Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
// SPDX-License-Identifier: GPL-2.0
/*
 * STMicroelectronics STM32 USB PHY Controller driver
 *
 * Copyright (C) 2018 STMicroelectronics
 * Author(s): Amelie Delaunay <amelie.delaunay@st.com>.
 */
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/phy/phy.h>
#include <linux/reset.h>
#include <linux/units.h>

#define STM32_USBPHYC_PLL	0x0
#define STM32_USBPHYC_MISC	0x8
#define STM32_USBPHYC_MONITOR(X) (0x108 + ((X) * 0x100))
#define STM32_USBPHYC_VERSION	0x3F4

/* STM32_USBPHYC_PLL bit fields */
#define PLLNDIV			GENMASK(6, 0)
#define PLLFRACIN		GENMASK(25, 10)
#define PLLEN			BIT(26)
#define PLLSTRB			BIT(27)
#define PLLSTRBYP		BIT(28)
#define PLLFRACCTL		BIT(29)
#define PLLDITHEN0		BIT(30)
#define PLLDITHEN1		BIT(31)

/* STM32_USBPHYC_MISC bit fields */
#define SWITHOST		BIT(0)

/* STM32_USBPHYC_MONITOR bit fields */
#define STM32_USBPHYC_MON_OUT	GENMASK(3, 0)
#define STM32_USBPHYC_MON_SEL	GENMASK(8, 4)
#define STM32_USBPHYC_MON_SEL_LOCKP 0x1F
#define STM32_USBPHYC_MON_OUT_LOCKP BIT(3)

/* STM32_USBPHYC_VERSION bit fields */
#define MINREV			GENMASK(3, 0)
#define MAJREV			GENMASK(7, 4)

#define PLL_FVCO_MHZ		2880
#define PLL_INFF_MIN_RATE_HZ	19200000
#define PLL_INFF_MAX_RATE_HZ	38400000

struct pll_params {
	u8 ndiv;
	u16 frac;
};

struct stm32_usbphyc_phy {
	struct phy *phy;
	struct stm32_usbphyc *usbphyc;
	struct regulator *vbus;
	u32 index;
	bool active;
};

struct stm32_usbphyc {
	struct device *dev;
	void __iomem *base;
	struct clk *clk;
	struct reset_control *rst;
	struct stm32_usbphyc_phy **phys;
	int nphys;
	struct regulator *vdda1v1;
	struct regulator *vdda1v8;
	atomic_t n_pll_cons;
	struct clk_hw clk48_hw;
	int switch_setup;
};

static inline void stm32_usbphyc_set_bits(void __iomem *reg, u32 bits)
{
	writel_relaxed(readl_relaxed(reg) | bits, reg);
}

static inline void stm32_usbphyc_clr_bits(void __iomem *reg, u32 bits)
{
	writel_relaxed(readl_relaxed(reg) & ~bits, reg);
}

static int stm32_usbphyc_regulators_enable(struct stm32_usbphyc *usbphyc)
{
	int ret;

	ret = regulator_enable(usbphyc->vdda1v1);
	if (ret)
		return ret;

	ret = regulator_enable(usbphyc->vdda1v8);
	if (ret)
		goto vdda1v1_disable;

	return 0;

vdda1v1_disable:
	regulator_disable(usbphyc->vdda1v1);

	return ret;
}

static int stm32_usbphyc_regulators_disable(struct stm32_usbphyc *usbphyc)
{
	int ret;

	ret = regulator_disable(usbphyc->vdda1v8);
	if (ret)
		return ret;

	ret = regulator_disable(usbphyc->vdda1v1);
	if (ret)
		return ret;

	return 0;
}

static void stm32_usbphyc_get_pll_params(u32 clk_rate,
					 struct pll_params *pll_params)
{
	unsigned long long fvco, ndiv, frac;

