Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
// SPDX-License-Identifier: GPL-2.0-only
/*
 * TI K3 DSP Remote Processor(s) driver
 *
 * Copyright (C) 2018-2020 Texas Instruments Incorporated - https://www.ti.com/
 *	Suman Anna <s-anna@ti.com>
 */

#include <linux/io.h>
#include <linux/mailbox_client.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of_reserved_mem.h>
#include <linux/omap-mailbox.h>
#include <linux/platform_device.h>
#include <linux/remoteproc.h>
#include <linux/reset.h>
#include <linux/slab.h>

#include "omap_remoteproc.h"
#include "remoteproc_internal.h"
#include "ti_sci_proc.h"

#define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK	(SZ_16M - 1)

/**
 * struct k3_dsp_mem - internal memory structure
 * @cpu_addr: MPU virtual address of the memory region
 * @bus_addr: Bus address used to access the memory region
 * @dev_addr: Device address of the memory region from DSP view
 * @size: Size of the memory region
 */
struct k3_dsp_mem {
	void __iomem *cpu_addr;
	phys_addr_t bus_addr;
	u32 dev_addr;
	size_t size;
};

/**
 * struct k3_dsp_mem_data - memory definitions for a DSP
 * @name: name for this memory entry
 * @dev_addr: device address for the memory entry
 */
struct k3_dsp_mem_data {
	const char *name;
	const u32 dev_addr;
};

/**
 * struct k3_dsp_dev_data - device data structure for a DSP
 * @mems: pointer to memory definitions for a DSP
 * @num_mems: number of memory regions in @mems
 * @boot_align_addr: boot vector address alignment granularity
 * @uses_lreset: flag to denote the need for local reset management
 */
struct k3_dsp_dev_data {
	const struct k3_dsp_mem_data *mems;
	u32 num_mems;
	u32 boot_align_addr;
	bool uses_lreset;
};

/**
 * struct k3_dsp_rproc - k3 DSP remote processor driver structure
 * @dev: cached device pointer
 * @rproc: remoteproc device handle
 * @mem: internal memory regions data
 * @num_mems: number of internal memory regions
 * @rmem: reserved memory regions data
 * @num_rmems: number of reserved memory regions
 * @reset: reset control handle
 * @data: pointer to DSP-specific device data
 * @tsp: TI-SCI processor control handle
 * @ti_sci: TI-SCI handle
 * @ti_sci_id: TI-SCI device identifier
 * @mbox: mailbox channel handle
 * @client: mailbox client to request the mailbox channel
 */
struct k3_dsp_rproc {
	struct device *dev;
	struct rproc *rproc;
	struct k3_dsp_mem *mem;
	int num_mems;
	struct k3_dsp_mem *rmem;
	int num_rmems;
	struct reset_control *reset;
	const struct k3_dsp_dev_data *data;
	struct ti_sci_proc *tsp;
	const struct ti_sci_handle *ti_sci;
	u32 ti_sci_id;
	struct mbox_chan *mbox;
	struct mbox_client client;
};

/**
 * k3_dsp_rproc_mbox_callback() - inbound mailbox message handler
 * @client: mailbox client pointer used for requesting the mailbox channel
 * @data: mailbox payload
 *
 * This handler is invoked by the OMAP mailbox driver whenever a mailbox
 * message is received. Usually, the mailbox payload simply contains
 * the index of the virtqueue that is kicked by the remote processor,
 * and we let remoteproc core handle it.
 *
 * In addition to virtqueue indices, we also have some out-of-band values
 * that indicate different events. Those values are deliberately very
 * large so they don't coincide with virtqueue indices.
 */
static void k3_dsp_rproc_mbox_callback(struct mbox_client *client, void *data)
{
	struct k3_dsp_rproc *kproc = container_of(client, struct k3_dsp_rproc,
						  client);
	struct device *dev = kproc->rproc->dev.parent;
	const char *name = kproc->rproc->name;
	u32 msg = omap_mbox_message(data);

	dev_dbg(dev, "mbox msg: 0x%x\n", msg);

