Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) STMicroelectronics 2017
 * Author:  Amelie Delaunay <amelie.delaunay@st.com>
 */

#include <linux/bcd.h>
#include <linux/clk.h>
#include <linux/iopoll.h>
#include <linux/ioport.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/pm_wakeirq.h>
#include <linux/regmap.h>
#include <linux/rtc.h>

#define DRIVER_NAME "stm32_rtc"

/* STM32_RTC_TR bit fields  */
#define STM32_RTC_TR_SEC_SHIFT		0
#define STM32_RTC_TR_SEC		GENMASK(6, 0)
#define STM32_RTC_TR_MIN_SHIFT		8
#define STM32_RTC_TR_MIN		GENMASK(14, 8)
#define STM32_RTC_TR_HOUR_SHIFT		16
#define STM32_RTC_TR_HOUR		GENMASK(21, 16)

/* STM32_RTC_DR bit fields */
#define STM32_RTC_DR_DATE_SHIFT		0
#define STM32_RTC_DR_DATE		GENMASK(5, 0)
#define STM32_RTC_DR_MONTH_SHIFT	8
#define STM32_RTC_DR_MONTH		GENMASK(12, 8)
#define STM32_RTC_DR_WDAY_SHIFT		13
#define STM32_RTC_DR_WDAY		GENMASK(15, 13)
#define STM32_RTC_DR_YEAR_SHIFT		16
#define STM32_RTC_DR_YEAR		GENMASK(23, 16)

/* STM32_RTC_CR bit fields */
#define STM32_RTC_CR_FMT		BIT(6)
#define STM32_RTC_CR_ALRAE		BIT(8)
#define STM32_RTC_CR_ALRAIE		BIT(12)

/* STM32_RTC_ISR/STM32_RTC_ICSR bit fields */
#define STM32_RTC_ISR_ALRAWF		BIT(0)
#define STM32_RTC_ISR_INITS		BIT(4)
#define STM32_RTC_ISR_RSF		BIT(5)
#define STM32_RTC_ISR_INITF		BIT(6)
#define STM32_RTC_ISR_INIT		BIT(7)
#define STM32_RTC_ISR_ALRAF		BIT(8)

/* STM32_RTC_PRER bit fields */
#define STM32_RTC_PRER_PRED_S_SHIFT	0
#define STM32_RTC_PRER_PRED_S		GENMASK(14, 0)
#define STM32_RTC_PRER_PRED_A_SHIFT	16
#define STM32_RTC_PRER_PRED_A		GENMASK(22, 16)

/* STM32_RTC_ALRMAR and STM32_RTC_ALRMBR bit fields */
#define STM32_RTC_ALRMXR_SEC_SHIFT	0
#define STM32_RTC_ALRMXR_SEC		GENMASK(6, 0)
#define STM32_RTC_ALRMXR_SEC_MASK	BIT(7)
#define STM32_RTC_ALRMXR_MIN_SHIFT	8
#define STM32_RTC_ALRMXR_MIN		GENMASK(14, 8)
#define STM32_RTC_ALRMXR_MIN_MASK	BIT(15)
#define STM32_RTC_ALRMXR_HOUR_SHIFT	16
#define STM32_RTC_ALRMXR_HOUR		GENMASK(21, 16)
#define STM32_RTC_ALRMXR_PM		BIT(22)
#define STM32_RTC_ALRMXR_HOUR_MASK	BIT(23)
#define STM32_RTC_ALRMXR_DATE_SHIFT	24
#define STM32_RTC_ALRMXR_DATE		GENMASK(29, 24)
#define STM32_RTC_ALRMXR_WDSEL		BIT(30)
#define STM32_RTC_ALRMXR_WDAY_SHIFT	24
#define STM32_RTC_ALRMXR_WDAY		GENMASK(27, 24)
#define STM32_RTC_ALRMXR_DATE_MASK	BIT(31)

/* STM32_RTC_SR/_SCR bit fields */
#define STM32_RTC_SR_ALRA		BIT(0)

/* STM32_RTC_VERR bit fields */
#define STM32_RTC_VERR_MINREV_SHIFT	0
#define STM32_RTC_VERR_MINREV		GENMASK(3, 0)
#define STM32_RTC_VERR_MAJREV_SHIFT	4
#define STM32_RTC_VERR_MAJREV		GENMASK(7, 4)

