Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Analog Devices AD5766, AD5767
 * Digital to Analog Converters driver
 * Copyright 2019-2020 Analog Devices Inc.
 */
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/iio/iio.h>
#include <linux/module.h>
#include <linux/spi/spi.h>
#include <asm/unaligned.h>

#define AD5766_UPPER_WORD_SPI_MASK		GENMASK(31, 16)
#define AD5766_LOWER_WORD_SPI_MASK		GENMASK(15, 0)
#define AD5766_DITHER_SOURCE_MASK(ch)		GENMASK(((2 * ch) + 1), (2 * ch))
#define AD5766_DITHER_SOURCE(ch, source)	BIT((ch * 2) + source)
#define AD5766_DITHER_SCALE_MASK(x)		AD5766_DITHER_SOURCE_MASK(x)
#define AD5766_DITHER_SCALE(ch, scale)		(scale << (ch * 2))
#define AD5766_DITHER_ENABLE_MASK(ch)		BIT(ch)
#define AD5766_DITHER_ENABLE(ch, state)		((!state) << ch)
#define AD5766_DITHER_INVERT_MASK(ch)		BIT(ch)
#define AD5766_DITHER_INVERT(ch, state)		(state << ch)

#define AD5766_CMD_NOP_MUX_OUT			0x00
#define AD5766_CMD_SDO_CNTRL			0x01
#define AD5766_CMD_WR_IN_REG(x)			(0x10 | ((x) & GENMASK(3, 0)))
#define AD5766_CMD_WR_DAC_REG(x)		(0x20 | ((x) & GENMASK(3, 0)))
#define AD5766_CMD_SW_LDAC			0x30
#define AD5766_CMD_SPAN_REG			0x40
#define AD5766_CMD_WR_PWR_DITHER		0x51
#define AD5766_CMD_WR_DAC_REG_ALL		0x60
#define AD5766_CMD_SW_FULL_RESET		0x70
#define AD5766_CMD_READBACK_REG(x)		(0x80 | ((x) & GENMASK(3, 0)))
#define AD5766_CMD_DITHER_SIG_1			0x90
#define AD5766_CMD_DITHER_SIG_2			0xA0
#define AD5766_CMD_INV_DITHER			0xB0
#define AD5766_CMD_DITHER_SCALE_1		0xC0
#define AD5766_CMD_DITHER_SCALE_2		0xD0

#define AD5766_FULL_RESET_CODE			0x1234

enum ad5766_type {
	ID_AD5766,
	ID_AD5767,
};

enum ad5766_voltage_range {
	AD5766_VOLTAGE_RANGE_M20V_0V,
	AD5766_VOLTAGE_RANGE_M16V_to_0V,
	AD5766_VOLTAGE_RANGE_M10V_to_0V,
	AD5766_VOLTAGE_RANGE_M12V_to_14V,
	AD5766_VOLTAGE_RANGE_M16V_to_10V,
	AD5766_VOLTAGE_RANGE_M10V_to_6V,
	AD5766_VOLTAGE_RANGE_M5V_to_5V,
	AD5766_VOLTAGE_RANGE_M10V_to_10V,
};

/**
 * struct ad5766_chip_info - chip specific information
 * @num_channels:	number of channels
 * @channels:	        channel specification
 */
struct ad5766_chip_info {
	unsigned int			num_channels;
	const struct iio_chan_spec	*channels;
};

enum {
	AD5766_DITHER_ENABLE,
	AD5766_DITHER_INVERT,
	AD5766_DITHER_SOURCE,
};

/*
 * Dither signal can also be scaled.
 * Available dither scale strings corresponding to "dither_scale" field in
 * "struct ad5766_state".
 */
static const char * const ad5766_dither_scales[] = {
	"1",
	"0.75",
	"0.5",
	"0.25",
};