	switch (msg) {
	case RP_MBOX_CRASH:
		/*
		 * remoteproc detected an exception, but error recovery is not
		 * supported. So, just log this for now
		 */
		dev_err(dev, "K3 DSP rproc %s crashed\n", name);
		break;
	case RP_MBOX_ECHO_REPLY:
		dev_info(dev, "received echo reply from %s\n", name);
		break;
	default:
		/* silently handle all other valid messages */
		if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
			return;
		if (msg > kproc->rproc->max_notifyid) {
			dev_dbg(dev, "dropping unknown message 0x%x", msg);
			return;
		}
		/* msg contains the index of the triggered vring */
		if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
			dev_dbg(dev, "no message was found in vqid %d\n", msg);
	}
}

/*
 * Kick the remote processor to notify about pending unprocessed messages.
 * The vqid usage is not used and is inconsequential, as the kick is performed
 * through a simulated GPIO (a bit in an IPC interrupt-triggering register),
 * the remote processor is expected to process both its Tx and Rx virtqueues.
 */
static void k3_dsp_rproc_kick(struct rproc *rproc, int vqid)
{
	struct k3_dsp_rproc *kproc = rproc->priv;
	struct device *dev = rproc->dev.parent;
	mbox_msg_t msg = (mbox_msg_t)vqid;
	int ret;

	/* send the index of the triggered virtqueue in the mailbox payload */
	ret = mbox_send_message(kproc->mbox, (void *)msg);
	if (ret < 0)
		dev_err(dev, "failed to send mailbox message, status = %d\n",
			ret);
}

/* Put the DSP processor into reset */
static int k3_dsp_rproc_reset(struct k3_dsp_rproc *kproc)
{
	struct device *dev = kproc->dev;
	int ret;

	ret = reset_control_assert(kproc->reset);
	if (ret) {
		dev_err(dev, "local-reset assert failed, ret = %d\n", ret);
		return ret;
	}

	if (kproc->data->uses_lreset)
		return ret;

	ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
						    kproc->ti_sci_id);
	if (ret) {
		dev_err(dev, "module-reset assert failed, ret = %d\n", ret);
		if (reset_control_deassert(kproc->reset))
			dev_warn(dev, "local-reset deassert back failed\n");
	}

	return ret;
}

/* Release the DSP processor from reset */
static int k3_dsp_rproc_release(struct k3_dsp_rproc *kproc)
{
	struct device *dev = kproc->dev;
	int ret;

	if (kproc->data->uses_lreset)
		goto lreset;

	ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
						    kproc->ti_sci_id);
	if (ret) {
		dev_err(dev, "module-reset deassert failed, ret = %d\n", ret);
		return ret;
	}

lreset:
	ret = reset_control_deassert(kproc->reset);
	if (ret) {
		dev_err(dev, "local-reset deassert failed, ret = %d\n", ret);
		if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
							  kproc->ti_sci_id))
			dev_warn(dev, "module-reset assert back failed\n");
	}

	return ret;
}

/*
 * The C66x DSP cores have a local reset that affects only the CPU, and a
 * generic module reset that powers on the device and allows the DSP internal
 * memories to be accessed while the local reset is asserted. This function is
 * used to release the global reset on C66x DSPs to allow loading into the DSP
 * internal RAMs. The .prepare() ops is invoked by remoteproc core before any
 * firmware loading, and is followed by the .start() ops after loading to
 * actually let the C66x DSP cores run.
 */
static int k3_dsp_rproc_prepare(struct rproc *rproc)
{
	struct k3_dsp_rproc *kproc = rproc->priv;
	struct device *dev = kproc->dev;
	int ret;

	ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
						    kproc->ti_sci_id);
	if (ret)
		dev_err(dev, "module-reset deassert failed, cannot enable internal RAM loading, ret = %d\n",
			ret);

	return ret;
}

/*
 * This function implements the .unprepare() ops and performs the complimentary
 * operations to that of the .prepare() ops. The function is used to assert the
 * global reset on applicable C66x cores. This completes the second portion of
 * powering down the C66x DSP cores. The cores themselves are only halted in the
 * .stop() callback through the local reset, and the .unprepare() ops is invoked
 * by the remoteproc core after the remoteproc is stopped to balance the global
 * reset.
 */
static int k3_dsp_rproc_unprepare(struct rproc *rproc)
{
	struct k3_dsp_rproc *kproc = rproc->priv;
	struct device *dev = kproc->dev;
	int ret;

	ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
						    kproc->ti_sci_id);
	if (ret)
		dev_err(dev, "module-reset assert failed, ret = %d\n", ret);

	return ret;
}

/*
 * Power up the DSP remote processor.
 *
 * This function will be invoked only after the firmware for this rproc
 * was loaded, parsed successfully, and all of its resource requirements
 * were met.
 */
static int k3_dsp_rproc_start(struct rproc *rproc)
{
	struct k3_dsp_rproc *kproc = rproc->priv;
	struct mbox_client *client = &kproc->client;
	struct device *dev = kproc->dev;
	u32 boot_addr;
	int ret;

	client->dev = dev;
	client->tx_done = NULL;
	client->rx_callback = k3_dsp_rproc_mbox_callback;
	client->tx_block = false;
	client->knows_txdone = false;

	kproc->mbox = mbox_request_channel(client, 0);
	if (IS_ERR(kproc->mbox)) {
		ret = -EBUSY;
		dev_err(dev, "mbox_request_channel failed: %ld\n",
			PTR_ERR(kproc->mbox));
		return ret;
	}

	/*
	 * Ping the remote processor, this is only for sanity-sake for now;
	 * there is no functional effect whatsoever.
	 *
	 * Note that the reply will _not_ arrive immediately: this message
	 * will wait in the mailbox fifo until the remote processor is booted.
	 */
	ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
	if (ret < 0) {
		dev_err(dev, "mbox_send_message failed: %d\n", ret);
		goto put_mbox;
	}

	boot_addr = rproc->bootaddr;
	if (boot_addr & (kproc->data->boot_align_addr - 1)) {
		dev_err(dev, "invalid boot address 0x%x, must be aligned on a 0x%x boundary\n",
			boot_addr, kproc->data->boot_align_addr);
		ret = -EINVAL;
		goto put_mbox;
	}

	dev_err(dev, "booting DSP core using boot addr = 0x%x\n", boot_addr);
	ret = ti_sci_proc_set_config(kproc->tsp, boot_addr, 0, 0);
	if (ret)
		goto put_mbox;

	ret = k3_dsp_rproc_release(kproc);
	if (ret)
		goto put_mbox;

	return 0;

put_mbox:
	mbox_free_channel(kproc->mbox);
	return ret;
}

/*
 * Stop the DSP remote processor.
 *
 * This function puts the DSP processor into reset, and finishes processing
 * of any pending messages.
 */
static int k3_dsp_rproc_stop(struct rproc *rproc)
{
	struct k3_dsp_rproc *kproc = rproc->priv;

	mbox_free_channel(kproc->mbox);

	k3_dsp_rproc_reset(kproc);

	return 0;
}

/*
 * Custom function to translate a DSP device address (internal RAMs only) to a
 * kernel virtual address.  The DSPs can access their RAMs at either an internal
 * address visible only from a DSP, or at the SoC-level bus address. Both these
 * addresses need to be looked through for translation. The translated addresses
 * can be used either by the remoteproc core for loading (when using kernel
 * remoteproc loader), or by any rpmsg bus drivers.
 */
static void *k3_dsp_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
{
	struct k3_dsp_rproc *kproc = rproc->priv;
	void __iomem *va = NULL;
	phys_addr_t bus_addr;
	u32 dev_addr, offset;
	size_t size;
	int i;

	if (len == 0)
		return NULL;

	for (i = 0; i < kproc->num_mems; i++) {
		bus_addr = kproc->mem[i].bus_addr;
		dev_addr = kproc->mem[i].dev_addr;
		size = kproc->mem[i].size;

		if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) {
			/* handle DSP-view addresses */
			if (da >= dev_addr &&
			    ((da + len) <= (dev_addr + size))) {
				offset = da - dev_addr;
				va = kproc->mem[i].cpu_addr + offset;
				return (__force void *)va;
			}
		} else {
			/* handle SoC-view addresses */
			if (da >= bus_addr &&
			    (da + len) <= (bus_addr + size)) {
				offset = da - bus_addr;
				va = kproc->mem[i].cpu_addr + offset;
				return (__force void *)va;
			}
		}
	}