/* STM32_RTC_WPR key constants */
#define RTC_WPR_1ST_KEY			0xCA
#define RTC_WPR_2ND_KEY			0x53
#define RTC_WPR_WRONG_KEY		0xFF

/* Max STM32 RTC register offset is 0x3FC */
#define UNDEF_REG			0xFFFF

struct stm32_rtc;

struct stm32_rtc_registers {
	u16 tr;
	u16 dr;
	u16 cr;
	u16 isr;
	u16 prer;
	u16 alrmar;
	u16 wpr;
	u16 sr;
	u16 scr;
	u16 verr;
};

struct stm32_rtc_events {
	u32 alra;
};

struct stm32_rtc_data {
	const struct stm32_rtc_registers regs;
	const struct stm32_rtc_events events;
	void (*clear_events)(struct stm32_rtc *rtc, unsigned int flags);
	bool has_pclk;
	bool need_dbp;
	bool has_wakeirq;
};

struct stm32_rtc {
	struct rtc_device *rtc_dev;
	void __iomem *base;
	struct regmap *dbp;
	unsigned int dbp_reg;
	unsigned int dbp_mask;
	struct clk *pclk;
	struct clk *rtc_ck;
	const struct stm32_rtc_data *data;
	int irq_alarm;
	int wakeirq_alarm;
};

static void stm32_rtc_wpr_unlock(struct stm32_rtc *rtc)
{
	const struct stm32_rtc_registers *regs = &rtc->data->regs;

	writel_relaxed(RTC_WPR_1ST_KEY, rtc->base + regs->wpr);
	writel_relaxed(RTC_WPR_2ND_KEY, rtc->base + regs->wpr);
}

static void stm32_rtc_wpr_lock(struct stm32_rtc *rtc)
{
	const struct stm32_rtc_registers *regs = &rtc->data->regs;

	writel_relaxed(RTC_WPR_WRONG_KEY, rtc->base + regs->wpr);
}

static int stm32_rtc_enter_init_mode(struct stm32_rtc *rtc)
{
	const struct stm32_rtc_registers *regs = &rtc->data->regs;
	unsigned int isr = readl_relaxed(rtc->base + regs->isr);

	if (!(isr & STM32_RTC_ISR_INITF)) {
		isr |= STM32_RTC_ISR_INIT;
		writel_relaxed(isr, rtc->base + regs->isr);

		/*
		 * It takes around 2 rtc_ck clock cycles to enter in
		 * initialization phase mode (and have INITF flag set). As
		 * slowest rtc_ck frequency may be 32kHz and highest should be
		 * 1MHz, we poll every 10 us with a timeout of 100ms.
		 */
		return readl_relaxed_poll_timeout_atomic(
					rtc->base + regs->isr,
					isr, (isr & STM32_RTC_ISR_INITF),
					10, 100000);
	}

	return 0;
}

static void stm32_rtc_exit_init_mode(struct stm32_rtc *rtc)
{
	const struct stm32_rtc_registers *regs = &rtc->data->regs;
	unsigned int isr = readl_relaxed(rtc->base + regs->isr);

	isr &= ~STM32_RTC_ISR_INIT;
	writel_relaxed(isr, rtc->base + regs->isr);
}

static int stm32_rtc_wait_sync(struct stm32_rtc *rtc)
{
	const struct stm32_rtc_registers *regs = &rtc->data->regs;
	unsigned int isr = readl_relaxed(rtc->base + regs->isr);

	isr &= ~STM32_RTC_ISR_RSF;
	writel_relaxed(isr, rtc->base + regs->isr);

	/*
	 * Wait for RSF to be set to ensure the calendar registers are
	 * synchronised, it takes around 2 rtc_ck clock cycles
	 */
	return readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr,
						 isr,
						 (isr & STM32_RTC_ISR_RSF),
						 10, 100000);
}

static void stm32_rtc_clear_event_flags(struct stm32_rtc *rtc,
					unsigned int flags)
{
	rtc->data->clear_events(rtc, flags);
}

static irqreturn_t stm32_rtc_alarm_irq(int irq, void *dev_id)
{
	struct stm32_rtc *rtc = (struct stm32_rtc *)dev_id;
	const struct stm32_rtc_registers *regs = &rtc->data->regs;
	const struct stm32_rtc_events *evts = &rtc->data->events;
	unsigned int status, cr;

	rtc_lock(rtc->rtc_dev);

	status = readl_relaxed(rtc->base + regs->sr);
	cr = readl_relaxed(rtc->base + regs->cr);

	if ((status & evts->alra) &&
	    (cr & STM32_RTC_CR_ALRAIE)) {
		/* Alarm A flag - Alarm interrupt */
		dev_dbg(&rtc->rtc_dev->dev, "Alarm occurred\n");

