(i2c->dev, "rk3x_i2c_setup() failed\n");
			break;
		}

		if (i + ret >= num)
			i2c->is_last_msg = true;

		spin_unlock_irqrestore(&i2c->lock, flags);

		rk3x_i2c_start(i2c);

		if (!polling) {
			timeout = wait_event_timeout(i2c->wait, !i2c->busy,
						     msecs_to_jiffies(WAIT_TIMEOUT));
		} else {
			timeout = rk3x_i2c_wait_xfer_poll(i2c);
		}

		spin_lock_irqsave(&i2c->lock, flags);

		if (timeout == 0) {
			dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n",
				i2c_readl(i2c, REG_IPD), i2c->state);

			/* Force a STOP condition without interrupt */
			i2c_writel(i2c, 0, REG_IEN);
			val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
			val |= REG_CON_EN | REG_CON_STOP;
			i2c_writel(i2c, val, REG_CON);

			i2c->state = STATE_IDLE;

			ret = -ETIMEDOUT;
			break;
		}

		if (i2c->error) {
			ret = i2c->error;
			break;
		}
	}

	clk_disable(i2c->pclk);
	clk_disable(i2c->clk);

	spin_unlock_irqrestore(&i2c->lock, flags);

	return ret < 0 ? ret : num;
}

static int rk3x_i2c_xfer(struct i2c_adapter *adap,
			 struct i2c_msg *msgs, int num)
{
	return rk3x_i2c_xfer_common(adap, msgs, num, false);
}

static int rk3x_i2c_xfer_polling(struct i2c_adapter *adap,
				 struct i2c_msg *msgs, int num)
{
	return rk3x_i2c_xfer_common(adap, msgs, num, true);
}

static __maybe_unused int rk3x_i2c_resume(struct device *dev)
{
	struct rk3x_i2c *i2c = dev_get_drvdata(dev);

	rk3x_i2c_adapt_div(i2c, clk_get_rate(i2c->clk));

	return 0;
}

static u32 rk3x_i2c_func(struct i2c_adapter *adap)
{
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING;
}

static const struct i2c_algorithm rk3x_i2c_algorithm = {
	.master_xfer		= rk3x_i2c_xfer,
	.master_xfer_atomic	= rk3x_i2c_xfer_polling,
	.functionality		= rk3x_i2c_func,
};

static const struct rk3x_i2c_soc_data rv1108_soc_data = {
	.grf_offset = -1,
	.calc_timings = rk3x_i2c_v1_calc_timings,
};

static const struct rk3x_i2c_soc_data rk3066_soc_data = {
	.grf_offset = 0x154,
	.calc_timings = rk3x_i2c_v0_calc_timings,
};

static const struct rk3x_i2c_soc_data rk3188_soc_data = {
	.grf_offset = 0x0a4,
	.calc_timings = rk3x_i2c_v0_calc_timings,
};

static const struct rk3x_i2c_soc_data rk3228_soc_data = {
	.grf_offset = -1,
	.calc_timings = rk3x_i2c_v0_calc_timings,
};

static const struct rk3x_i2c_soc_data rk3288_soc_data = {
	.grf_offset = -1,
	.calc_timings = rk3x_i2c_v0_calc_timings,
};

static const struct rk3x_i2c_soc_data rk3399_soc_data = {
	.grf_offset = -1,
	.calc_timings = rk3x_i2c_v1_calc_timings,
};

static const struct of_device_id rk3x_i2c_match[] = {
	{
		.compatible = "rockchip,rv1108-i2c",
		.data = &rv1108_soc_data
	},
	{
		.compatible = "rockchip,rk3066-i2c",
		.data = &rk3066_soc_data
	},
	{
		.compatible = "rockchip,rk3188-i2c",
		.data = &rk3188_soc_data
	},
	{
		.compatible = "rockchip,rk3228-i2c",
		.data = &rk3228_soc_data
	},
	{
		.compatible = "rockchip,rk3288-i2c",
		.data = &rk3288_soc_data
	},
	{
		.compatible = "rockchip,rk3399-i2c",
		.data = &rk3399_soc_data
	},
	{},
};
MODULE_DEVICE_TABLE(of, rk3x_i2c_match);

static int rk3x_i2c_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	const struct of_device_id *match;
	struct rk3x_i2c *i2c;
	int ret = 0;
	int bus_nr;
	u32 value;
	int irq;
	unsigned long clk_rate;

	i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL);
	if (!i2c)
		return -ENOMEM;

	match = of_match_node(rk3x_i2c_match, np);
	i2c->soc_data = match->data;