	/* handle static DDR reserved memory regions */
	for (i = 0; i < kproc->num_rmems; i++) {
		dev_addr = kproc->rmem[i].dev_addr;
		size = kproc->rmem[i].size;

		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
			offset = da - dev_addr;
			va = kproc->rmem[i].cpu_addr + offset;
			return (__force void *)va;
		}
	}

	return NULL;
}

static const struct rproc_ops k3_dsp_rproc_ops = {
	.start		= k3_dsp_rproc_start,
	.stop		= k3_dsp_rproc_stop,
	.kick		= k3_dsp_rproc_kick,
	.da_to_va	= k3_dsp_rproc_da_to_va,
};

static int k3_dsp_rproc_of_get_memories(struct platform_device *pdev,
					struct k3_dsp_rproc *kproc)
{
	const struct k3_dsp_dev_data *data = kproc->data;
	struct device *dev = &pdev->dev;
	struct resource *res;
	int num_mems = 0;
	int i;

	num_mems = kproc->data->num_mems;
	kproc->mem = devm_kcalloc(kproc->dev, num_mems,
				  sizeof(*kproc->mem), GFP_KERNEL);
	if (!kproc->mem)
		return -ENOMEM;

	for (i = 0; i < num_mems; i++) {
		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
						   data->mems[i].name);
		if (!res) {
			dev_err(dev, "found no memory resource for %s\n",
				data->mems[i].name);
			return -EINVAL;
		}
		if (!devm_request_mem_region(dev, res->start,
					     resource_size(res),
					     dev_name(dev))) {
			dev_err(dev, "could not request %s region for resource\n",
				data->mems[i].name);
			return -EBUSY;
		}

		kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
							 resource_size(res));
		if (!kproc->mem[i].cpu_addr) {
			dev_err(dev, "failed to map %s memory\n",
				data->mems[i].name);
			return -ENOMEM;
		}
		kproc->mem[i].bus_addr = res->start;
		kproc->mem[i].dev_addr = data->mems[i].dev_addr;
		kproc->mem[i].size = resource_size(res);

		dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
			data->mems[i].name, &kproc->mem[i].bus_addr,
			kproc->mem[i].size, kproc->mem[i].cpu_addr,
			kproc->mem[i].dev_addr);
	}
	kproc->num_mems = num_mems;

	return 0;
}

static int k3_dsp_reserved_mem_init(struct k3_dsp_rproc *kproc)
{
	struct device *dev = kproc->dev;
	struct device_node *np = dev->of_node;
	struct device_node *rmem_np;
	struct reserved_mem *rmem;
	int num_rmems;
	int ret, i;

	num_rmems = of_property_count_elems_of_size(np, "memory-region",
						    sizeof(phandle));
	if (num_rmems <= 0) {
		dev_err(dev, "device does not reserved memory regions, ret = %d\n",
			num_rmems);
		return -EINVAL;
	}
	if (num_rmems < 2) {
		dev_err(dev, "device needs atleast two memory regions to be defined, num = %d\n",
			num_rmems);
		return -EINVAL;
	}

	/* use reserved memory region 0 for vring DMA allocations */
	ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
	if (ret) {
		dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
			ret);
		return ret;
	}

	num_rmems--;
	kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
	if (!kproc->rmem) {
		ret = -ENOMEM;
		goto release_rmem;
	}

	/* use remaining reserved memory regions for static carveouts */
	for (i = 0; i < num_rmems; i++) {
		rmem_np = of_parse_phandle(np, "memory-region", i + 1);
		if (!rmem_np) {
			ret = -EINVAL;
			goto unmap_rmem;
		}

		rmem = of_reserved_mem_lookup(rmem_np);
		if (!rmem) {
			of_node_put(rmem_np);
			ret = -EINVAL;
			goto unmap_rmem;
		}
		of_node_put(rmem_np);