		/* Pass event to the kernel */
		rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);

		/* Clear event flags, otherwise new events won't be received */
		stm32_rtc_clear_event_flags(rtc, evts->alra);
	}

	rtc_unlock(rtc->rtc_dev);

	return IRQ_HANDLED;
}

/* Convert rtc_time structure from bin to bcd format */
static void tm2bcd(struct rtc_time *tm)
{
	tm->tm_sec = bin2bcd(tm->tm_sec);
	tm->tm_min = bin2bcd(tm->tm_min);
	tm->tm_hour = bin2bcd(tm->tm_hour);

	tm->tm_mday = bin2bcd(tm->tm_mday);
	tm->tm_mon = bin2bcd(tm->tm_mon + 1);
	tm->tm_year = bin2bcd(tm->tm_year - 100);
	/*
	 * Number of days since Sunday
	 * - on kernel side, 0=Sunday...6=Saturday
	 * - on rtc side, 0=invalid,1=Monday...7=Sunday
	 */
	tm->tm_wday = (!tm->tm_wday) ? 7 : tm->tm_wday;
}

/* Convert rtc_time structure from bcd to bin format */
static void bcd2tm(struct rtc_time *tm)
{
	tm->tm_sec = bcd2bin(tm->tm_sec);
	tm->tm_min = bcd2bin(tm->tm_min);
	tm->tm_hour = bcd2bin(tm->tm_hour);

	tm->tm_mday = bcd2bin(tm->tm_mday);
	tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
	tm->tm_year = bcd2bin(tm->tm_year) + 100;
	/*
	 * Number of days since Sunday
	 * - on kernel side, 0=Sunday...6=Saturday
	 * - on rtc side, 0=invalid,1=Monday...7=Sunday
	 */
	tm->tm_wday %= 7;
}

static int stm32_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
	struct stm32_rtc *rtc = dev_get_drvdata(dev);
	const struct stm32_rtc_registers *regs = &rtc->data->regs;
	unsigned int tr, dr;

	/* Time and Date in BCD format */
	tr = readl_relaxed(rtc->base + regs->tr);
	dr = readl_relaxed(rtc->base + regs->dr);

	tm->tm_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT;
	tm->tm_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT;
	tm->tm_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT;

	tm->tm_mday = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT;
	tm->tm_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT;
	tm->tm_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT;
	tm->tm_wday = (dr & STM32_RTC_DR_WDAY) >> STM32_RTC_DR_WDAY_SHIFT;

	/* We don't report tm_yday and tm_isdst */

	bcd2tm(tm);

	return 0;
}

static int stm32_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
	struct stm32_rtc *rtc = dev_get_drvdata(dev);
	const struct stm32_rtc_registers *regs = &rtc->data->regs;
	unsigned int tr, dr;
	int ret = 0;

	tm2bcd(tm);

	/* Time in BCD format */
	tr = ((tm->tm_sec << STM32_RTC_TR_SEC_SHIFT) & STM32_RTC_TR_SEC) |
	     ((tm->tm_min << STM32_RTC_TR_MIN_SHIFT) & STM32_RTC_TR_MIN) |
	     ((tm->tm_hour << STM32_RTC_TR_HOUR_SHIFT) & STM32_RTC_TR_HOUR);

	/* Date in BCD format */
	dr = ((tm->tm_mday << STM32_RTC_DR_DATE_SHIFT) & STM32_RTC_DR_DATE) |
	     ((tm->tm_mon << STM32_RTC_DR_MONTH_SHIFT) & STM32_RTC_DR_MONTH) |
	     ((tm->tm_year << STM32_RTC_DR_YEAR_SHIFT) & STM32_RTC_DR_YEAR) |
	     ((tm->tm_wday << STM32_RTC_DR_WDAY_SHIFT) & STM32_RTC_DR_WDAY);

	stm32_rtc_wpr_unlock(rtc);

	ret = stm32_rtc_enter_init_mode(rtc);
	if (ret) {
		dev_err(dev, "Can't enter in init mode. Set time aborted.\n");
		goto end;
	}

