Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Driver for Allwinner sun4i Pulse Width Modulation Controller
 *
 * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
 *
 * Limitations:
 * - When outputing the source clock directly, the PWM logic will be bypassed
 *   and the currently running period is not guaranteed to be completed
 */

#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/jiffies.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/time.h>

#define PWM_CTRL_REG		0x0

#define PWM_CH_PRD_BASE		0x4
#define PWM_CH_PRD_OFFSET	0x4
#define PWM_CH_PRD(ch)		(PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))

#define PWMCH_OFFSET		15
#define PWM_PRESCAL_MASK	GENMASK(3, 0)
#define PWM_PRESCAL_OFF		0
#define PWM_EN			BIT(4)
#define PWM_ACT_STATE		BIT(5)
#define PWM_CLK_GATING		BIT(6)
#define PWM_MODE		BIT(7)
#define PWM_PULSE		BIT(8)
#define PWM_BYPASS		BIT(9)

#define PWM_RDY_BASE		28
#define PWM_RDY_OFFSET		1
#define PWM_RDY(ch)		BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))

#define PWM_PRD(prd)		(((prd) - 1) << 16)
#define PWM_PRD_MASK		GENMASK(15, 0)

#define PWM_DTY_MASK		GENMASK(15, 0)

#define PWM_REG_PRD(reg)	((((reg) >> 16) & PWM_PRD_MASK) + 1)
#define PWM_REG_DTY(reg)	((reg) & PWM_DTY_MASK)
#define PWM_REG_PRESCAL(reg, chan)	(((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)

#define BIT_CH(bit, chan)	((bit) << ((chan) * PWMCH_OFFSET))

static const u32 prescaler_table[] = {
	120,
	180,
	240,
	360,
	480,
	0,
	0,
	0,
	12000,
	24000,
	36000,
	48000,
	72000,
	0,
	0,
	0, /* Actually 1 but tested separately */
};

struct sun4i_pwm_data {
	bool has_prescaler_bypass;
	bool has_direct_mod_clk_output;
	unsigned int npwm;
};

struct sun4i_pwm_chip {
	struct pwm_chip chip;
	struct clk *bus_clk;
	struct clk *clk;
	struct reset_control *rst;
	void __iomem *base;
	spinlock_t ctrl_lock;
	const struct sun4i_pwm_data *data;
	unsigned long next_period[2];
};

static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
{
	return container_of(chip, struct sun4i_pwm_chip, chip);
}

static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip,
				  unsigned long offset)
{
	return readl(chip->base + offset);
}

static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip,
				    u32 val, unsigned long offset)
{
	writel(val, chip->base + offset);
}

static void sun4i_pwm_get_state(struct pwm_chip *chip,
				struct pwm_device *pwm,
				struct pwm_state *state)
{
	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
	u64 clk_rate, tmp;
	u32 val;
	unsigned int prescaler;

	clk_rate = clk_get_rate(sun4i_pwm->clk);

	val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);

	/*
	 * PWM chapter in H6 manual has a diagram which explains that if bypass
	 * bit is set, no other setting has any meaning. Even more, experiment
	 * proved that also enable bit is ignored in this case.
	 */
	if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) &&
	    sun4i_pwm->data->has_direct_mod_clk_output) {
		state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate);
		state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2);
		state->polarity = PWM_POLARITY_NORMAL;
		state->enabled = true;
		return;
	}

	if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
	    sun4i_pwm->data->has_prescaler_bypass)
		prescaler = 1;
	else
		prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];

	if (prescaler == 0)
		return;

	if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
		state->polarity = PWM_POLARITY_NORMAL;
	else
		state->polarity = PWM_POLARITY_INVERSED;

	if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
	    BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
		state->enabled = true;
	else
		state->enabled = false;

	val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm));

	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);

	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
	state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
}

static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
			       const struct pwm_state *state,
			       u32 *dty, u32 *prd, unsigned int *prsclr,
			       bool *bypass)
{
	u64 clk_rate, div = 0;
	unsigned int prescaler = 0;

	clk_rate = clk_get_rate(sun4i_pwm->clk);

	*bypass = sun4i_pwm->data->has_direct_mod_clk_output &&
		  state->enabled &&
		  (state->period * clk_rate >= NSEC_PER_SEC) &&
		  (state->period * clk_rate < 2 * NSEC_PER_SEC) &&
		  (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC);