/**
 * struct ad5766_state - driver instance specific data
 * @spi:		SPI device
 * @lock:		Lock used to restrict concurrent access to SPI device
 * @chip_info:		Chip model specific constants
 * @gpio_reset:		Reset GPIO, used to reset the device
 * @crt_range:		Current selected output range
 * @dither_enable:	Power enable bit for each channel dither block (for
 *			example, D15 = DAC 15,D8 = DAC 8, and D0 = DAC 0)
 *			0 - Normal operation, 1 - Power down
 * @dither_invert:	Inverts the dither signal applied to the selected DAC
 *			outputs
 * @dither_source:	Selects between 2 possible sources:
 *			1: N0, 2: N1
 *			Two bits are used for each channel
 * @dither_scale:	Two bits are used for each of the 16 channels:
 *			0: 1 SCALING, 1: 0.75 SCALING, 2: 0.5 SCALING,
 *			3: 0.25 SCALING.
 * @data:		SPI transfer buffers
 */
struct ad5766_state {
	struct spi_device		*spi;
	struct mutex			lock;
	const struct ad5766_chip_info	*chip_info;
	struct gpio_desc		*gpio_reset;
	enum ad5766_voltage_range	crt_range;
	u16		dither_enable;
	u16		dither_invert;
	u32		dither_source;
	u32		dither_scale;
	union {
		u32	d32;
		u16	w16[2];
		u8	b8[4];
	} data[3] ____cacheline_aligned;
};

struct ad5766_span_tbl {
	int		min;
	int		max;
};

static const struct ad5766_span_tbl ad5766_span_tbl[] = {
	[AD5766_VOLTAGE_RANGE_M20V_0V] =	{-20, 0},
	[AD5766_VOLTAGE_RANGE_M16V_to_0V] =	{-16, 0},
	[AD5766_VOLTAGE_RANGE_M10V_to_0V] =	{-10, 0},
	[AD5766_VOLTAGE_RANGE_M12V_to_14V] =	{-12, 14},
	[AD5766_VOLTAGE_RANGE_M16V_to_10V] =	{-16, 10},
	[AD5766_VOLTAGE_RANGE_M10V_to_6V] =	{-10, 6},
	[AD5766_VOLTAGE_RANGE_M5V_to_5V] =	{-5, 5},
	[AD5766_VOLTAGE_RANGE_M10V_to_10V] =	{-10, 10},
};

static int __ad5766_spi_read(struct ad5766_state *st, u8 dac, int *val)
{
	int ret;
	struct spi_transfer xfers[] = {
		{
			.tx_buf = &st->data[0].d32,
			.bits_per_word = 8,
			.len = 3,
			.cs_change = 1,
		}, {
			.tx_buf = &st->data[1].d32,
			.rx_buf = &st->data[2].d32,
			.bits_per_word = 8,
			.len = 3,
		},
	};

	st->data[0].d32 = AD5766_CMD_READBACK_REG(dac);
	st->data[1].d32 = AD5766_CMD_NOP_MUX_OUT;

	ret = spi_sync_transfer(st->spi, xfers, ARRAY_SIZE(xfers));
	if (ret)
		return ret;

	*val = st->data[2].w16[1];

	return ret;
}

static int __ad5766_spi_write(struct ad5766_state *st, u8 command, u16 data)
{
	st->data[0].b8[0] = command;
	put_unaligned_be16(data, &st->data[0].b8[1]);

	return spi_write(st->spi, &st->data[0].b8[0], 3);
}

static int ad5766_read(struct iio_dev *indio_dev, u8 dac, int *val)
{
	struct ad5766_state *st = iio_priv(indio_dev);
	int ret;

	mutex_lock(&st->lock);
	ret = __ad5766_spi_read(st, dac, val);
	mutex_unlock(&st->lock);

	return ret;
}

static int ad5766_write(struct iio_dev *indio_dev, u8 dac, u16 data)
{
	struct ad5766_state *st = iio_priv(indio_dev);
	int ret;