	writel_relaxed(tr, rtc->base + regs->tr);
	writel_relaxed(dr, rtc->base + regs->dr);

	stm32_rtc_exit_init_mode(rtc);

	ret = stm32_rtc_wait_sync(rtc);
end:
	stm32_rtc_wpr_lock(rtc);

	return ret;
}

static int stm32_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
	struct stm32_rtc *rtc = dev_get_drvdata(dev);
	const struct stm32_rtc_registers *regs = &rtc->data->regs;
	const struct stm32_rtc_events *evts = &rtc->data->events;
	struct rtc_time *tm = &alrm->time;
	unsigned int alrmar, cr, status;

	alrmar = readl_relaxed(rtc->base + regs->alrmar);
	cr = readl_relaxed(rtc->base + regs->cr);
	status = readl_relaxed(rtc->base + regs->sr);

	if (alrmar & STM32_RTC_ALRMXR_DATE_MASK) {
		/*
		 * Date/day doesn't matter in Alarm comparison so alarm
		 * triggers every day
		 */
		tm->tm_mday = -1;
		tm->tm_wday = -1;
	} else {
		if (alrmar & STM32_RTC_ALRMXR_WDSEL) {
			/* Alarm is set to a day of week */
			tm->tm_mday = -1;
			tm->tm_wday = (alrmar & STM32_RTC_ALRMXR_WDAY) >>
				      STM32_RTC_ALRMXR_WDAY_SHIFT;
			tm->tm_wday %= 7;
		} else {
			/* Alarm is set to a day of month */
			tm->tm_wday = -1;
			tm->tm_mday = (alrmar & STM32_RTC_ALRMXR_DATE) >>
				       STM32_RTC_ALRMXR_DATE_SHIFT;
		}
	}

	if (alrmar & STM32_RTC_ALRMXR_HOUR_MASK) {
		/* Hours don't matter in Alarm comparison */
		tm->tm_hour = -1;
	} else {
		tm->tm_hour = (alrmar & STM32_RTC_ALRMXR_HOUR) >>
			       STM32_RTC_ALRMXR_HOUR_SHIFT;
		if (alrmar & STM32_RTC_ALRMXR_PM)
			tm->tm_hour += 12;
	}

	if (alrmar & STM32_RTC_ALRMXR_MIN_MASK) {
		/* Minutes don't matter in Alarm comparison */
		tm->tm_min = -1;
	} else {
		tm->tm_min = (alrmar & STM32_RTC_ALRMXR_MIN) >>
			      STM32_RTC_ALRMXR_MIN_SHIFT;
	}

	if (alrmar & STM32_RTC_ALRMXR_SEC_MASK) {
		/* Seconds don't matter in Alarm comparison */
		tm->tm_sec = -1;
	} else {
		tm->tm_sec = (alrmar & STM32_RTC_ALRMXR_SEC) >>
			      STM32_RTC_ALRMXR_SEC_SHIFT;
	}

	bcd2tm(tm);

	alrm->enabled = (cr & STM32_RTC_CR_ALRAE) ? 1 : 0;
	alrm->pending = (status & evts->alra) ? 1 : 0;

	return 0;
}

static int stm32_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
	struct stm32_rtc *rtc = dev_get_drvdata(dev);
	const struct stm32_rtc_registers *regs = &rtc->data->regs;
	const struct stm32_rtc_events *evts = &rtc->data->events;
	unsigned int cr;

	cr = readl_relaxed(rtc->base + regs->cr);

	stm32_rtc_wpr_unlock(rtc);

	/* We expose Alarm A to the kernel */
	if (enabled)
		cr |= (STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
	else
		cr &= ~(STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
	writel_relaxed(cr, rtc->base + regs->cr);

	/* Clear event flags, otherwise new events won't be received */
	stm32_rtc_clear_event_flags(rtc, evts->alra);

	stm32_rtc_wpr_lock(rtc);

	return 0;
}

static int stm32_rtc_valid_alrm(struct stm32_rtc *rtc, struct rtc_time *tm)
{
	const struct stm32_rtc_registers *regs = &rtc->data->regs;
	int cur_day, cur_mon, cur_year, cur_hour, cur_min, cur_sec;
	unsigned int dr = readl_relaxed(rtc->base + regs->dr);
	unsigned int tr = readl_relaxed(rtc->base + regs->tr);

	cur_day = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT;
	cur_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT;
	cur_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT;
	cur_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT;
	cur_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT;
	cur_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT;