	/* Skip calculation of other parameters if we bypass them */
	if (*bypass)
		return 0;

	if (sun4i_pwm->data->has_prescaler_bypass) {
		/* First, test without any prescaler when available */
		prescaler = PWM_PRESCAL_MASK;
		/*
		 * When not using any prescaler, the clock period in nanoseconds
		 * is not an integer so round it half up instead of
		 * truncating to get less surprising values.
		 */
		div = clk_rate * state->period + NSEC_PER_SEC / 2;
		do_div(div, NSEC_PER_SEC);
		if (div - 1 > PWM_PRD_MASK)
			prescaler = 0;
	}

	if (prescaler == 0) {
		/* Go up from the first divider */
		for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
			unsigned int pval = prescaler_table[prescaler];

			if (!pval)
				continue;

			div = clk_rate;
			do_div(div, pval);
			div = div * state->period;
			do_div(div, NSEC_PER_SEC);
			if (div - 1 <= PWM_PRD_MASK)
				break;
		}

		if (div - 1 > PWM_PRD_MASK)
			return -EINVAL;
	}

	*prd = div;
	div *= state->duty_cycle;
	do_div(div, state->period);
	*dty = div;
	*prsclr = prescaler;

	return 0;
}

static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
			   const struct pwm_state *state)
{
	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
	struct pwm_state cstate;
	u32 ctrl, duty = 0, period = 0, val;
	int ret;
	unsigned int delay_us, prescaler = 0;
	unsigned long now;
	bool bypass;

	pwm_get_state(pwm, &cstate);

	if (!cstate.enabled) {
		ret = clk_prepare_enable(sun4i_pwm->clk);
		if (ret) {
			dev_err(chip->dev, "failed to enable PWM clock\n");
			return ret;
		}
	}

	ret = sun4i_pwm_calculate(sun4i_pwm, state, &duty, &period, &prescaler,
				  &bypass);
	if (ret) {
		dev_err(chip->dev, "period exceeds the maximum value\n");
		if (!cstate.enabled)
			clk_disable_unprepare(sun4i_pwm->clk);
		return ret;
	}

	spin_lock(&sun4i_pwm->ctrl_lock);
	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);

	if (sun4i_pwm->data->has_direct_mod_clk_output) {
		if (bypass) {
			ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm);
			/* We can skip other parameter */
			sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
			spin_unlock(&sun4i_pwm->ctrl_lock);
			return 0;
		}

		ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm);
	}

	if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
		/* Prescaler changed, the clock has to be gated */
		ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
		sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);

		ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
		ctrl |= BIT_CH(prescaler, pwm->hwpwm);
	}

	val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
	sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
	sun4i_pwm->next_period[pwm->hwpwm] = jiffies +
		nsecs_to_jiffies(cstate.period + 1000);

	if (state->polarity != PWM_POLARITY_NORMAL)
		ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
	else
		ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);

	ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);

	if (state->enabled)
		ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);

	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);

	spin_unlock(&sun4i_pwm->ctrl_lock);

	if (state->enabled)
		return 0;

	/* We need a full period to elapse before disabling the channel. */
	now = jiffies;
	if (time_before(now, sun4i_pwm->next_period[pwm->hwpwm])) {
		delay_us = jiffies_to_usecs(sun4i_pwm->next_period[pwm->hwpwm] -
					   now);
		if ((delay_us / 500) > MAX_UDELAY_MS)
			msleep(delay_us / 1000 + 1);
		else
			usleep_range(delay_us, delay_us * 2);
	}

	spin_lock(&sun4i_pwm->ctrl_lock);
	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
	ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
	ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
	spin_unlock(&sun4i_pwm->ctrl_lock);

	clk_disable_unprepare(sun4i_pwm->clk);

	return 0;
}

static const struct pwm_ops sun4i_pwm_ops = {
	.apply = sun4i_pwm_apply,
	.get_state = sun4i_pwm_get_state,
	.owner = THIS_MODULE,
};

static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
	.has_prescaler_bypass = false,
	.npwm = 2,
};

static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
	.has_prescaler_bypass = true,
	.npwm = 2,
};

static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
	.has_prescaler_bypass = true,
	.npwm = 1,
};

static const struct sun4i_pwm_data sun50i_a64_pwm_data = {
	.has_prescaler_bypass = true,
	.has_direct_mod_clk_output = true,
	.npwm = 1,
};

static const struct sun4i_pwm_data sun50i_h6_pwm_data = {
	.has_prescaler_bypass = true,
	.has_direct_mod_clk_output = true,
	.npwm = 2,
};

