Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
// SPDX-License-Identifier: GPL-2.0+
/*
 * adux1020.c - Support for Analog Devices ADUX1020 photometric sensor
 *
 * Copyright (C) 2019 Linaro Ltd.
 * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
 *
 * TODO: Triggered buffer support
 */

#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/regmap.h>

#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/events.h>

#define ADUX1020_REGMAP_NAME		"adux1020_regmap"
#define ADUX1020_DRV_NAME		"adux1020"

/* System registers */
#define ADUX1020_REG_CHIP_ID		0x08
#define ADUX1020_REG_SLAVE_ADDRESS	0x09

#define ADUX1020_REG_SW_RESET		0x0f
#define ADUX1020_REG_INT_ENABLE		0x1c
#define ADUX1020_REG_INT_POLARITY	0x1d
#define ADUX1020_REG_PROX_TH_ON1	0x2a
#define ADUX1020_REG_PROX_TH_OFF1	0x2b
#define	ADUX1020_REG_PROX_TYPE		0x2f
#define	ADUX1020_REG_TEST_MODES_3	0x32
#define	ADUX1020_REG_FORCE_MODE		0x33
#define	ADUX1020_REG_FREQUENCY		0x40
#define ADUX1020_REG_LED_CURRENT	0x41
#define	ADUX1020_REG_OP_MODE		0x45
#define	ADUX1020_REG_INT_MASK		0x48
#define	ADUX1020_REG_INT_STATUS		0x49
#define	ADUX1020_REG_DATA_BUFFER	0x60

/* Chip ID bits */
#define ADUX1020_CHIP_ID_MASK		GENMASK(11, 0)
#define ADUX1020_CHIP_ID		0x03fc

#define ADUX1020_SW_RESET		BIT(1)
#define ADUX1020_FIFO_FLUSH		BIT(15)
#define ADUX1020_OP_MODE_MASK		GENMASK(3, 0)
#define ADUX1020_DATA_OUT_MODE_MASK	GENMASK(7, 4)
#define ADUX1020_DATA_OUT_PROX_I	FIELD_PREP(ADUX1020_DATA_OUT_MODE_MASK, 1)

#define ADUX1020_MODE_INT_MASK		GENMASK(7, 0)
#define ADUX1020_INT_ENABLE		0x2094
#define ADUX1020_INT_DISABLE		0x2090
#define ADUX1020_PROX_INT_ENABLE	0x00f0
#define ADUX1020_PROX_ON1_INT		BIT(0)
#define ADUX1020_PROX_OFF1_INT		BIT(1)
#define ADUX1020_FIFO_INT_ENABLE	0x7f
#define ADUX1020_MODE_INT_DISABLE	0xff
#define ADUX1020_MODE_INT_STATUS_MASK	GENMASK(7, 0)
#define ADUX1020_FIFO_STATUS_MASK	GENMASK(15, 8)
#define ADUX1020_INT_CLEAR		0xff
#define ADUX1020_PROX_TYPE		BIT(15)

#define ADUX1020_INT_PROX_ON1		BIT(0)
#define ADUX1020_INT_PROX_OFF1		BIT(1)

#define ADUX1020_FORCE_CLOCK_ON		0x0f4f
#define ADUX1020_FORCE_CLOCK_RESET	0x0040
#define ADUX1020_ACTIVE_4_STATE		0x0008

#define ADUX1020_PROX_FREQ_MASK		GENMASK(7, 4)
#define ADUX1020_PROX_FREQ(x)		FIELD_PREP(ADUX1020_PROX_FREQ_MASK, x)

#define ADUX1020_LED_CURRENT_MASK	GENMASK(3, 0)
#define ADUX1020_LED_PIREF_EN		BIT(12)