	/*    _
	 *   | FVCO = INFF*2*(NDIV + FRACT/2^16) when DITHER_DISABLE[1] = 1
	 *   | FVCO = 2880MHz
	 *  <
	 *   | NDIV = integer part of input bits to set the LDF
	 *   |_FRACT = fractional part of input bits to set the LDF
	 *  =>	PLLNDIV = integer part of (FVCO / (INFF*2))
	 *  =>	PLLFRACIN = fractional part of(FVCO / INFF*2) * 2^16
	 * <=>  PLLFRACIN = ((FVCO / (INFF*2)) - PLLNDIV) * 2^16
	 */
	fvco = (unsigned long long)PLL_FVCO_MHZ * HZ_PER_MHZ;

	ndiv = fvco;
	do_div(ndiv, (clk_rate * 2));
	pll_params->ndiv = (u8)ndiv;

	frac = fvco * (1 << 16);
	do_div(frac, (clk_rate * 2));
	frac = frac - (ndiv * (1 << 16));
	pll_params->frac = (u16)frac;
}

static int stm32_usbphyc_pll_init(struct stm32_usbphyc *usbphyc)
{
	struct pll_params pll_params;
	u32 clk_rate = clk_get_rate(usbphyc->clk);
	u32 ndiv, frac;
	u32 usbphyc_pll;

	if ((clk_rate < PLL_INFF_MIN_RATE_HZ) ||
	    (clk_rate > PLL_INFF_MAX_RATE_HZ)) {
		dev_err(usbphyc->dev, "input clk freq (%dHz) out of range\n",
			clk_rate);
		return -EINVAL;
	}

	stm32_usbphyc_get_pll_params(clk_rate, &pll_params);
	ndiv = FIELD_PREP(PLLNDIV, pll_params.ndiv);
	frac = FIELD_PREP(PLLFRACIN, pll_params.frac);

	usbphyc_pll = PLLDITHEN1 | PLLDITHEN0 | PLLSTRBYP | ndiv;

	if (pll_params.frac)
		usbphyc_pll |= PLLFRACCTL | frac;

	writel_relaxed(usbphyc_pll, usbphyc->base + STM32_USBPHYC_PLL);

	dev_dbg(usbphyc->dev, "input clk freq=%dHz, ndiv=%lu, frac=%lu\n",
		clk_rate, FIELD_GET(PLLNDIV, usbphyc_pll),
		FIELD_GET(PLLFRACIN, usbphyc_pll));

	return 0;
}

static int __stm32_usbphyc_pll_disable(struct stm32_usbphyc *usbphyc)
{
	void __iomem *pll_reg = usbphyc->base + STM32_USBPHYC_PLL;
	u32 pllen;

	stm32_usbphyc_clr_bits(pll_reg, PLLEN);

	/* Wait for minimum width of powerdown pulse (ENABLE = Low) */
	if (readl_relaxed_poll_timeout(pll_reg, pllen, !(pllen & PLLEN), 5, 50))
		dev_err(usbphyc->dev, "PLL not reset\n");

	return stm32_usbphyc_regulators_disable(usbphyc);
}

static int stm32_usbphyc_pll_disable(struct stm32_usbphyc *usbphyc)
{
	/* Check if a phy port is still active or clk48 in use */
	if (atomic_dec_return(&usbphyc->n_pll_cons) > 0)
		return 0;

	return __stm32_usbphyc_pll_disable(usbphyc);
}

static int stm32_usbphyc_pll_enable(struct stm32_usbphyc *usbphyc)
{
	void __iomem *pll_reg = usbphyc->base + STM32_USBPHYC_PLL;
	bool pllen = readl_relaxed(pll_reg) & PLLEN;
	int ret;

	/*
	 * Check if a phy port or clk48 prepare has configured the pll
	 * and ensure the PLL is enabled
	 */
	if (atomic_inc_return(&usbphyc->n_pll_cons) > 1 && pllen)
		return 0;

	if (pllen) {
		/*
		 * PLL shouldn't be enabled without known consumer,
		 * disable it and reinit n_pll_cons
		 */
		dev_warn(usbphyc->dev, "PLL enabled without known consumers\n");

		ret = __stm32_usbphyc_pll_disable(usbphyc);
		if (ret)
			goto dec_n_pll_cons;
	}

	ret = stm32_usbphyc_regulators_enable(usbphyc);
	if (ret)
		goto dec_n_pll_cons;

	ret = stm32_usbphyc_pll_init(usbphyc);
	if (ret)
		goto reg_disable;

	stm32_usbphyc_set_bits(pll_reg, PLLEN);

	return 0;

reg_disable:
	stm32_usbphyc_regulators_disable(usbphyc);

dec_n_pll_cons:
	atomic_dec(&usbphyc->n_pll_cons);

	return ret;
}

static int stm32_usbphyc_phy_init(struct phy *phy)
{
	struct stm32_usbphyc_phy *usbphyc_phy = phy_get_drvdata(phy);
	struct stm32_usbphyc *usbphyc = usbphyc_phy->usbphyc;
	u32 reg_mon = STM32_USBPHYC_MONITOR(usbphyc_phy->index);
	u32 monsel = FIELD_PREP(STM32_USBPHYC_MON_SEL,
				STM32_USBPHYC_MON_SEL_LOCKP);
	u32 monout;
	int ret;

	ret = stm32_usbphyc_pll_enable(usbphyc);
	if (ret)
		return ret;

