Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2021, Intel Corporation. */

#include "ice_common.h"
#include "ice_ptp_hw.h"

/* Low level functions for interacting with and managing the device clock used
 * for the Precision Time Protocol.
 *
 * The ice hardware represents the current time using three registers:
 *
 *    GLTSYN_TIME_H     GLTSYN_TIME_L     GLTSYN_TIME_R
 *  +---------------+ +---------------+ +---------------+
 *  |    32 bits    | |    32 bits    | |    32 bits    |
 *  +---------------+ +---------------+ +---------------+
 *
 * The registers are incremented every clock tick using a 40bit increment
 * value defined over two registers:
 *
 *                     GLTSYN_INCVAL_H   GLTSYN_INCVAL_L
 *                    +---------------+ +---------------+
 *                    |    8 bit s    | |    32 bits    |
 *                    +---------------+ +---------------+
 *
 * The increment value is added to the GLSTYN_TIME_R and GLSTYN_TIME_L
 * registers every clock source tick. Depending on the specific device
 * configuration, the clock source frequency could be one of a number of
 * values.
 *
 * For E810 devices, the increment frequency is 812.5 MHz
 *
 * The hardware captures timestamps in the PHY for incoming packets, and for
 * outgoing packets on request. To support this, the PHY maintains a timer
 * that matches the lower 64 bits of the global source timer.
 *
 * In order to ensure that the PHY timers and the source timer are equivalent,
 * shadow registers are used to prepare the desired initial values. A special
 * sync command is issued to trigger copying from the shadow registers into
 * the appropriate source and PHY registers simultaneously.
 */

/**
 * ice_get_ptp_src_clock_index - determine source clock index
 * @hw: pointer to HW struct
 *
 * Determine the source clock index currently in use, based on device
 * capabilities reported during initialization.
 */
u8 ice_get_ptp_src_clock_index(struct ice_hw *hw)
{
	return hw->func_caps.ts_func_info.tmr_index_assoc;
}

/* E810 functions
 *
 * The following functions operate on the E810 series devices which use
 * a separate external PHY.
 */

/**
 * ice_read_phy_reg_e810 - Read register from external PHY on E810
 * @hw: pointer to the HW struct
 * @addr: the address to read from
 * @val: On return, the value read from the PHY
 *
 * Read a register from the external PHY on the E810 device.
 */
static int ice_read_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 *val)
{
	struct ice_sbq_msg_input msg = {0};
	int status;

	msg.msg_addr_low = lower_16_bits(addr);
	msg.msg_addr_high = upper_16_bits(addr);
	msg.opcode = ice_sbq_msg_rd;
	msg.dest_dev = rmn_0;

	status = ice_sbq_rw_reg(hw, &msg);
	if (status) {
		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, status %d\n",
			  status);
		return status;
	}

	*val = msg.data;

	return 0;
}

/**
 * ice_write_phy_reg_e810 - Write register on external PHY on E810
 * @hw: pointer to the HW struct
 * @addr: the address to writem to
 * @val: the value to write to the PHY
 *
 * Write a value to a register of the external PHY on the E810 device.
 */
static int ice_write_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 val)
{
	struct ice_sbq_msg_input msg = {0};
	int status;

	msg.msg_addr_low = lower_16_bits(addr);
	msg.msg_addr_high = upper_16_bits(addr);
	msg.opcode = ice_sbq_msg_wr;
	msg.dest_dev = rmn_0;
	msg.data = val;

	status = ice_sbq_rw_reg(hw, &msg);
	if (status) {
		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, status %d\n",
			  status);
		return status;
	}

	return 0;
}

/**
 * ice_read_phy_tstamp_e810 - Read a PHY timestamp out of the external PHY
 * @hw: pointer to the HW struct
 * @lport: the lport to read from
 * @idx: the timestamp index to read
 * @tstamp: on return, the 40bit timestamp value
 *
 * Read a 40bit timestamp value out of the timestamp block of the external PHY
 * on the E810 device.
 */
static int
ice_read_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx, u64 *tstamp)
{
	u32 lo_addr, hi_addr, lo, hi;
	int status;

	lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
	hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);

	status = ice_read_phy_reg_e810(hw, lo_addr, &lo);
	if (status) {
		ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, status %d\n",
			  status);
		return status;
	}

	status = ice_read_phy_reg_e810(hw, hi_addr, &hi);
	if (status) {
		ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, status %d\n",
			  status);
		return status;
	}