/* Operating modes */
enum adux1020_op_modes {
	ADUX1020_MODE_STANDBY,
	ADUX1020_MODE_PROX_I,
	ADUX1020_MODE_PROX_XY,
	ADUX1020_MODE_GEST,
	ADUX1020_MODE_SAMPLE,
	ADUX1020_MODE_FORCE = 0x0e,
	ADUX1020_MODE_IDLE = 0x0f,
};

struct adux1020_data {
	struct i2c_client *client;
	struct iio_dev *indio_dev;
	struct mutex lock;
	struct regmap *regmap;
};

struct adux1020_mode_data {
	u8 bytes;
	u8 buf_len;
	u16 int_en;
};

static const struct adux1020_mode_data adux1020_modes[] = {
	[ADUX1020_MODE_PROX_I] = {
		.bytes = 2,
		.buf_len = 1,
		.int_en = ADUX1020_PROX_INT_ENABLE,
	},
};

static const struct regmap_config adux1020_regmap_config = {
	.name = ADUX1020_REGMAP_NAME,
	.reg_bits = 8,
	.val_bits = 16,
	.max_register = 0x6F,
	.cache_type = REGCACHE_NONE,
};

static const struct reg_sequence adux1020_def_conf[] = {
	{ 0x000c, 0x000f },
	{ 0x0010, 0x1010 },
	{ 0x0011, 0x004c },
	{ 0x0012, 0x5f0c },
	{ 0x0013, 0xada5 },
	{ 0x0014, 0x0080 },
	{ 0x0015, 0x0000 },
	{ 0x0016, 0x0600 },
	{ 0x0017, 0x0000 },
	{ 0x0018, 0x2693 },
	{ 0x0019, 0x0004 },
	{ 0x001a, 0x4280 },
	{ 0x001b, 0x0060 },
	{ 0x001c, 0x2094 },
	{ 0x001d, 0x0020 },
	{ 0x001e, 0x0001 },
	{ 0x001f, 0x0100 },
	{ 0x0020, 0x0320 },
	{ 0x0021, 0x0A13 },
	{ 0x0022, 0x0320 },
	{ 0x0023, 0x0113 },
	{ 0x0024, 0x0000 },
	{ 0x0025, 0x2412 },
	{ 0x0026, 0x2412 },
	{ 0x0027, 0x0022 },
	{ 0x0028, 0x0000 },
	{ 0x0029, 0x0300 },
	{ 0x002a, 0x0700 },
	{ 0x002b, 0x0600 },
	{ 0x002c, 0x6000 },
	{ 0x002d, 0x4000 },
	{ 0x002e, 0x0000 },
	{ 0x002f, 0x0000 },
	{ 0x0030, 0x0000 },
	{ 0x0031, 0x0000 },
	{ 0x0032, 0x0040 },
	{ 0x0033, 0x0008 },
	{ 0x0034, 0xE400 },
	{ 0x0038, 0x8080 },
	{ 0x0039, 0x8080 },
	{ 0x003a, 0x2000 },
	{ 0x003b, 0x1f00 },
	{ 0x003c, 0x2000 },
	{ 0x003d, 0x2000 },
	{ 0x003e, 0x0000 },
	{ 0x0040, 0x8069 },
	{ 0x0041, 0x1f2f },
	{ 0x0042, 0x4000 },
	{ 0x0043, 0x0000 },
	{ 0x0044, 0x0008 },
	{ 0x0046, 0x0000 },
	{ 0x0048, 0x00ef },
	{ 0x0049, 0x0000 },
	{ 0x0045, 0x0000 },
};

static const int adux1020_rates[][2] = {
	{ 0, 100000 },
	{ 0, 200000 },
	{ 0, 500000 },
	{ 1, 0 },
	{ 2, 0 },
	{ 5, 0 },
	{ 10, 0 },
	{ 20, 0 },
	{ 50, 0 },
	{ 100, 0 },
	{ 190, 0 },
	{ 450, 0 },
	{ 820, 0 },
	{ 1400, 0 },
};

static const int adux1020_led_currents[][2] = {
	{ 0, 25000 },
	{ 0, 40000 },
	{ 0, 55000 },
	{ 0, 70000 },
	{ 0, 85000 },
	{ 0, 100000 },
	{ 0, 115000 },
	{ 0, 130000 },
	{ 0, 145000 },
	{ 0, 160000 },
	{ 0, 175000 },
	{ 0, 190000 },
	{ 0, 205000 },
	{ 0, 220000 },
	{ 0, 235000 },
	{ 0, 250000 },
};

static int adux1020_flush_fifo(struct adux1020_data *data)
{
	int ret;