	mutex_lock(&st->lock);
	ret = __ad5766_spi_write(st, AD5766_CMD_WR_DAC_REG(dac), data);
	mutex_unlock(&st->lock);

	return ret;
}

static int ad5766_reset(struct ad5766_state *st)
{
	int ret;

	if (st->gpio_reset) {
		gpiod_set_value_cansleep(st->gpio_reset, 1);
		ndelay(100); /* t_reset >= 100ns */
		gpiod_set_value_cansleep(st->gpio_reset, 0);
	} else {
		ret = __ad5766_spi_write(st, AD5766_CMD_SW_FULL_RESET,
					AD5766_FULL_RESET_CODE);
		if (ret < 0)
			return ret;
	}

	/*
	 * Minimum time between a reset and the subsequent successful write is
	 * typically 25 ns
	 */
	ndelay(25);

	return 0;
}

static int ad5766_read_raw(struct iio_dev *indio_dev,
			   struct iio_chan_spec const *chan,
			   int *val,
			   int *val2,
			   long m)
{
	struct ad5766_state *st = iio_priv(indio_dev);
	int ret;

	switch (m) {
	case IIO_CHAN_INFO_RAW:
		ret = ad5766_read(indio_dev, chan->address, val);
		if (ret)
			return ret;

		return IIO_VAL_INT;
	case IIO_CHAN_INFO_OFFSET:
		*val = ad5766_span_tbl[st->crt_range].min;

		return IIO_VAL_INT;
	case IIO_CHAN_INFO_SCALE:
		*val = ad5766_span_tbl[st->crt_range].max -
		       ad5766_span_tbl[st->crt_range].min;
		*val2 = st->chip_info->channels[0].scan_type.realbits;

		return IIO_VAL_FRACTIONAL_LOG2;
	default:
		return -EINVAL;
	}
}

static int ad5766_write_raw(struct iio_dev *indio_dev,
			    struct iio_chan_spec const *chan,
			    int val,
			    int val2,
			    long info)
{
	switch (info) {
	case IIO_CHAN_INFO_RAW:
	{
		const int max_val = GENMASK(chan->scan_type.realbits - 1, 0);

		if (val > max_val || val < 0)
			return -EINVAL;
		val <<= chan->scan_type.shift;
		return ad5766_write(indio_dev, chan->address, val);
	}
	default:
		return -EINVAL;
	}
}

static const struct iio_info ad5766_info = {
	.read_raw = ad5766_read_raw,
	.write_raw = ad5766_write_raw,
};

static int ad5766_get_dither_source(struct iio_dev *dev,
				    const struct iio_chan_spec *chan)
{
	struct ad5766_state *st = iio_priv(dev);
	u32 source;

	source = st->dither_source & AD5766_DITHER_SOURCE_MASK(chan->channel);
	source = source >> (chan->channel * 2);
	source -= 1;

	return source;
}

static int ad5766_set_dither_source(struct iio_dev *dev,
			  const struct iio_chan_spec *chan,
			  unsigned int source)
{
	struct ad5766_state *st = iio_priv(dev);
	uint16_t val;
	int ret;

	st->dither_source &= ~AD5766_DITHER_SOURCE_MASK(chan->channel);
	st->dither_source |= AD5766_DITHER_SOURCE(chan->channel, source);

	val = FIELD_GET(AD5766_LOWER_WORD_SPI_MASK, st->dither_source);
	ret = ad5766_write(dev, AD5766_CMD_DITHER_SIG_1, val);
	if (ret)
		return ret;

	val = FIELD_GET(AD5766_UPPER_WORD_SPI_MASK, st->dither_source);

	return ad5766_write(dev, AD5766_CMD_DITHER_SIG_2, val);
}

static int ad5766_get_dither_scale(struct iio_dev *dev,
				   const struct iio_chan_spec *chan)
{
	struct ad5766_state *st = iio_priv(dev);
	u32 scale;