	/*
	 * Assuming current date is M-D-Y H:M:S.
	 * RTC alarm can't be set on a specific month and year.
	 * So the valid alarm range is:
	 *	M-D-Y H:M:S < alarm <= (M+1)-D-Y H:M:S
	 * with a specific case for December...
	 */
	if ((((tm->tm_year > cur_year) &&
	      (tm->tm_mon == 0x1) && (cur_mon == 0x12)) ||
	     ((tm->tm_year == cur_year) &&
	      (tm->tm_mon <= cur_mon + 1))) &&
	    ((tm->tm_mday > cur_day) ||
	     ((tm->tm_mday == cur_day) &&
	     ((tm->tm_hour > cur_hour) ||
	      ((tm->tm_hour == cur_hour) && (tm->tm_min > cur_min)) ||
	      ((tm->tm_hour == cur_hour) && (tm->tm_min == cur_min) &&
	       (tm->tm_sec >= cur_sec))))))
		return 0;

	return -EINVAL;
}

static int stm32_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
	struct stm32_rtc *rtc = dev_get_drvdata(dev);
	const struct stm32_rtc_registers *regs = &rtc->data->regs;
	struct rtc_time *tm = &alrm->time;
	unsigned int cr, isr, alrmar;
	int ret = 0;

	tm2bcd(tm);

	/*
	 * RTC alarm can't be set on a specific date, unless this date is
	 * up to the same day of month next month.
	 */
	if (stm32_rtc_valid_alrm(rtc, tm) < 0) {
		dev_err(dev, "Alarm can be set only on upcoming month.\n");
		return -EINVAL;
	}

	alrmar = 0;
	/* tm_year and tm_mon are not used because not supported by RTC */
	alrmar |= (tm->tm_mday << STM32_RTC_ALRMXR_DATE_SHIFT) &
		  STM32_RTC_ALRMXR_DATE;
	/* 24-hour format */
	alrmar &= ~STM32_RTC_ALRMXR_PM;
	alrmar |= (tm->tm_hour << STM32_RTC_ALRMXR_HOUR_SHIFT) &
		  STM32_RTC_ALRMXR_HOUR;
	alrmar |= (tm->tm_min << STM32_RTC_ALRMXR_MIN_SHIFT) &
		  STM32_RTC_ALRMXR_MIN;
	alrmar |= (tm->tm_sec << STM32_RTC_ALRMXR_SEC_SHIFT) &
		  STM32_RTC_ALRMXR_SEC;

	stm32_rtc_wpr_unlock(rtc);

	/* Disable Alarm */
	cr = readl_relaxed(rtc->base + regs->cr);
	cr &= ~STM32_RTC_CR_ALRAE;
	writel_relaxed(cr, rtc->base + regs->cr);

	/*
	 * Poll Alarm write flag to be sure that Alarm update is allowed: it
	 * takes around 2 rtc_ck clock cycles
	 */
	ret = readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr,
						isr,
						(isr & STM32_RTC_ISR_ALRAWF),
						10, 100000);

	if (ret) {
		dev_err(dev, "Alarm update not allowed\n");
		goto end;
	}

	/* Write to Alarm register */
	writel_relaxed(alrmar, rtc->base + regs->alrmar);

	stm32_rtc_alarm_irq_enable(dev, alrm->enabled);
end:
	stm32_rtc_wpr_lock(rtc);

	return ret;
}

static const struct rtc_class_ops stm32_rtc_ops = {
	.read_time	= stm32_rtc_read_time,
	.set_time	= stm32_rtc_set_time,
	.read_alarm	= stm32_rtc_read_alarm,
	.set_alarm	= stm32_rtc_set_alarm,
	.alarm_irq_enable = stm32_rtc_alarm_irq_enable,
};

static void stm32_rtc_clear_events(struct stm32_rtc *rtc,
				   unsigned int flags)
{
	const struct stm32_rtc_registers *regs = &rtc->data->regs;