	/* For E810 devices, the timestamp is reported with the lower 32 bits
	 * in the low register, and the upper 8 bits in the high register.
	 */
	*tstamp = ((u64)hi) << TS_HIGH_S | ((u64)lo & TS_LOW_M);

	return 0;
}

/**
 * ice_clear_phy_tstamp_e810 - Clear a timestamp from the external PHY
 * @hw: pointer to the HW struct
 * @lport: the lport to read from
 * @idx: the timestamp index to reset
 *
 * Clear a timestamp, resetting its valid bit, from the timestamp block of the
 * external PHY on the E810 device.
 */
static int ice_clear_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx)
{
	u32 lo_addr, hi_addr;
	int status;

	lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
	hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);

	status = ice_write_phy_reg_e810(hw, lo_addr, 0);
	if (status) {
		ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register, status %d\n",
			  status);
		return status;
	}

	status = ice_write_phy_reg_e810(hw, hi_addr, 0);
	if (status) {
		ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register, status %d\n",
			  status);
		return status;
	}

	return 0;
}

/**
 * ice_ptp_init_phy_e810 - Enable PTP function on the external PHY
 * @hw: pointer to HW struct
 *
 * Enable the timesync PTP functionality for the external PHY connected to
 * this function.
 */
int ice_ptp_init_phy_e810(struct ice_hw *hw)
{
	int status;
	u8 tmr_idx;

	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
	status = ice_write_phy_reg_e810(hw, ETH_GLTSYN_ENA(tmr_idx),
					GLTSYN_ENA_TSYN_ENA_M);
	if (status)
		ice_debug(hw, ICE_DBG_PTP, "PTP failed in ena_phy_time_syn %d\n",
			  status);

	return status;
}

/**
 * ice_ptp_prep_phy_time_e810 - Prepare PHY port with initial time
 * @hw: Board private structure
 * @time: Time to initialize the PHY port clock to
 *
 * Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the
 * initial clock time. The time will not actually be programmed until the
 * driver issues an INIT_TIME command.
 *
 * The time value is the upper 32 bits of the PHY timer, usually in units of
 * nominal nanoseconds.
 */
static int ice_ptp_prep_phy_time_e810(struct ice_hw *hw, u32 time)
{
	int status;
	u8 tmr_idx;

	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
	status = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_0(tmr_idx), 0);
	if (status) {
		ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_0, status %d\n",
			  status);
		return status;
	}

	status = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_L(tmr_idx), time);
	if (status) {
		ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_L, status %d\n",
			  status);
		return status;
	}

	return 0;
}

/**
 * ice_ptp_prep_phy_adj_e810 - Prep PHY port for a time adjustment
 * @hw: pointer to HW struct
 * @adj: adjustment value to program
 *
 * Prepare the PHY port for an atomic adjustment by programming the PHY
 * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual adjustment
 * is completed by issuing an ADJ_TIME sync command.
 *
 * The adjustment value only contains the portion used for the upper 32bits of
 * the PHY timer, usually in units of nominal nanoseconds. Negative
 * adjustments are supported using 2s complement arithmetic.
 */
static int ice_ptp_prep_phy_adj_e810(struct ice_hw *hw, s32 adj)
{
	int status;
	u8 tmr_idx;

	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;

	/* Adjustments are represented as signed 2's complement values in
	 * nanoseconds. Sub-nanosecond adjustment is not supported.
	 */
	status = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), 0);
	if (status) {
		ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_L, status %d\n",
			  status);
		return status;
	}

	status = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), adj);
	if (status) {
		ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_H, status %d\n",
			  status);
		return status;
	}

	return 0;
}

/**
 * ice_ptp_prep_phy_incval_e810 - Prep PHY port increment value change
 * @hw: pointer to HW struct
 * @incval: The new 40bit increment value to prepare
 *
 * Prepare the PHY port for a new increment value by programming the PHY
 * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual change is
 * completed by issuing an INIT_INCVAL command.
 */
static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval)
{
	u32 high, low;
	int status;
	u8 tmr_idx;

	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
	low = lower_32_bits(incval);
	high = upper_32_bits(incval);

	status = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), low);
	if (status) {
		ice_debug(hw, ICE_DBG_PTP, "Failed to write incval to PHY SHADJ_L, status %d\n",
			  status);
		return status;
	}

	status = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), high);
	if (status) {
		ice_debug(hw, ICE_DBG_PTP, "Failed to write incval PHY SHADJ_H, status %d\n",
			  status);
		return status;
	}

	return 0;
}

/**
 * ice_ptp_port_cmd_e810 - Prepare all external PHYs for a timer command
 * @hw: pointer to HW struct
 * @cmd: Command to be sent to the port
 *
 * Prepare the external PHYs connected to this device for a timer sync
 * command.
 */
static int ice_ptp_port_cmd_e810(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
{
	u32 cmd_val, val;
	int status;

	switch (cmd) {
	case INIT_TIME:
		cmd_val = GLTSYN_CMD_INIT_TIME;
		break;
	case INIT_INCVAL:
		cmd_val = GLTSYN_CMD_INIT_INCVAL;
		break;
	case ADJ_TIME:
		cmd_val = GLTSYN_CMD_ADJ_TIME;
		break;
	case READ_TIME:
		cmd_val = GLTSYN_CMD_READ_TIME;
		break;
	case ADJ_TIME_AT_TIME:
		cmd_val = GLTSYN_CMD_ADJ_INIT_TIME;
		break;
	}