	/* Check that PLL Lock input to PHY is High */
	writel_relaxed(monsel, usbphyc->base + reg_mon);
	ret = readl_relaxed_poll_timeout(usbphyc->base + reg_mon, monout,
					 (monout & STM32_USBPHYC_MON_OUT_LOCKP),
					 100, 1000);
	if (ret) {
		dev_err(usbphyc->dev, "PLL Lock input to PHY is Low (val=%x)\n",
			(u32)(monout & STM32_USBPHYC_MON_OUT));
		goto pll_disable;
	}

	usbphyc_phy->active = true;

	return 0;

pll_disable:
	return stm32_usbphyc_pll_disable(usbphyc);
}

static int stm32_usbphyc_phy_exit(struct phy *phy)
{
	struct stm32_usbphyc_phy *usbphyc_phy = phy_get_drvdata(phy);
	struct stm32_usbphyc *usbphyc = usbphyc_phy->usbphyc;

	usbphyc_phy->active = false;

	return stm32_usbphyc_pll_disable(usbphyc);
}

static int stm32_usbphyc_phy_power_on(struct phy *phy)
{
	struct stm32_usbphyc_phy *usbphyc_phy = phy_get_drvdata(phy);

	if (usbphyc_phy->vbus)
		return regulator_enable(usbphyc_phy->vbus);

	return 0;
}

static int stm32_usbphyc_phy_power_off(struct phy *phy)
{
	struct stm32_usbphyc_phy *usbphyc_phy = phy_get_drvdata(phy);

	if (usbphyc_phy->vbus)
		return regulator_disable(usbphyc_phy->vbus);

	return 0;
}

static const struct phy_ops stm32_usbphyc_phy_ops = {
	.init = stm32_usbphyc_phy_init,
	.exit = stm32_usbphyc_phy_exit,
	.power_on = stm32_usbphyc_phy_power_on,
	.power_off = stm32_usbphyc_phy_power_off,
	.owner = THIS_MODULE,
};

static int stm32_usbphyc_clk48_prepare(struct clk_hw *hw)
{
	struct stm32_usbphyc *usbphyc = container_of(hw, struct stm32_usbphyc, clk48_hw);

	return stm32_usbphyc_pll_enable(usbphyc);
}

static void stm32_usbphyc_clk48_unprepare(struct clk_hw *hw)
{
	struct stm32_usbphyc *usbphyc = container_of(hw, struct stm32_usbphyc, clk48_hw);

	stm32_usbphyc_pll_disable(usbphyc);
}

static unsigned long stm32_usbphyc_clk48_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
	return 48000000;
}

static const struct clk_ops usbphyc_clk48_ops = {
	.prepare = stm32_usbphyc_clk48_prepare,
	.unprepare = stm32_usbphyc_clk48_unprepare,
	.recalc_rate = stm32_usbphyc_clk48_recalc_rate,
};

static void stm32_usbphyc_clk48_unregister(void *data)
{
	struct stm32_usbphyc *usbphyc = data;

	of_clk_del_provider(usbphyc->dev->of_node);
	clk_hw_unregister(&usbphyc->clk48_hw);
}

static int stm32_usbphyc_clk48_register(struct stm32_usbphyc *usbphyc)
{
	struct device_node *node = usbphyc->dev->of_node;
	struct clk_init_data init = { };
	int ret = 0;

	init.name = "ck_usbo_48m";
	init.ops = &usbphyc_clk48_ops;

	usbphyc->clk48_hw.init = &init;

	ret = clk_hw_register(usbphyc->dev, &usbphyc->clk48_hw);
	if (ret)
		return ret;

	ret = of_clk_add_hw_provider(node, of_clk_hw_simple_get, &usbphyc->clk48_hw);
	if (ret)
		clk_hw_unregister(&usbphyc->clk48_hw);