	/* Force Idle mode */
	ret = regmap_write(data->regmap, ADUX1020_REG_FORCE_MODE,
			   ADUX1020_ACTIVE_4_STATE);
	if (ret < 0)
		return ret;

	ret = regmap_update_bits(data->regmap, ADUX1020_REG_OP_MODE,
				 ADUX1020_OP_MODE_MASK, ADUX1020_MODE_FORCE);
	if (ret < 0)
		return ret;

	ret = regmap_update_bits(data->regmap, ADUX1020_REG_OP_MODE,
				 ADUX1020_OP_MODE_MASK, ADUX1020_MODE_IDLE);
	if (ret < 0)
		return ret;

	/* Flush FIFO */
	ret = regmap_write(data->regmap, ADUX1020_REG_TEST_MODES_3,
			   ADUX1020_FORCE_CLOCK_ON);
	if (ret < 0)
		return ret;

	ret = regmap_write(data->regmap, ADUX1020_REG_INT_STATUS,
			   ADUX1020_FIFO_FLUSH);
	if (ret < 0)
		return ret;

	return regmap_write(data->regmap, ADUX1020_REG_TEST_MODES_3,
			    ADUX1020_FORCE_CLOCK_RESET);
}

static int adux1020_read_fifo(struct adux1020_data *data, u16 *buf, u8 buf_len)
{
	unsigned int regval;
	int i, ret;

	/* Enable 32MHz clock */
	ret = regmap_write(data->regmap, ADUX1020_REG_TEST_MODES_3,
			   ADUX1020_FORCE_CLOCK_ON);
	if (ret < 0)
		return ret;

	for (i = 0; i < buf_len; i++) {
		ret = regmap_read(data->regmap, ADUX1020_REG_DATA_BUFFER,
				  &regval);
		if (ret < 0)
			return ret;

		buf[i] = regval;
	}

	/* Set 32MHz clock to be controlled by internal state machine */
	return regmap_write(data->regmap, ADUX1020_REG_TEST_MODES_3,
			    ADUX1020_FORCE_CLOCK_RESET);
}

static int adux1020_set_mode(struct adux1020_data *data,
			     enum adux1020_op_modes mode)
{
	int ret;

	/* Switch to standby mode before changing the mode */
	ret = regmap_write(data->regmap, ADUX1020_REG_OP_MODE,
			   ADUX1020_MODE_STANDBY);
	if (ret < 0)
		return ret;

	/* Set data out and switch to the desired mode */
	switch (mode) {
	case ADUX1020_MODE_PROX_I:
		ret = regmap_update_bits(data->regmap, ADUX1020_REG_OP_MODE,
					 ADUX1020_DATA_OUT_MODE_MASK,
					 ADUX1020_DATA_OUT_PROX_I);
		if (ret < 0)
			return ret;

		ret = regmap_update_bits(data->regmap, ADUX1020_REG_OP_MODE,
					 ADUX1020_OP_MODE_MASK,
					 ADUX1020_MODE_PROX_I);
		if (ret < 0)
			return ret;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int adux1020_measure(struct adux1020_data *data,
			    enum adux1020_op_modes mode,
			    u16 *val)
{
	unsigned int status;
	int ret, tries = 50;

	/* Disable INT pin as polling is going to be used */
	ret = regmap_write(data->regmap, ADUX1020_REG_INT_ENABLE,
			   ADUX1020_INT_DISABLE);
	if (ret < 0)
		return ret;