	/* Read, modify, write */
	status = ice_read_phy_reg_e810(hw, ETH_GLTSYN_CMD, &val);
	if (status) {
		ice_debug(hw, ICE_DBG_PTP, "Failed to read GLTSYN_CMD, status %d\n", status);
		return status;
	}

	/* Modify necessary bits only and perform write */
	val &= ~TS_CMD_MASK_E810;
	val |= cmd_val;

	status = ice_write_phy_reg_e810(hw, ETH_GLTSYN_CMD, val);
	if (status) {
		ice_debug(hw, ICE_DBG_PTP, "Failed to write back GLTSYN_CMD, status %d\n", status);
		return status;
	}

	return 0;
}

/* Device agnostic functions
 *
 * The following functions implement useful behavior to hide the differences
 * between E810 and other devices. They call the device-specific
 * implementations where necessary.
 *
 * Currently, the driver only supports E810, but future work will enable
 * support for E822-based devices.
 */

/**
 * ice_ptp_lock - Acquire PTP global semaphore register lock
 * @hw: pointer to the HW struct
 *
 * Acquire the global PTP hardware semaphore lock. Returns true if the lock
 * was acquired, false otherwise.
 *
 * The PFTSYN_SEM register sets the busy bit on read, returning the previous
 * value. If software sees the busy bit cleared, this means that this function
 * acquired the lock (and the busy bit is now set). If software sees the busy
 * bit set, it means that another function acquired the lock.
 *
 * Software must clear the busy bit with a write to release the lock for other
 * functions when done.
 */
bool ice_ptp_lock(struct ice_hw *hw)
{
	u32 hw_lock;
	int i;

#define MAX_TRIES 5

	for (i = 0; i < MAX_TRIES; i++) {
		hw_lock = rd32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
		hw_lock = hw_lock & PFTSYN_SEM_BUSY_M;
		if (!hw_lock)
			break;

		/* Somebody is holding the lock */
		usleep_range(10000, 20000);
	}

	return !hw_lock;
}

/**
 * ice_ptp_unlock - Release PTP global semaphore register lock
 * @hw: pointer to the HW struct
 *
 * Release the global PTP hardware semaphore lock. This is done by writing to
 * the PFTSYN_SEM register.
 */
void ice_ptp_unlock(struct ice_hw *hw)
{
	wr32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), 0);
}

/**
 * ice_ptp_src_cmd - Prepare source timer for a timer command
 * @hw: pointer to HW structure
 * @cmd: Timer command
 *
 * Prepare the source timer for an upcoming timer sync command.
 */
static void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
{
	u32 cmd_val;
	u8 tmr_idx;

	tmr_idx = ice_get_ptp_src_clock_index(hw);
	cmd_val = tmr_idx << SEL_CPK_SRC;

	switch (cmd) {
	case INIT_TIME:
		cmd_val |= GLTSYN_CMD_INIT_TIME;
		break;
	case INIT_INCVAL:
		cmd_val |= GLTSYN_CMD_INIT_INCVAL;
		break;
	case ADJ_TIME:
		cmd_val |= GLTSYN_CMD_ADJ_TIME;
		break;
	case ADJ_TIME_AT_TIME:
		cmd_val |= GLTSYN_CMD_ADJ_INIT_TIME;
		break;
	case READ_TIME:
		cmd_val |= GLTSYN_CMD_READ_TIME;
		break;
	}

	wr32(hw, GLTSYN_CMD, cmd_val);
}

/**
 * ice_ptp_tmr_cmd - Prepare and trigger a timer sync command
 * @hw: pointer to HW struct
 * @cmd: the command to issue
 *
 * Prepare the source timer and PHY timers and then trigger the requested
 * command. This causes the shadow registers previously written in preparation
 * for the command to be synchronously applied to both the source and PHY
 * timers.
 */
static int ice_ptp_tmr_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
{
	int status;

	/* First, prepare the source timer */
	ice_ptp_src_cmd(hw, cmd);

	/* Next, prepare the ports */
	status = ice_ptp_port_cmd_e810(hw, cmd);
	if (status) {
		ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY ports for timer command %u, status %d\n",
			  cmd, status);
		return status;
	}