		kproc->rmem[i].bus_addr = rmem->base;
		/* 64-bit address regions currently not supported */
		kproc->rmem[i].dev_addr = (u32)rmem->base;
		kproc->rmem[i].size = rmem->size;
		kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
		if (!kproc->rmem[i].cpu_addr) {
			dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
				i + 1, &rmem->base, &rmem->size);
			ret = -ENOMEM;
			goto unmap_rmem;
		}

		dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
			i + 1, &kproc->rmem[i].bus_addr,
			kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
			kproc->rmem[i].dev_addr);
	}
	kproc->num_rmems = num_rmems;

	return 0;

unmap_rmem:
	for (i--; i >= 0; i--)
		iounmap(kproc->rmem[i].cpu_addr);
	kfree(kproc->rmem);
release_rmem:
	of_reserved_mem_device_release(kproc->dev);
	return ret;
}

static void k3_dsp_reserved_mem_exit(struct k3_dsp_rproc *kproc)
{
	int i;

	for (i = 0; i < kproc->num_rmems; i++)
		iounmap(kproc->rmem[i].cpu_addr);
	kfree(kproc->rmem);

	of_reserved_mem_device_release(kproc->dev);
}

static
struct ti_sci_proc *k3_dsp_rproc_of_get_tsp(struct device *dev,
					    const struct ti_sci_handle *sci)
{
	struct ti_sci_proc *tsp;
	u32 temp[2];
	int ret;

	ret = of_property_read_u32_array(dev->of_node, "ti,sci-proc-ids",
					 temp, 2);
	if (ret < 0)
		return ERR_PTR(ret);

	tsp = kzalloc(sizeof(*tsp), GFP_KERNEL);
	if (!tsp)
		return ERR_PTR(-ENOMEM);

	tsp->dev = dev;
	tsp->sci = sci;
	tsp->ops = &sci->ops.proc_ops;
	tsp->proc_id = temp[0];
	tsp->host_id = temp[1];

	return tsp;
}

static int k3_dsp_rproc_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct device_node *np = dev->of_node;
	const struct k3_dsp_dev_data *data;
	struct k3_dsp_rproc *kproc;
	struct rproc *rproc;
	const char *fw_name;
	int ret = 0;
	int ret1;

	data = of_device_get_match_data(dev);
	if (!data)
		return -ENODEV;

	ret = rproc_of_parse_firmware(dev, 0, &fw_name);
	if (ret) {
		dev_err(dev, "failed to parse firmware-name property, ret = %d\n",
			ret);
		return ret;
	}

	rproc = rproc_alloc(dev, dev_name(dev), &k3_dsp_rproc_ops, fw_name,
			    sizeof(*kproc));
	if (!rproc)
		return -ENOMEM;

	rproc->has_iommu = false;
	rproc->recovery_disabled = true;
	if (data->uses_lreset) {
		rproc->ops->prepare = k3_dsp_rproc_prepare;
		rproc->ops->unprepare = k3_dsp_rproc_unprepare;
	}
	kproc = rproc->priv;
	kproc->rproc = rproc;
	kproc->dev = dev;
	kproc->data = data;

	kproc->ti_sci = ti_sci_get_by_phandle(np, "ti,sci");
	if (IS_ERR(kproc->ti_sci)) {
		ret = PTR_ERR(kproc->ti_sci);
		if (ret != -EPROBE_DEFER) {
			dev_err(dev, "failed to get ti-sci handle, ret = %d\n",
				ret);
		}
		kproc->ti_sci = NULL;
		goto free_rproc;
	}

	ret = of_property_read_u32(np, "ti,sci-dev-id", &kproc->ti_sci_id);
	if (ret) {
		dev_err(dev, "missing 'ti,sci-dev-id' property\n");
		goto put_sci;
	}

	kproc->reset = devm_reset_control_get_exclusive(dev, NULL);
	if (IS_ERR(kproc->reset)) {
		ret = PTR_ERR(kproc->reset);
		dev_err(dev, "failed to get reset, status = %d\n", ret);
		goto put_sci;
	}

	kproc->tsp = k3_dsp_rproc_of_get_tsp(dev, kproc->ti_sci);
	if (IS_ERR(kproc->tsp)) {
		dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n",
			ret);
		ret = PTR_ERR(kproc->tsp);
		goto put_sci;
	}

	ret = ti_sci_proc_request(kproc->tsp);
	if (ret < 0) {
		dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret);
		goto free_tsp;
	}

	ret = k3_dsp_rproc_of_get_memories(pdev, kproc);
	if (ret)
		goto release_tsp;

	ret = k3_dsp_reserved_mem_init(kproc);
	if (ret) {
		dev_err(dev, "reserved memory init failed, ret = %d\n", ret);
		goto release_tsp;
	}