	/* Enable mode interrupt */
	ret = regmap_update_bits(data->regmap, ADUX1020_REG_INT_MASK,
				 ADUX1020_MODE_INT_MASK,
				 adux1020_modes[mode].int_en);
	if (ret < 0)
		return ret;

	while (tries--) {
		ret = regmap_read(data->regmap, ADUX1020_REG_INT_STATUS,
				  &status);
		if (ret < 0)
			return ret;

		status &= ADUX1020_FIFO_STATUS_MASK;
		if (status >= adux1020_modes[mode].bytes)
			break;
		msleep(20);
	}

	if (tries < 0)
		return -EIO;

	ret = adux1020_read_fifo(data, val, adux1020_modes[mode].buf_len);
	if (ret < 0)
		return ret;

	/* Clear mode interrupt */
	ret = regmap_write(data->regmap, ADUX1020_REG_INT_STATUS,
			   (~adux1020_modes[mode].int_en));
	if (ret < 0)
		return ret;

	/* Disable mode interrupts */
	return regmap_update_bits(data->regmap, ADUX1020_REG_INT_MASK,
				  ADUX1020_MODE_INT_MASK,
				  ADUX1020_MODE_INT_DISABLE);
}

static int adux1020_read_raw(struct iio_dev *indio_dev,
			     struct iio_chan_spec const *chan,
			     int *val, int *val2, long mask)
{
	struct adux1020_data *data = iio_priv(indio_dev);
	u16 buf[3];
	int ret = -EINVAL;
	unsigned int regval;

	mutex_lock(&data->lock);

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		switch (chan->type) {
		case IIO_PROXIMITY:
			ret = adux1020_set_mode(data, ADUX1020_MODE_PROX_I);
			if (ret < 0)
				goto fail;

			ret = adux1020_measure(data, ADUX1020_MODE_PROX_I, buf);
			if (ret < 0)
				goto fail;

			*val = buf[0];
			ret = IIO_VAL_INT;
			break;
		default:
			break;
		}
		break;
	case IIO_CHAN_INFO_PROCESSED:
		switch (chan->type) {
		case IIO_CURRENT:
			ret = regmap_read(data->regmap,
					  ADUX1020_REG_LED_CURRENT, &regval);
			if (ret < 0)
				goto fail;

			regval = regval & ADUX1020_LED_CURRENT_MASK;

			*val = adux1020_led_currents[regval][0];
			*val2 = adux1020_led_currents[regval][1];

			ret = IIO_VAL_INT_PLUS_MICRO;
			break;
		default:
			break;
		}
		break;
	case IIO_CHAN_INFO_SAMP_FREQ:
		switch (chan->type) {
		case IIO_PROXIMITY:
			ret = regmap_read(data->regmap, ADUX1020_REG_FREQUENCY,
					  &regval);
			if (ret < 0)
				goto fail;

			regval = FIELD_GET(ADUX1020_PROX_FREQ_MASK, regval);

			*val = adux1020_rates[regval][0];
			*val2 = adux1020_rates[regval][1];

			ret = IIO_VAL_INT_PLUS_MICRO;
			break;
		default:
			break;
		}
		break;
	default:
		break;
	}

fail:
	mutex_unlock(&data->lock);

	return ret;
};

static inline int adux1020_find_index(const int array[][2], int count, int val,
				      int val2)
{
	int i;

	for (i = 0; i < count; i++)
		if (val == array[i][0] && val2 == array[i][1])
			return i;

	return -EINVAL;
}

static int adux1020_write_raw(struct iio_dev *indio_dev,
			      struct iio_chan_spec const *chan,
			      int val, int val2, long mask)
{
	struct adux1020_data *data = iio_priv(indio_dev);
	int i, ret = -EINVAL;

	mutex_lock(&data->lock);