	scale = st->dither_scale & AD5766_DITHER_SCALE_MASK(chan->channel);

	return (scale >> (chan->channel * 2));
}

static int ad5766_set_dither_scale(struct iio_dev *dev,
			  const struct iio_chan_spec *chan,
			  unsigned int scale)
{
	int ret;
	struct ad5766_state *st = iio_priv(dev);
	uint16_t val;

	st->dither_scale &= ~AD5766_DITHER_SCALE_MASK(chan->channel);
	st->dither_scale |= AD5766_DITHER_SCALE(chan->channel, scale);

	val = FIELD_GET(AD5766_LOWER_WORD_SPI_MASK, st->dither_scale);
	ret = ad5766_write(dev, AD5766_CMD_DITHER_SCALE_1, val);
	if (ret)
		return ret;
	val = FIELD_GET(AD5766_UPPER_WORD_SPI_MASK, st->dither_scale);

	return ad5766_write(dev, AD5766_CMD_DITHER_SCALE_2, val);
}

static const struct iio_enum ad5766_dither_scale_enum = {
	.items = ad5766_dither_scales,
	.num_items = ARRAY_SIZE(ad5766_dither_scales),
	.set = ad5766_set_dither_scale,
	.get = ad5766_get_dither_scale,
};

static ssize_t ad5766_read_ext(struct iio_dev *indio_dev,
			       uintptr_t private,
			       const struct iio_chan_spec *chan,
			       char *buf)
{
	struct ad5766_state *st = iio_priv(indio_dev);

	switch (private) {
	case AD5766_DITHER_ENABLE:
		return sprintf(buf, "%u\n",
			       !(st->dither_enable & BIT(chan->channel)));
		break;
	case AD5766_DITHER_INVERT:
		return sprintf(buf, "%u\n",
			       !!(st->dither_invert & BIT(chan->channel)));
		break;
	case AD5766_DITHER_SOURCE:
		return sprintf(buf, "%d\n",
			       ad5766_get_dither_source(indio_dev, chan));
	default:
		return -EINVAL;
	}
}

static ssize_t ad5766_write_ext(struct iio_dev *indio_dev,
				 uintptr_t private,
				 const struct iio_chan_spec *chan,
				 const char *buf, size_t len)
{
	struct ad5766_state *st = iio_priv(indio_dev);
	bool readin;
	int ret;

	ret = kstrtobool(buf, &readin);
	if (ret)
		return ret;

	switch (private) {
	case AD5766_DITHER_ENABLE:
		st->dither_enable &= ~AD5766_DITHER_ENABLE_MASK(chan->channel);
		st->dither_enable |= AD5766_DITHER_ENABLE(chan->channel,
							  readin);
		ret = ad5766_write(indio_dev, AD5766_CMD_WR_PWR_DITHER,
				   st->dither_enable);
		break;
	case AD5766_DITHER_INVERT:
		st->dither_invert &= ~AD5766_DITHER_INVERT_MASK(chan->channel);
		st->dither_invert |= AD5766_DITHER_INVERT(chan->channel,
							  readin);
		ret = ad5766_write(indio_dev, AD5766_CMD_INV_DITHER,
				   st->dither_invert);
		break;
	case AD5766_DITHER_SOURCE:
		ret = ad5766_set_dither_source(indio_dev, chan, readin);
		break;
	default:
		return -EINVAL;
	}

	return ret ? ret : len;
}

#define _AD5766_CHAN_EXT_INFO(_name, _what, _shared) { \
	.name = _name, \
	.read = ad5766_read_ext, \
	.write = ad5766_write_ext, \
	.private = _what, \
	.shared = _shared, \
}