	/*
	 * ensure the DSP local reset is asserted to ensure the DSP doesn't
	 * execute bogus code in .prepare() when the module reset is released.
	 */
	if (data->uses_lreset) {
		ret = reset_control_status(kproc->reset);
		if (ret < 0) {
			dev_err(dev, "failed to get reset status, status = %d\n",
				ret);
			goto release_mem;
		} else if (ret == 0) {
			dev_warn(dev, "local reset is deasserted for device\n");
			k3_dsp_rproc_reset(kproc);
		}
	}

	ret = rproc_add(rproc);
	if (ret) {
		dev_err(dev, "failed to add register device with remoteproc core, status = %d\n",
			ret);
		goto release_mem;
	}

	platform_set_drvdata(pdev, kproc);

	return 0;

release_mem:
	k3_dsp_reserved_mem_exit(kproc);
release_tsp:
	ret1 = ti_sci_proc_release(kproc->tsp);
	if (ret1)
		dev_err(dev, "failed to release proc, ret = %d\n", ret1);
free_tsp:
	kfree(kproc->tsp);
put_sci:
	ret1 = ti_sci_put_handle(kproc->ti_sci);
	if (ret1)
		dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret1);
free_rproc:
	rproc_free(rproc);
	return ret;
}

static int k3_dsp_rproc_remove(struct platform_device *pdev)
{
	struct k3_dsp_rproc *kproc = platform_get_drvdata(pdev);
	struct device *dev = &pdev->dev;
	int ret;

	rproc_del(kproc->rproc);

	ret = ti_sci_proc_release(kproc->tsp);
	if (ret)
		dev_err(dev, "failed to release proc, ret = %d\n", ret);

	kfree(kproc->tsp);

	ret = ti_sci_put_handle(kproc->ti_sci);
	if (ret)
		dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret);

	k3_dsp_reserved_mem_exit(kproc);
	rproc_free(kproc->rproc);

	return 0;
}

static const struct k3_dsp_mem_data c66_mems[] = {
	{ .name = "l2sram", .dev_addr = 0x800000 },
	{ .name = "l1pram", .dev_addr = 0xe00000 },
	{ .name = "l1dram", .dev_addr = 0xf00000 },
};

/* C71x cores only have a L1P Cache, there are no L1P SRAMs */
static const struct k3_dsp_mem_data c71_mems[] = {
	{ .name = "l2sram", .dev_addr = 0x800000 },
	{ .name = "l1dram", .dev_addr = 0xe00000 },
};

static const struct k3_dsp_dev_data c66_data = {
	.mems = c66_mems,
	.num_mems = ARRAY_SIZE(c66_mems),
	.boot_align_addr = SZ_1K,
	.uses_lreset = true,
};

static const struct k3_dsp_dev_data c71_data = {
	.mems = c71_mems,
	.num_mems = ARRAY_SIZE(c71_mems),
	.boot_align_addr = SZ_2M,
	.uses_lreset = false,
};

static const struct of_device_id k3_dsp_of_match[] = {
	{ .compatible = "ti,j721e-c66-dsp", .data = &c66_data, },
	{ .compatible = "ti,j721e-c71-dsp", .data = &c71_data, },
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, k3_dsp_of_match);

static struct platform_driver k3_dsp_rproc_driver = {
	.probe	= k3_dsp_rproc_probe,
	.remove	= k3_dsp_rproc_remove,
	.driver	= {
		.name = "k3-dsp-rproc",
		.of_match_table = k3_dsp_of_match,
	},
};

module_platform_driver(k3_dsp_rproc_driver);

MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("TI K3 DSP Remoteproc driver");