	return ret;
}

static void stm32_usbphyc_switch_setup(struct stm32_usbphyc *usbphyc,
				       u32 utmi_switch)
{
	if (!utmi_switch)
		stm32_usbphyc_clr_bits(usbphyc->base + STM32_USBPHYC_MISC,
				       SWITHOST);
	else
		stm32_usbphyc_set_bits(usbphyc->base + STM32_USBPHYC_MISC,
				       SWITHOST);
	usbphyc->switch_setup = utmi_switch;
}

static struct phy *stm32_usbphyc_of_xlate(struct device *dev,
					  struct of_phandle_args *args)
{
	struct stm32_usbphyc *usbphyc = dev_get_drvdata(dev);
	struct stm32_usbphyc_phy *usbphyc_phy = NULL;
	struct device_node *phynode = args->np;
	int port = 0;

	for (port = 0; port < usbphyc->nphys; port++) {
		if (phynode == usbphyc->phys[port]->phy->dev.of_node) {
			usbphyc_phy = usbphyc->phys[port];
			break;
		}
	}
	if (!usbphyc_phy) {
		dev_err(dev, "failed to find phy\n");
		return ERR_PTR(-EINVAL);
	}

	if (((usbphyc_phy->index == 0) && (args->args_count != 0)) ||
	    ((usbphyc_phy->index == 1) && (args->args_count != 1))) {
		dev_err(dev, "invalid number of cells for phy port%d\n",
			usbphyc_phy->index);
		return ERR_PTR(-EINVAL);
	}

	/* Configure the UTMI switch for PHY port#2 */
	if (usbphyc_phy->index == 1) {
		if (usbphyc->switch_setup < 0) {
			stm32_usbphyc_switch_setup(usbphyc, args->args[0]);
		} else {
			if (args->args[0] != usbphyc->switch_setup) {
				dev_err(dev, "phy port1 already used\n");
				return ERR_PTR(-EBUSY);
			}
		}
	}

	return usbphyc_phy->phy;
}

static int stm32_usbphyc_probe(struct platform_device *pdev)
{
	struct stm32_usbphyc *usbphyc;
	struct device *dev = &pdev->dev;
	struct device_node *child, *np = dev->of_node;
	struct phy_provider *phy_provider;
	u32 pllen, version;
	int ret, port = 0;

	usbphyc = devm_kzalloc(dev, sizeof(*usbphyc), GFP_KERNEL);
	if (!usbphyc)
		return -ENOMEM;
	usbphyc->dev = dev;
	dev_set_drvdata(dev, usbphyc);

	usbphyc->base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(usbphyc->base))
		return PTR_ERR(usbphyc->base);

	usbphyc->clk = devm_clk_get(dev, NULL);
	if (IS_ERR(usbphyc->clk))
		return dev_err_probe(dev, PTR_ERR(usbphyc->clk), "clk get_failed\n");

	ret = clk_prepare_enable(usbphyc->clk);
	if (ret) {
		dev_err(dev, "clk enable failed: %d\n", ret);
		return ret;
	}

	usbphyc->rst = devm_reset_control_get(dev, NULL);
	if (!IS_ERR(usbphyc->rst)) {
		reset_control_assert(usbphyc->rst);
		udelay(2);
		reset_control_deassert(usbphyc->rst);
	} else {
		ret = PTR_ERR(usbphyc->rst);
		if (ret == -EPROBE_DEFER)
			goto clk_disable;

		stm32_usbphyc_clr_bits(usbphyc->base + STM32_USBPHYC_PLL, PLLEN);
	}

	/*
	 * Wait for minimum width of powerdown pulse (ENABLE = Low):
	 * we have to ensure the PLL is disabled before phys initialization.
	 */
	if (readl_relaxed_poll_timeout(usbphyc->base + STM32_USBPHYC_PLL,
				       pllen, !(pllen & PLLEN), 5, 50)) {
		dev_warn(usbphyc->dev, "PLL not reset\n");
		ret = -EPROBE_DEFER;
		goto clk_disable;
	}

	usbphyc->switch_setup = -EINVAL;
	usbphyc->nphys = of_get_child_count(np);
	usbphyc->phys = devm_kcalloc(dev, usbphyc->nphys,
				     sizeof(*usbphyc->phys), GFP_KERNEL);
	if (!usbphyc->phys) {
		ret = -ENOMEM;
		goto clk_disable;
	}

	usbphyc->vdda1v1 = devm_regulator_get(dev, "vdda1v1");
	if (IS_ERR(usbphyc->vdda1v1)) {
		ret = PTR_ERR(usbphyc->vdda1v1);
		if (ret != -EPROBE_DEFER)
			dev_err(dev, "failed to get vdda1v1 supply: %d\n", ret);
		goto clk_disable;
	}