	switch (mask) {
	case IIO_CHAN_INFO_SAMP_FREQ:
		if (chan->type == IIO_PROXIMITY) {
			i = adux1020_find_index(adux1020_rates,
						ARRAY_SIZE(adux1020_rates),
						val, val2);
			if (i < 0) {
				ret = i;
				goto fail;
			}

			ret = regmap_update_bits(data->regmap,
						 ADUX1020_REG_FREQUENCY,
						 ADUX1020_PROX_FREQ_MASK,
						 ADUX1020_PROX_FREQ(i));
		}
		break;
	case IIO_CHAN_INFO_PROCESSED:
		if (chan->type == IIO_CURRENT) {
			i = adux1020_find_index(adux1020_led_currents,
					ARRAY_SIZE(adux1020_led_currents),
					val, val2);
			if (i < 0) {
				ret = i;
				goto fail;
			}

			ret = regmap_update_bits(data->regmap,
						 ADUX1020_REG_LED_CURRENT,
						 ADUX1020_LED_CURRENT_MASK, i);
		}
		break;
	default:
		break;
	}

fail:
	mutex_unlock(&data->lock);

	return ret;
}

static int adux1020_write_event_config(struct iio_dev *indio_dev,
				       const struct iio_chan_spec *chan,
				       enum iio_event_type type,
				       enum iio_event_direction dir, int state)
{
	struct adux1020_data *data = iio_priv(indio_dev);
	int ret, mask;

	mutex_lock(&data->lock);

	ret = regmap_write(data->regmap, ADUX1020_REG_INT_ENABLE,
			   ADUX1020_INT_ENABLE);
	if (ret < 0)
		goto fail;

	ret = regmap_write(data->regmap, ADUX1020_REG_INT_POLARITY, 0);
	if (ret < 0)
		goto fail;

	switch (chan->type) {
	case IIO_PROXIMITY:
		if (dir == IIO_EV_DIR_RISING)
			mask = ADUX1020_PROX_ON1_INT;
		else
			mask = ADUX1020_PROX_OFF1_INT;

		if (state)
			state = 0;
		else
			state = mask;

		ret = regmap_update_bits(data->regmap, ADUX1020_REG_INT_MASK,
					 mask, state);
		if (ret < 0)
			goto fail;

		/*
		 * Trigger proximity interrupt when the intensity is above
		 * or below threshold
		 */
		ret = regmap_update_bits(data->regmap, ADUX1020_REG_PROX_TYPE,
					 ADUX1020_PROX_TYPE,
					 ADUX1020_PROX_TYPE);
		if (ret < 0)
			goto fail;

		/* Set proximity mode */
		ret = adux1020_set_mode(data, ADUX1020_MODE_PROX_I);
		break;
	default:
		ret = -EINVAL;
		break;
	}

fail:
	mutex_unlock(&data->lock);

	return ret;
}

static int adux1020_read_event_config(struct iio_dev *indio_dev,
				      const struct iio_chan_spec *chan,
				      enum iio_event_type type,
				      enum iio_event_direction dir)
{
	struct adux1020_data *data = iio_priv(indio_dev);
	int ret, mask;
	unsigned int regval;

	switch (chan->type) {
	case IIO_PROXIMITY:
		if (dir == IIO_EV_DIR_RISING)
			mask = ADUX1020_PROX_ON1_INT;
		else
			mask = ADUX1020_PROX_OFF1_INT;
		break;
	default:
		return -EINVAL;
	}

	ret = regmap_read(data->regmap, ADUX1020_REG_INT_MASK, &regval);
	if (ret < 0)
		return ret;

	return !(regval & mask);
}

static int adux1020_read_thresh(struct iio_dev *indio_dev,
				const struct iio_chan_spec *chan,
				enum iio_event_type type,
				enum iio_event_direction dir,
				enum iio_event_info info, int *val, int *val2)
{
	struct adux1020_data *data = iio_priv(indio_dev);
	u8 reg;
	int ret;
	unsigned int regval;

	switch (chan->type) {
	case IIO_PROXIMITY:
		if (dir == IIO_EV_DIR_RISING)
			reg = ADUX1020_REG_PROX_TH_ON1;
		else
			reg = ADUX1020_REG_PROX_TH_OFF1;
		break;
	default:
		return -EINVAL;
	}

	ret = regmap_read(data->regmap, reg, &regval);
	if (ret < 0)
		return ret;