#define IIO_ENUM_AVAILABLE_SHARED(_name, _shared, _e) \
{ \
	.name = (_name "_available"), \
	.shared = _shared, \
	.read = iio_enum_available_read, \
	.private = (uintptr_t)(_e), \
}

static const struct iio_chan_spec_ext_info ad5766_ext_info[] = {

	_AD5766_CHAN_EXT_INFO("dither_enable", AD5766_DITHER_ENABLE,
			      IIO_SEPARATE),
	_AD5766_CHAN_EXT_INFO("dither_invert", AD5766_DITHER_INVERT,
			      IIO_SEPARATE),
	_AD5766_CHAN_EXT_INFO("dither_source", AD5766_DITHER_SOURCE,
			      IIO_SEPARATE),
	IIO_ENUM("dither_scale", IIO_SEPARATE, &ad5766_dither_scale_enum),
	IIO_ENUM_AVAILABLE_SHARED("dither_scale",
				  IIO_SEPARATE,
				  &ad5766_dither_scale_enum),
	{}
};

#define AD576x_CHANNEL(_chan, _bits) {					\
	.type = IIO_VOLTAGE,						\
	.indexed = 1,							\
	.output = 1,							\
	.channel = (_chan),						\
	.address = (_chan),						\
	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) |		\
		BIT(IIO_CHAN_INFO_SCALE),				\
	.scan_type = {							\
		.sign = 'u',						\
		.realbits = (_bits),					\
		.storagebits = 16,					\
		.shift = 16 - (_bits),					\
	},								\
	.ext_info = ad5766_ext_info,					\
}

#define DECLARE_AD576x_CHANNELS(_name, _bits)			\
const struct iio_chan_spec _name[] = {				\
	AD576x_CHANNEL(0, (_bits)),				\
	AD576x_CHANNEL(1, (_bits)),				\
	AD576x_CHANNEL(2, (_bits)),				\
	AD576x_CHANNEL(3, (_bits)),				\
	AD576x_CHANNEL(4, (_bits)),				\
	AD576x_CHANNEL(5, (_bits)),				\
	AD576x_CHANNEL(6, (_bits)),				\
	AD576x_CHANNEL(7, (_bits)),				\
	AD576x_CHANNEL(8, (_bits)),				\
	AD576x_CHANNEL(9, (_bits)),				\
	AD576x_CHANNEL(10, (_bits)),				\
	AD576x_CHANNEL(11, (_bits)),				\
	AD576x_CHANNEL(12, (_bits)),				\
	AD576x_CHANNEL(13, (_bits)),				\
	AD576x_CHANNEL(14, (_bits)),				\
	AD576x_CHANNEL(15, (_bits)),				\
}

static DECLARE_AD576x_CHANNELS(ad5766_channels, 16);
static DECLARE_AD576x_CHANNELS(ad5767_channels, 12);

static const struct ad5766_chip_info ad5766_chip_infos[] = {
	[ID_AD5766] = {
		.num_channels = ARRAY_SIZE(ad5766_channels),
		.channels = ad5766_channels,
	},
	[ID_AD5767] = {
		.num_channels = ARRAY_SIZE(ad5767_channels),
		.channels = ad5767_channels,
	},
};

static int ad5766_get_output_range(struct ad5766_state *st)
{
	int i, ret, min, max, tmp[2];

	ret = device_property_read_u32_array(&st->spi->dev,
					     "output-range-microvolts",
					     tmp, 2);
	if (ret)
		return ret;

	min = tmp[0] / 1000000;
	max = tmp[1] / 1000000;
	for (i = 0; i < ARRAY_SIZE(ad5766_span_tbl); i++) {
		if (ad5766_span_tbl[i].min != min ||
		    ad5766_span_tbl[i].max != max)
			continue;

		st->crt_range = i;

		return 0;
	}

	return -EINVAL;
}

static int ad5766_default_setup(struct ad5766_state *st)
{
	uint16_t val;
	int ret, i;

	/* Always issue a reset before writing to the span register. */
	ret = ad5766_reset(st);
	if (ret)
		return ret;

	ret = ad5766_get_output_range(st);
	if (ret)
		return ret;