	/* use common interface to get I2C timing properties */
	i2c_parse_fw_timings(&pdev->dev, &i2c->t, true);

	strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name));
	i2c->adap.owner = THIS_MODULE;
	i2c->adap.algo = &rk3x_i2c_algorithm;
	i2c->adap.retries = 3;
	i2c->adap.dev.of_node = np;
	i2c->adap.algo_data = i2c;
	i2c->adap.dev.parent = &pdev->dev;

	i2c->dev = &pdev->dev;

	spin_lock_init(&i2c->lock);
	init_waitqueue_head(&i2c->wait);

	i2c->regs = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(i2c->regs))
		return PTR_ERR(i2c->regs);

	/* Try to set the I2C adapter number from dt */
	bus_nr = of_alias_get_id(np, "i2c");

	/*
	 * Switch to new interface if the SoC also offers the old one.
	 * The control bit is located in the GRF register space.
	 */
	if (i2c->soc_data->grf_offset >= 0) {
		struct regmap *grf;

		grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
		if (IS_ERR(grf)) {
			dev_err(&pdev->dev,
				"rk3x-i2c needs 'rockchip,grf' property\n");
			return PTR_ERR(grf);
		}

		if (bus_nr < 0) {
			dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias");
			return -EINVAL;
		}

		/* 27+i: write mask, 11+i: value */
		value = BIT(27 + bus_nr) | BIT(11 + bus_nr);

		ret = regmap_write(grf, i2c->soc_data->grf_offset, value);
		if (ret != 0) {
			dev_err(i2c->dev, "Could not write to GRF: %d\n", ret);
			return ret;
		}
	}

	/* IRQ setup */
	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

	ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq,
			       0, dev_name(&pdev->dev), i2c);
	if (ret < 0) {
		dev_err(&pdev->dev, "cannot request IRQ\n");
		return ret;
	}

	platform_set_drvdata(pdev, i2c);

	if (i2c->soc_data->calc_timings == rk3x_i2c_v0_calc_timings) {
		/* Only one clock to use for bus clock and peripheral clock */
		i2c->clk = devm_clk_get(&pdev->dev, NULL);
		i2c->pclk = i2c->clk;
	} else {
		i2c->clk = devm_clk_get(&pdev->dev, "i2c");
		i2c->pclk = devm_clk_get(&pdev->dev, "pclk");
	}

	if (IS_ERR(i2c->clk))
		return dev_err_probe(&pdev->dev, PTR_ERR(i2c->clk),
				     "Can't get bus clk\n");

	if (IS_ERR(i2c->pclk))
		return dev_err_probe(&pdev->dev, PTR_ERR(i2c->pclk),
				     "Can't get periph clk\n");

	ret = clk_prepare(i2c->clk);
	if (ret < 0) {
		dev_err(&pdev->dev, "Can't prepare bus clk: %d\n", ret);
		return ret;
	}
	ret = clk_prepare(i2c->pclk);
	if (ret < 0) {
		dev_err(&pdev->dev, "Can't prepare periph clock: %d\n", ret);
		goto err_clk;
	}

	i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
	ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
	if (ret != 0) {
		dev_err(&pdev->dev, "Unable to register clock notifier\n");
		goto err_pclk;
	}

	ret = clk_enable(i2c->clk);
	if (ret < 0) {
		dev_err(&pdev->dev, "Can't enable bus clk: %d\n", ret);
		goto err_clk_notifier;
	}

	clk_rate = clk_get_rate(i2c->clk);
	rk3x_i2c_adapt_div(i2c, clk_rate);
	clk_disable(i2c->clk);

	ret = i2c_add_adapter(&i2c->adap);
	if (ret < 0)
		goto err_clk_notifier;

	return 0;

err_clk_notifier:
	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
err_pclk:
	clk_unprepare(i2c->pclk);
err_clk:
	clk_unprepare(i2c->clk);
	return ret;
}

static int rk3x_i2c_remove(struct platform_device *pdev)
{
	struct rk3x_i2c *i2c = platform_get_drvdata(pdev);

	i2c_del_adapter(&i2c->adap);

	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
	clk_unprepare(i2c->pclk);
	clk_unprepare(i2c->clk);

	return 0;
}

static SIMPLE_DEV_PM_OPS(rk3x_i2c_pm_ops, NULL, rk3x_i2c_resume);

static struct platform_driver rk3x_i2c_driver = {
	.probe   = rk3x_i2c_probe,
	.remove  = rk3x_i2c_remove,
	.driver  = {
		.name  = "rk3x-i2c",
		.of_match_table = rk3x_i2c_match,
		.pm = &rk3x_i2c_pm_ops,
	},
};

module_platform_driver(rk3x_i2c_driver);

MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver");
MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>");
MODULE_LICENSE("GPL v2");