	/* Flags are cleared by writing 0 in RTC_ISR */
	writel_relaxed(readl_relaxed(rtc->base + regs->isr) & ~flags,
		       rtc->base + regs->isr);
}

static const struct stm32_rtc_data stm32_rtc_data = {
	.has_pclk = false,
	.need_dbp = true,
	.has_wakeirq = false,
	.regs = {
		.tr = 0x00,
		.dr = 0x04,
		.cr = 0x08,
		.isr = 0x0C,
		.prer = 0x10,
		.alrmar = 0x1C,
		.wpr = 0x24,
		.sr = 0x0C, /* set to ISR offset to ease alarm management */
		.scr = UNDEF_REG,
		.verr = UNDEF_REG,
	},
	.events = {
		.alra = STM32_RTC_ISR_ALRAF,
	},
	.clear_events = stm32_rtc_clear_events,
};

static const struct stm32_rtc_data stm32h7_rtc_data = {
	.has_pclk = true,
	.need_dbp = true,
	.has_wakeirq = false,
	.regs = {
		.tr = 0x00,
		.dr = 0x04,
		.cr = 0x08,
		.isr = 0x0C,
		.prer = 0x10,
		.alrmar = 0x1C,
		.wpr = 0x24,
		.sr = 0x0C, /* set to ISR offset to ease alarm management */
		.scr = UNDEF_REG,
		.verr = UNDEF_REG,
	},
	.events = {
		.alra = STM32_RTC_ISR_ALRAF,
	},
	.clear_events = stm32_rtc_clear_events,
};

static void stm32mp1_rtc_clear_events(struct stm32_rtc *rtc,
				      unsigned int flags)
{
	struct stm32_rtc_registers regs = rtc->data->regs;

	/* Flags are cleared by writing 1 in RTC_SCR */
	writel_relaxed(flags, rtc->base + regs.scr);
}

static const struct stm32_rtc_data stm32mp1_data = {
	.has_pclk = true,
	.need_dbp = false,
	.has_wakeirq = true,
	.regs = {
		.tr = 0x00,
		.dr = 0x04,
		.cr = 0x18,
		.isr = 0x0C, /* named RTC_ICSR on stm32mp1 */
		.prer = 0x10,
		.alrmar = 0x40,
		.wpr = 0x24,
		.sr = 0x50,
		.scr = 0x5C,
		.verr = 0x3F4,
	},
	.events = {
		.alra = STM32_RTC_SR_ALRA,
	},
	.clear_events = stm32mp1_rtc_clear_events,
};

static const struct of_device_id stm32_rtc_of_match[] = {
	{ .compatible = "st,stm32-rtc", .data = &stm32_rtc_data },
	{ .compatible = "st,stm32h7-rtc", .data = &stm32h7_rtc_data },
	{ .compatible = "st,stm32mp1-rtc", .data = &stm32mp1_data },
	{}
};
MODULE_DEVICE_TABLE(of, stm32_rtc_of_match);

static int stm32_rtc_init(struct platform_device *pdev,
			  struct stm32_rtc *rtc)
{
	const struct stm32_rtc_registers *regs = &rtc->data->regs;
	unsigned int prer, pred_a, pred_s, pred_a_max, pred_s_max, cr;
	unsigned int rate;
	int ret = 0;

	rate = clk_get_rate(rtc->rtc_ck);

	/* Find prediv_a and prediv_s to obtain the 1Hz calendar clock */
	pred_a_max = STM32_RTC_PRER_PRED_A >> STM32_RTC_PRER_PRED_A_SHIFT;
	pred_s_max = STM32_RTC_PRER_PRED_S >> STM32_RTC_PRER_PRED_S_SHIFT;

	for (pred_a = pred_a_max; pred_a + 1 > 0; pred_a--) {
		pred_s = (rate / (pred_a + 1)) - 1;

		if (((pred_s + 1) * (pred_a + 1)) == rate)
			break;
	}

	/*
	 * Can't find a 1Hz, so give priority to RTC power consumption
	 * by choosing the higher possible value for prediv_a
	 */
	if ((pred_s > pred_s_max) || (pred_a > pred_a_max)) {
		pred_a = pred_a_max;
		pred_s = (rate / (pred_a + 1)) - 1;

		dev_warn(&pdev->dev, "rtc_ck is %s\n",
			 (rate < ((pred_a + 1) * (pred_s + 1))) ?
			 "fast" : "slow");
	}

	stm32_rtc_wpr_unlock(rtc);

	ret = stm32_rtc_enter_init_mode(rtc);
	if (ret) {
		dev_err(&pdev->dev,
			"Can't enter in init mode. Prescaler config failed.\n");
		goto end;
	}

	prer = (pred_s << STM32_RTC_PRER_PRED_S_SHIFT) & STM32_RTC_PRER_PRED_S;
	writel_relaxed(prer, rtc->base + regs->prer);
	prer |= (pred_a << STM32_RTC_PRER_PRED_A_SHIFT) & STM32_RTC_PRER_PRED_A;
	writel_relaxed(prer, rtc->base + regs->prer);