	/* Write the sync command register to drive both source and PHY timer commands
	 * synchronously
	 */
	wr32(hw, GLTSYN_CMD_SYNC, SYNC_EXEC_CMD);

	return 0;
}

/**
 * ice_ptp_init_time - Initialize device time to provided value
 * @hw: pointer to HW struct
 * @time: 64bits of time (GLTSYN_TIME_L and GLTSYN_TIME_H)
 *
 * Initialize the device to the specified time provided. This requires a three
 * step process:
 *
 * 1) write the new init time to the source timer shadow registers
 * 2) write the new init time to the PHY timer shadow registers
 * 3) issue an init_time timer command to synchronously switch both the source
 *    and port timers to the new init time value at the next clock cycle.
 */
int ice_ptp_init_time(struct ice_hw *hw, u64 time)
{
	int status;
	u8 tmr_idx;

	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;

	/* Source timers */
	wr32(hw, GLTSYN_SHTIME_L(tmr_idx), lower_32_bits(time));
	wr32(hw, GLTSYN_SHTIME_H(tmr_idx), upper_32_bits(time));
	wr32(hw, GLTSYN_SHTIME_0(tmr_idx), 0);

	/* PHY timers */
	/* Fill Rx and Tx ports and send msg to PHY */
	status = ice_ptp_prep_phy_time_e810(hw, time & 0xFFFFFFFF);
	if (status)
		return status;

	return ice_ptp_tmr_cmd(hw, INIT_TIME);
}

/**
 * ice_ptp_write_incval - Program PHC with new increment value
 * @hw: pointer to HW struct
 * @incval: Source timer increment value per clock cycle
 *
 * Program the PHC with a new increment value. This requires a three-step
 * process:
 *
 * 1) Write the increment value to the source timer shadow registers
 * 2) Write the increment value to the PHY timer shadow registers
 * 3) Issue an INIT_INCVAL timer command to synchronously switch both the
 *    source and port timers to the new increment value at the next clock
 *    cycle.
 */
int ice_ptp_write_incval(struct ice_hw *hw, u64 incval)
{
	int status;
	u8 tmr_idx;

	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;

	/* Shadow Adjust */
	wr32(hw, GLTSYN_SHADJ_L(tmr_idx), lower_32_bits(incval));
	wr32(hw, GLTSYN_SHADJ_H(tmr_idx), upper_32_bits(incval));

	status = ice_ptp_prep_phy_incval_e810(hw, incval);
	if (status)
		return status;

	return ice_ptp_tmr_cmd(hw, INIT_INCVAL);
}

/**
 * ice_ptp_write_incval_locked - Program new incval while holding semaphore
 * @hw: pointer to HW struct
 * @incval: Source timer increment value per clock cycle
 *
 * Program a new PHC incval while holding the PTP semaphore.
 */
int ice_ptp_write_incval_locked(struct ice_hw *hw, u64 incval)
{
	int status;

	if (!ice_ptp_lock(hw))
		return -EBUSY;

	status = ice_ptp_write_incval(hw, incval);

	ice_ptp_unlock(hw);

	return status;
}

/**
 * ice_ptp_adj_clock - Adjust PHC clock time atomically
 * @hw: pointer to HW struct
 * @adj: Adjustment in nanoseconds
 *
 * Perform an atomic adjustment of the PHC time by the specified number of
 * nanoseconds. This requires a three-step process:
 *
 * 1) Write the adjustment to the source timer shadow registers
 * 2) Write the adjustment to the PHY timer shadow registers
 * 3) Issue an ADJ_TIME timer command to synchronously apply the adjustment to
 *    both the source and port timers at the next clock cycle.
 */
int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj)
{
	int status;
	u8 tmr_idx;

	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;

	/* Write the desired clock adjustment into the GLTSYN_SHADJ register.
	 * For an ADJ_TIME command, this set of registers represents the value
	 * to add to the clock time. It supports subtraction by interpreting
	 * the value as a 2's complement integer.
	 */
	wr32(hw, GLTSYN_SHADJ_L(tmr_idx), 0);
	wr32(hw, GLTSYN_SHADJ_H(tmr_idx), adj);

	status = ice_ptp_prep_phy_adj_e810(hw, adj);
	if (status)
		return status;

	return ice_ptp_tmr_cmd(hw, ADJ_TIME);
}

/**
 * ice_read_phy_tstamp - Read a PHY timestamp from the timestamo block
 * @hw: pointer to the HW struct
 * @block: the block to read from
 * @idx: the timestamp index to read
 * @tstamp: on return, the 40bit timestamp value
 *
 * Read a 40bit timestamp value out of the timestamp block.
 */
int ice_read_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx, u64 *tstamp)
{
	return ice_read_phy_tstamp_e810(hw, block, idx, tstamp);
}

/**
 * ice_clear_phy_tstamp - Clear a timestamp from the timestamp block
 * @hw: pointer to the HW struct
 * @block: the block to read from
 * @idx: the timestamp index to reset
 *
 * Clear a timestamp, resetting its valid bit, from the timestamp block.
 */
int ice_clear_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx)
{
	return ice_clear_phy_tstamp_e810(hw, block, idx);
}