	/* Dither power down */
	st->dither_enable = GENMASK(15, 0);
	ret = __ad5766_spi_write(st, AD5766_CMD_WR_PWR_DITHER,
			     st->dither_enable);
	if (ret)
		return ret;

	st->dither_source = 0;
	for (i = 0; i < ARRAY_SIZE(ad5766_channels); i++)
		st->dither_source |= AD5766_DITHER_SOURCE(i, 0);
	val = FIELD_GET(AD5766_LOWER_WORD_SPI_MASK, st->dither_source);
	ret = __ad5766_spi_write(st, AD5766_CMD_DITHER_SIG_1, val);
	if (ret)
		return ret;

	val = FIELD_GET(AD5766_UPPER_WORD_SPI_MASK, st->dither_source);
	ret = __ad5766_spi_write(st, AD5766_CMD_DITHER_SIG_2, val);
	if (ret)
		return ret;

	st->dither_scale = 0;
	val = FIELD_GET(AD5766_LOWER_WORD_SPI_MASK, st->dither_scale);
	ret = __ad5766_spi_write(st, AD5766_CMD_DITHER_SCALE_1, val);
	if (ret)
		return ret;

	val = FIELD_GET(AD5766_UPPER_WORD_SPI_MASK, st->dither_scale);
	ret = __ad5766_spi_write(st, AD5766_CMD_DITHER_SCALE_2, val);
	if (ret)
		return ret;

	st->dither_invert = 0;
	ret = __ad5766_spi_write(st, AD5766_CMD_INV_DITHER, st->dither_invert);
	if (ret)
		return ret;

	return  __ad5766_spi_write(st, AD5766_CMD_SPAN_REG, st->crt_range);
}

static int ad5766_probe(struct spi_device *spi)
{
	enum ad5766_type type;
	struct iio_dev *indio_dev;
	struct ad5766_state *st;
	int ret;

	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
	if (!indio_dev)
		return -ENOMEM;

	st = iio_priv(indio_dev);
	mutex_init(&st->lock);

	st->spi = spi;
	type = spi_get_device_id(spi)->driver_data;
	st->chip_info = &ad5766_chip_infos[type];

	indio_dev->channels = st->chip_info->channels;
	indio_dev->num_channels = st->chip_info->num_channels;
	indio_dev->info = &ad5766_info;
	indio_dev->name = spi_get_device_id(spi)->name;
	indio_dev->modes = INDIO_DIRECT_MODE;

	st->gpio_reset = devm_gpiod_get_optional(&st->spi->dev, "reset",
						GPIOD_OUT_LOW);
	if (IS_ERR(st->gpio_reset))
		return PTR_ERR(st->gpio_reset);

	ret = ad5766_default_setup(st);
	if (ret)
		return ret;

	return devm_iio_device_register(&spi->dev, indio_dev);
}

static const struct of_device_id ad5766_dt_match[] = {
	{ .compatible = "adi,ad5766" },
	{ .compatible = "adi,ad5767" },
	{}
};
MODULE_DEVICE_TABLE(of, ad5766_dt_match);

static const struct spi_device_id ad5766_spi_ids[] = {
	{ "ad5766", ID_AD5766 },
	{ "ad5767", ID_AD5767 },
	{}
};
MODULE_DEVICE_TABLE(spi, ad5766_spi_ids);

static struct spi_driver ad5766_driver = {
	.driver = {
		.name = "ad5766",
		.of_match_table = ad5766_dt_match,
	},
	.probe = ad5766_probe,
	.id_table = ad5766_spi_ids,
};
module_spi_driver(ad5766_driver);

MODULE_AUTHOR("Denis-Gabriel Gheorghescu <denis.gheorghescu@analog.com>");
MODULE_DESCRIPTION("Analog Devices AD5766/AD5767 DACs");
MODULE_LICENSE("GPL v2");