	/* Force 24h time format */
	cr = readl_relaxed(rtc->base + regs->cr);
	cr &= ~STM32_RTC_CR_FMT;
	writel_relaxed(cr, rtc->base + regs->cr);

	stm32_rtc_exit_init_mode(rtc);

	ret = stm32_rtc_wait_sync(rtc);
end:
	stm32_rtc_wpr_lock(rtc);

	return ret;
}

static int stm32_rtc_probe(struct platform_device *pdev)
{
	struct stm32_rtc *rtc;
	const struct stm32_rtc_registers *regs;
	int ret;

	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
	if (!rtc)
		return -ENOMEM;

	rtc->base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(rtc->base))
		return PTR_ERR(rtc->base);

	rtc->data = (struct stm32_rtc_data *)
		    of_device_get_match_data(&pdev->dev);
	regs = &rtc->data->regs;

	if (rtc->data->need_dbp) {
		rtc->dbp = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
							   "st,syscfg");
		if (IS_ERR(rtc->dbp)) {
			dev_err(&pdev->dev, "no st,syscfg\n");
			return PTR_ERR(rtc->dbp);
		}

		ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg",
						 1, &rtc->dbp_reg);
		if (ret) {
			dev_err(&pdev->dev, "can't read DBP register offset\n");
			return ret;
		}

		ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg",
						 2, &rtc->dbp_mask);
		if (ret) {
			dev_err(&pdev->dev, "can't read DBP register mask\n");
			return ret;
		}
	}

	if (!rtc->data->has_pclk) {
		rtc->pclk = NULL;
		rtc->rtc_ck = devm_clk_get(&pdev->dev, NULL);
	} else {
		rtc->pclk = devm_clk_get(&pdev->dev, "pclk");
		if (IS_ERR(rtc->pclk)) {
			dev_err(&pdev->dev, "no pclk clock");
			return PTR_ERR(rtc->pclk);
		}
		rtc->rtc_ck = devm_clk_get(&pdev->dev, "rtc_ck");
	}
	if (IS_ERR(rtc->rtc_ck)) {
		dev_err(&pdev->dev, "no rtc_ck clock");
		return PTR_ERR(rtc->rtc_ck);
	}

	if (rtc->data->has_pclk) {
		ret = clk_prepare_enable(rtc->pclk);
		if (ret)
			return ret;
	}

	ret = clk_prepare_enable(rtc->rtc_ck);
	if (ret)
		goto err_no_rtc_ck;

	if (rtc->data->need_dbp)
		regmap_update_bits(rtc->dbp, rtc->dbp_reg,
				   rtc->dbp_mask, rtc->dbp_mask);

	/*
	 * After a system reset, RTC_ISR.INITS flag can be read to check if
	 * the calendar has been initialized or not. INITS flag is reset by a
	 * power-on reset (no vbat, no power-supply). It is not reset if
	 * rtc_ck parent clock has changed (so RTC prescalers need to be
	 * changed). That's why we cannot rely on this flag to know if RTC
	 * init has to be done.
	 */
	ret = stm32_rtc_init(pdev, rtc);
	if (ret)
		goto err;

	rtc->irq_alarm = platform_get_irq(pdev, 0);
	if (rtc->irq_alarm <= 0) {
		ret = rtc->irq_alarm;
		goto err;
	}

	ret = device_init_wakeup(&pdev->dev, true);
	if (rtc->data->has_wakeirq) {
		rtc->wakeirq_alarm = platform_get_irq(pdev, 1);
		if (rtc->wakeirq_alarm > 0) {
			ret = dev_pm_set_dedicated_wake_irq(&pdev->dev,
							    rtc->wakeirq_alarm);
		} else {
			ret = rtc->wakeirq_alarm;
			if (rtc->wakeirq_alarm == -EPROBE_DEFER)
				goto err;
		}
	}
	if (ret)
		dev_warn(&pdev->dev, "alarm can't wake up the system: %d", ret);

	platform_set_drvdata(pdev, rtc);

	rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, pdev->name,
						&stm32_rtc_ops, THIS_MODULE);
	if (IS_ERR(rtc->rtc_dev)) {
		ret = PTR_ERR(rtc->rtc_dev);
		dev_err(&pdev->dev, "rtc device registration failed, err=%d\n",
			ret);
		goto err;
	}