static const struct of_device_id sun4i_pwm_dt_ids[] = {
	{
		.compatible = "allwinner,sun4i-a10-pwm",
		.data = &sun4i_pwm_dual_nobypass,
	}, {
		.compatible = "allwinner,sun5i-a10s-pwm",
		.data = &sun4i_pwm_dual_bypass,
	}, {
		.compatible = "allwinner,sun5i-a13-pwm",
		.data = &sun4i_pwm_single_bypass,
	}, {
		.compatible = "allwinner,sun7i-a20-pwm",
		.data = &sun4i_pwm_dual_bypass,
	}, {
		.compatible = "allwinner,sun8i-h3-pwm",
		.data = &sun4i_pwm_single_bypass,
	}, {
		.compatible = "allwinner,sun50i-a64-pwm",
		.data = &sun50i_a64_pwm_data,
	}, {
		.compatible = "allwinner,sun50i-h6-pwm",
		.data = &sun50i_h6_pwm_data,
	}, {
		/* sentinel */
	},
};
MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);

static int sun4i_pwm_probe(struct platform_device *pdev)
{
	struct sun4i_pwm_chip *pwm;
	int ret;

	pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
	if (!pwm)
		return -ENOMEM;

	pwm->data = of_device_get_match_data(&pdev->dev);
	if (!pwm->data)
		return -ENODEV;

	pwm->base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(pwm->base))
		return PTR_ERR(pwm->base);

	/*
	 * All hardware variants need a source clock that is divided and
	 * then feeds the counter that defines the output wave form. In the
	 * device tree this clock is either unnamed or called "mod".
	 * Some variants (e.g. H6) need another clock to access the
	 * hardware registers; this is called "bus".
	 * So we request "mod" first (and ignore the corner case that a
	 * parent provides a "mod" clock while the right one would be the
	 * unnamed one of the PWM device) and if this is not found we fall
	 * back to the first clock of the PWM.
	 */
	pwm->clk = devm_clk_get_optional(&pdev->dev, "mod");
	if (IS_ERR(pwm->clk))
		return dev_err_probe(&pdev->dev, PTR_ERR(pwm->clk),
				     "get mod clock failed\n");

	if (!pwm->clk) {
		pwm->clk = devm_clk_get(&pdev->dev, NULL);
		if (IS_ERR(pwm->clk))
			return dev_err_probe(&pdev->dev, PTR_ERR(pwm->clk),
					     "get unnamed clock failed\n");
	}

	pwm->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
	if (IS_ERR(pwm->bus_clk))
		return dev_err_probe(&pdev->dev, PTR_ERR(pwm->bus_clk),
				     "get bus clock failed\n");

	pwm->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
	if (IS_ERR(pwm->rst))
		return dev_err_probe(&pdev->dev, PTR_ERR(pwm->rst),
				     "get reset failed\n");

	/* Deassert reset */
	ret = reset_control_deassert(pwm->rst);
	if (ret) {
		dev_err(&pdev->dev, "cannot deassert reset control: %pe\n",
			ERR_PTR(ret));
		return ret;
	}

	/*
	 * We're keeping the bus clock on for the sake of simplicity.
	 * Actually it only needs to be on for hardware register accesses.
	 */
	ret = clk_prepare_enable(pwm->bus_clk);
	if (ret) {
		dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n",
			ERR_PTR(ret));
		goto err_bus;
	}

	pwm->chip.dev = &pdev->dev;
	pwm->chip.ops = &sun4i_pwm_ops;
	pwm->chip.npwm = pwm->data->npwm;

	spin_lock_init(&pwm->ctrl_lock);

	ret = pwmchip_add(&pwm->chip);
	if (ret < 0) {
		dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
		goto err_pwm_add;
	}

	platform_set_drvdata(pdev, pwm);

	return 0;

err_pwm_add:
	clk_disable_unprepare(pwm->bus_clk);
err_bus:
	reset_control_assert(pwm->rst);

	return ret;
}

static int sun4i_pwm_remove(struct platform_device *pdev)
{
	struct sun4i_pwm_chip *pwm = platform_get_drvdata(pdev);

	pwmchip_remove(&pwm->chip);

	clk_disable_unprepare(pwm->bus_clk);
	reset_control_assert(pwm->rst);

	return 0;
}

static struct platform_driver sun4i_pwm_driver = {
	.driver = {
		.name = "sun4i-pwm",
		.of_match_table = sun4i_pwm_dt_ids,
	},
	.probe = sun4i_pwm_probe,
	.remove = sun4i_pwm_remove,
};
module_platform_driver(sun4i_pwm_driver);

MODULE_ALIAS("platform:sun4i-pwm");
MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
MODULE_LICENSE("GPL v2");