	usbphyc->vdda1v8 = devm_regulator_get(dev, "vdda1v8");
	if (IS_ERR(usbphyc->vdda1v8)) {
		ret = PTR_ERR(usbphyc->vdda1v8);
		if (ret != -EPROBE_DEFER)
			dev_err(dev, "failed to get vdda1v8 supply: %d\n", ret);
		goto clk_disable;
	}

	for_each_child_of_node(np, child) {
		struct stm32_usbphyc_phy *usbphyc_phy;
		struct phy *phy;
		u32 index;

		phy = devm_phy_create(dev, child, &stm32_usbphyc_phy_ops);
		if (IS_ERR(phy)) {
			ret = PTR_ERR(phy);
			if (ret != -EPROBE_DEFER)
				dev_err(dev, "failed to create phy%d: %d\n",
					port, ret);
			goto put_child;
		}

		usbphyc_phy = devm_kzalloc(dev, sizeof(*usbphyc_phy),
					   GFP_KERNEL);
		if (!usbphyc_phy) {
			ret = -ENOMEM;
			goto put_child;
		}

		ret = of_property_read_u32(child, "reg", &index);
		if (ret || index > usbphyc->nphys) {
			dev_err(&phy->dev, "invalid reg property: %d\n", ret);
			goto put_child;
		}

		usbphyc->phys[port] = usbphyc_phy;
		phy_set_bus_width(phy, 8);
		phy_set_drvdata(phy, usbphyc_phy);

		usbphyc->phys[port]->phy = phy;
		usbphyc->phys[port]->usbphyc = usbphyc;
		usbphyc->phys[port]->index = index;
		usbphyc->phys[port]->active = false;

		usbphyc->phys[port]->vbus = devm_regulator_get_optional(&phy->dev, "vbus");
		if (IS_ERR(usbphyc->phys[port]->vbus)) {
			ret = PTR_ERR(usbphyc->phys[port]->vbus);
			if (ret == -EPROBE_DEFER)
				goto put_child;
			usbphyc->phys[port]->vbus = NULL;
		}

		port++;
	}

	phy_provider = devm_of_phy_provider_register(dev,
						     stm32_usbphyc_of_xlate);
	if (IS_ERR(phy_provider)) {
		ret = PTR_ERR(phy_provider);
		dev_err(dev, "failed to register phy provider: %d\n", ret);
		goto clk_disable;
	}

	ret = stm32_usbphyc_clk48_register(usbphyc);
	if (ret) {
		dev_err(dev, "failed to register ck_usbo_48m clock: %d\n", ret);
		goto clk_disable;
	}

	version = readl_relaxed(usbphyc->base + STM32_USBPHYC_VERSION);
	dev_info(dev, "registered rev:%lu.%lu\n",
		 FIELD_GET(MAJREV, version), FIELD_GET(MINREV, version));

	return 0;

put_child:
	of_node_put(child);
clk_disable:
	clk_disable_unprepare(usbphyc->clk);

	return ret;
}

static int stm32_usbphyc_remove(struct platform_device *pdev)
{
	struct stm32_usbphyc *usbphyc = dev_get_drvdata(&pdev->dev);
	int port;

	/* Ensure PHYs are not active, to allow PLL disabling */
	for (port = 0; port < usbphyc->nphys; port++)
		if (usbphyc->phys[port]->active)
			stm32_usbphyc_phy_exit(usbphyc->phys[port]->phy);

	stm32_usbphyc_clk48_unregister(usbphyc);

	clk_disable_unprepare(usbphyc->clk);

	return 0;
}

static const struct of_device_id stm32_usbphyc_of_match[] = {
	{ .compatible = "st,stm32mp1-usbphyc", },
	{ },
};
MODULE_DEVICE_TABLE(of, stm32_usbphyc_of_match);

static struct platform_driver stm32_usbphyc_driver = {
	.probe = stm32_usbphyc_probe,
	.remove = stm32_usbphyc_remove,
	.driver = {
		.of_match_table = stm32_usbphyc_of_match,
		.name = "stm32-usbphyc",
	}
};
module_platform_driver(stm32_usbphyc_driver);

MODULE_DESCRIPTION("STMicroelectronics STM32 USBPHYC driver");
MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
MODULE_LICENSE("GPL v2");