	*val = regval;

	return IIO_VAL_INT;
}

static int adux1020_write_thresh(struct iio_dev *indio_dev,
				 const struct iio_chan_spec *chan,
				 enum iio_event_type type,
				 enum iio_event_direction dir,
				 enum iio_event_info info, int val, int val2)
{
	struct adux1020_data *data = iio_priv(indio_dev);
	u8 reg;

	switch (chan->type) {
	case IIO_PROXIMITY:
		if (dir == IIO_EV_DIR_RISING)
			reg = ADUX1020_REG_PROX_TH_ON1;
		else
			reg = ADUX1020_REG_PROX_TH_OFF1;
		break;
	default:
		return -EINVAL;
	}

	/* Full scale threshold value is 0-65535  */
	if (val < 0 || val > 65535)
		return -EINVAL;

	return regmap_write(data->regmap, reg, val);
}

static const struct iio_event_spec adux1020_proximity_event[] = {
	{
		.type = IIO_EV_TYPE_THRESH,
		.dir = IIO_EV_DIR_RISING,
		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
			BIT(IIO_EV_INFO_ENABLE),
	},
	{
		.type = IIO_EV_TYPE_THRESH,
		.dir = IIO_EV_DIR_FALLING,
		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
			BIT(IIO_EV_INFO_ENABLE),
	},
};

static const struct iio_chan_spec adux1020_channels[] = {
	{
		.type = IIO_PROXIMITY,
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
				      BIT(IIO_CHAN_INFO_SAMP_FREQ),
		.event_spec = adux1020_proximity_event,
		.num_event_specs = ARRAY_SIZE(adux1020_proximity_event),
	},
	{
		.type = IIO_CURRENT,
		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
		.extend_name = "led",
		.output = 1,
	},
};

static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
		      "0.1 0.2 0.5 1 2 5 10 20 50 100 190 450 820 1400");

static struct attribute *adux1020_attributes[] = {
	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
	NULL
};

static const struct attribute_group adux1020_attribute_group = {
	.attrs = adux1020_attributes,
};

static const struct iio_info adux1020_info = {
	.attrs = &adux1020_attribute_group,
	.read_raw = adux1020_read_raw,
	.write_raw = adux1020_write_raw,
	.read_event_config = adux1020_read_event_config,
	.write_event_config = adux1020_write_event_config,
	.read_event_value = adux1020_read_thresh,
	.write_event_value = adux1020_write_thresh,
};

static irqreturn_t adux1020_interrupt_handler(int irq, void *private)
{
	struct iio_dev *indio_dev = private;
	struct adux1020_data *data = iio_priv(indio_dev);
	int ret, status;

	ret = regmap_read(data->regmap, ADUX1020_REG_INT_STATUS, &status);
	if (ret < 0)
		return IRQ_HANDLED;

	status &= ADUX1020_MODE_INT_STATUS_MASK;

	if (status & ADUX1020_INT_PROX_ON1) {
		iio_push_event(indio_dev,
			       IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
						    IIO_EV_TYPE_THRESH,
						    IIO_EV_DIR_RISING),
			       iio_get_time_ns(indio_dev));
	}

	if (status & ADUX1020_INT_PROX_OFF1) {
		iio_push_event(indio_dev,
			       IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
						    IIO_EV_TYPE_THRESH,
						    IIO_EV_DIR_FALLING),
			       iio_get_time_ns(indio_dev));
	}

	regmap_update_bits(data->regmap, ADUX1020_REG_INT_STATUS,
			   ADUX1020_MODE_INT_MASK, ADUX1020_INT_CLEAR);