	/* Handle RTC alarm interrupts */
	ret = devm_request_threaded_irq(&pdev->dev, rtc->irq_alarm, NULL,
					stm32_rtc_alarm_irq, IRQF_ONESHOT,
					pdev->name, rtc);
	if (ret) {
		dev_err(&pdev->dev, "IRQ%d (alarm interrupt) already claimed\n",
			rtc->irq_alarm);
		goto err;
	}

	/*
	 * If INITS flag is reset (calendar year field set to 0x00), calendar
	 * must be initialized
	 */
	if (!(readl_relaxed(rtc->base + regs->isr) & STM32_RTC_ISR_INITS))
		dev_warn(&pdev->dev, "Date/Time must be initialized\n");

	if (regs->verr != UNDEF_REG) {
		u32 ver = readl_relaxed(rtc->base + regs->verr);

		dev_info(&pdev->dev, "registered rev:%d.%d\n",
			 (ver >> STM32_RTC_VERR_MAJREV_SHIFT) & 0xF,
			 (ver >> STM32_RTC_VERR_MINREV_SHIFT) & 0xF);
	}

	return 0;

err:
	clk_disable_unprepare(rtc->rtc_ck);
err_no_rtc_ck:
	if (rtc->data->has_pclk)
		clk_disable_unprepare(rtc->pclk);

	if (rtc->data->need_dbp)
		regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0);

	dev_pm_clear_wake_irq(&pdev->dev);
	device_init_wakeup(&pdev->dev, false);

	return ret;
}

static int stm32_rtc_remove(struct platform_device *pdev)
{
	struct stm32_rtc *rtc = platform_get_drvdata(pdev);
	const struct stm32_rtc_registers *regs = &rtc->data->regs;
	unsigned int cr;

	/* Disable interrupts */
	stm32_rtc_wpr_unlock(rtc);
	cr = readl_relaxed(rtc->base + regs->cr);
	cr &= ~STM32_RTC_CR_ALRAIE;
	writel_relaxed(cr, rtc->base + regs->cr);
	stm32_rtc_wpr_lock(rtc);

	clk_disable_unprepare(rtc->rtc_ck);
	if (rtc->data->has_pclk)
		clk_disable_unprepare(rtc->pclk);

	/* Enable backup domain write protection if needed */
	if (rtc->data->need_dbp)
		regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0);

	dev_pm_clear_wake_irq(&pdev->dev);
	device_init_wakeup(&pdev->dev, false);

	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int stm32_rtc_suspend(struct device *dev)
{
	struct stm32_rtc *rtc = dev_get_drvdata(dev);

	if (rtc->data->has_pclk)
		clk_disable_unprepare(rtc->pclk);

	if (device_may_wakeup(dev))
		return enable_irq_wake(rtc->irq_alarm);

	return 0;
}

static int stm32_rtc_resume(struct device *dev)
{
	struct stm32_rtc *rtc = dev_get_drvdata(dev);
	int ret = 0;

	if (rtc->data->has_pclk) {
		ret = clk_prepare_enable(rtc->pclk);
		if (ret)
			return ret;
	}

	ret = stm32_rtc_wait_sync(rtc);
	if (ret < 0) {
		if (rtc->data->has_pclk)
			clk_disable_unprepare(rtc->pclk);
		return ret;
	}

	if (device_may_wakeup(dev))
		return disable_irq_wake(rtc->irq_alarm);

	return ret;
}
#endif

static SIMPLE_DEV_PM_OPS(stm32_rtc_pm_ops,
			 stm32_rtc_suspend, stm32_rtc_resume);

static struct platform_driver stm32_rtc_driver = {
	.probe		= stm32_rtc_probe,
	.remove		= stm32_rtc_remove,
	.driver		= {
		.name	= DRIVER_NAME,
		.pm	= &stm32_rtc_pm_ops,
		.of_match_table = stm32_rtc_of_match,
	},
};

module_platform_driver(stm32_rtc_driver);

MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32 Real Time Clock driver");
MODULE_LICENSE("GPL v2");