	return IRQ_HANDLED;
}

static int adux1020_chip_init(struct adux1020_data *data)
{
	struct i2c_client *client = data->client;
	int ret;
	unsigned int val;

	ret = regmap_read(data->regmap, ADUX1020_REG_CHIP_ID, &val);
	if (ret < 0)
		return ret;

	if ((val & ADUX1020_CHIP_ID_MASK) != ADUX1020_CHIP_ID) {
		dev_err(&client->dev, "invalid chip id 0x%04x\n", val);
		return -ENODEV;
	}

	dev_dbg(&client->dev, "Detected ADUX1020 with chip id: 0x%04x\n", val);

	ret = regmap_update_bits(data->regmap, ADUX1020_REG_SW_RESET,
				 ADUX1020_SW_RESET, ADUX1020_SW_RESET);
	if (ret < 0)
		return ret;

	/* Load default configuration */
	ret = regmap_multi_reg_write(data->regmap, adux1020_def_conf,
				     ARRAY_SIZE(adux1020_def_conf));
	if (ret < 0)
		return ret;

	ret = adux1020_flush_fifo(data);
	if (ret < 0)
		return ret;

	/* Use LED_IREF for proximity mode */
	ret = regmap_update_bits(data->regmap, ADUX1020_REG_LED_CURRENT,
				 ADUX1020_LED_PIREF_EN, 0);
	if (ret < 0)
		return ret;

	/* Mask all interrupts */
	return regmap_update_bits(data->regmap, ADUX1020_REG_INT_MASK,
			   ADUX1020_MODE_INT_MASK, ADUX1020_MODE_INT_DISABLE);
}

static int adux1020_probe(struct i2c_client *client,
			  const struct i2c_device_id *id)
{
	struct adux1020_data *data;
	struct iio_dev *indio_dev;
	int ret;

	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
	if (!indio_dev)
		return -ENOMEM;

	indio_dev->info = &adux1020_info;
	indio_dev->name = ADUX1020_DRV_NAME;
	indio_dev->channels = adux1020_channels;
	indio_dev->num_channels = ARRAY_SIZE(adux1020_channels);
	indio_dev->modes = INDIO_DIRECT_MODE;

	data = iio_priv(indio_dev);

	data->regmap = devm_regmap_init_i2c(client, &adux1020_regmap_config);
	if (IS_ERR(data->regmap)) {
		dev_err(&client->dev, "regmap initialization failed.\n");
		return PTR_ERR(data->regmap);
	}

	data->client = client;
	data->indio_dev = indio_dev;
	mutex_init(&data->lock);

	ret = adux1020_chip_init(data);
	if (ret)
		return ret;

	if (client->irq) {
		ret = devm_request_threaded_irq(&client->dev, client->irq,
					NULL, adux1020_interrupt_handler,
					IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
					ADUX1020_DRV_NAME, indio_dev);
		if (ret) {
			dev_err(&client->dev, "irq request error %d\n", -ret);
			return ret;
		}
	}

	return devm_iio_device_register(&client->dev, indio_dev);
}

static const struct i2c_device_id adux1020_id[] = {
	{ "adux1020", 0 },
	{}
};
MODULE_DEVICE_TABLE(i2c, adux1020_id);

static const struct of_device_id adux1020_of_match[] = {
	{ .compatible = "adi,adux1020" },
	{ }
};
MODULE_DEVICE_TABLE(of, adux1020_of_match);

static struct i2c_driver adux1020_driver = {
	.driver = {
		.name	= ADUX1020_DRV_NAME,
		.of_match_table = adux1020_of_match,
	},
	.probe		= adux1020_probe,
	.id_table	= adux1020_id,
};
module_i2c_driver(adux1020_driver);

MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
MODULE_DESCRIPTION("ADUX1020 photometric sensor");
MODULE_LICENSE("GPL");