Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
// SPDX-License-Identifier: GPL-2.0
/*
 * Xilinx 'Clocking Wizard' driver
 *
 *  Copyright (C) 2013 - 2014 Xilinx
 *
 *  Sören Brinkmann <soren.brinkmann@xilinx.com>
 */

#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/module.h>
#include <linux/err.h>
#include <linux/iopoll.h>

#define WZRD_NUM_OUTPUTS	7
#define WZRD_ACLK_MAX_FREQ	250000000UL

#define WZRD_CLK_CFG_REG(n)	(0x200 + 4 * (n))

#define WZRD_CLKOUT0_FRAC_EN	BIT(18)
#define WZRD_CLKFBOUT_FRAC_EN	BIT(26)

#define WZRD_CLKFBOUT_MULT_SHIFT	8
#define WZRD_CLKFBOUT_MULT_MASK		(0xff << WZRD_CLKFBOUT_MULT_SHIFT)
#define WZRD_CLKFBOUT_FRAC_SHIFT	16
#define WZRD_CLKFBOUT_FRAC_MASK		(0x3ff << WZRD_CLKFBOUT_FRAC_SHIFT)
#define WZRD_DIVCLK_DIVIDE_SHIFT	0
#define WZRD_DIVCLK_DIVIDE_MASK		(0xff << WZRD_DIVCLK_DIVIDE_SHIFT)
#define WZRD_CLKOUT_DIVIDE_SHIFT	0
#define WZRD_CLKOUT_DIVIDE_WIDTH	8
#define WZRD_CLKOUT_DIVIDE_MASK		(0xff << WZRD_DIVCLK_DIVIDE_SHIFT)
#define WZRD_CLKOUT_FRAC_SHIFT		8
#define WZRD_CLKOUT_FRAC_MASK		0x3ff

#define WZRD_DR_MAX_INT_DIV_VALUE	255
#define WZRD_DR_STATUS_REG_OFFSET	0x04
#define WZRD_DR_LOCK_BIT_MASK		0x00000001
#define WZRD_DR_INIT_REG_OFFSET		0x25C
#define WZRD_DR_DIV_TO_PHASE_OFFSET	4
#define WZRD_DR_BEGIN_DYNA_RECONF	0x03

#define WZRD_USEC_POLL		10
#define WZRD_TIMEOUT_POLL		1000
/* Get the mask from width */
#define div_mask(width)			((1 << (width)) - 1)

/* Extract divider instance from clock hardware instance */
#define to_clk_wzrd_divider(_hw) container_of(_hw, struct clk_wzrd_divider, hw)

enum clk_wzrd_int_clks {
	wzrd_clk_mul,
	wzrd_clk_mul_div,
	wzrd_clk_mul_frac,
	wzrd_clk_int_max
};

/**
 * struct clk_wzrd - Clock wizard private data structure
 *
 * @clk_data:		Clock data
 * @nb:			Notifier block
 * @base:		Memory base
 * @clk_in1:		Handle to input clock 'clk_in1'
 * @axi_clk:		Handle to input clock 's_axi_aclk'
 * @clks_internal:	Internal clocks
 * @clkout:		Output clocks
 * @speed_grade:	Speed grade of the device
 * @suspended:		Flag indicating power state of the device
 */
struct clk_wzrd {
	struct clk_onecell_data clk_data;
	struct notifier_block nb;
	void __iomem *base;
	struct clk *clk_in1;
	struct clk *axi_clk;
	struct clk *clks_internal[wzrd_clk_int_max];
	struct clk *clkout[WZRD_NUM_OUTPUTS];
	unsigned int speed_grade;
	bool suspended;
};

/**
 * struct clk_wzrd_divider - clock divider specific to clk_wzrd
 *
 * @hw:		handle between common and hardware-specific interfaces
 * @base:	base address of register containing the divider
 * @offset:	offset address of register containing the divider
 * @shift:	shift to the divider bit field
 * @width:	width of the divider bit field
 * @flags:	clk_wzrd divider flags
 * @table:	array of value/divider pairs, last entry should have div = 0
 * @lock:	register lock
 */
struct clk_wzrd_divider {
	struct clk_hw hw;
	void __iomem *base;
	u16 offset;
	u8 shift;
	u8 width;
	u8 flags;
	const struct clk_div_table *table;
	spinlock_t *lock;  /* divider lock */
};

#define to_clk_wzrd(_nb) container_of(_nb, struct clk_wzrd, nb)

/* maximum frequencies for input/output clocks per speed grade */
static const unsigned long clk_wzrd_max_freq[] = {
	800000000UL,
	933000000UL,
	1066000000UL
};

/* spin lock variable for clk_wzrd */
static DEFINE_SPINLOCK(clkwzrd_lock);

static unsigned long clk_wzrd_recalc_rate(struct clk_hw *hw,
					  unsigned long parent_rate)
{
	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
	void __iomem *div_addr = divider->base + divider->offset;
	unsigned int val;

	val = readl(div_addr) >> divider->shift;
	val &= div_mask(divider->width);

	return divider_recalc_rate(hw, parent_rate, val, divider->table,
			divider->flags, divider->width);
}

static int clk_wzrd_dynamic_reconfig(struct clk_hw *hw, unsigned long rate,
				     unsigned long parent_rate)
{
	int err;
	u32 value;
	unsigned long flags = 0;
	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
	void __iomem *div_addr = divider->base + divider->offset;

	if (divider->lock)
		spin_lock_irqsave(divider->lock, flags);
	else
		__acquire(divider->lock);

	value = DIV_ROUND_CLOSEST(parent_rate, rate);

	/* Cap the value to max */
	min_t(u32, value, WZRD_DR_MAX_INT_DIV_VALUE);

	/* Set divisor and clear phase offset */
	writel(value, div_addr);
	writel(0x00, div_addr + WZRD_DR_DIV_TO_PHASE_OFFSET);

	/* Check status register */
	err = readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET,
				 value, value & WZRD_DR_LOCK_BIT_MASK,
				 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
	if (err)
		goto err_reconfig;

	/* Initiate reconfiguration */
	writel(WZRD_DR_BEGIN_DYNA_RECONF,
	       divider->base + WZRD_DR_INIT_REG_OFFSET);

	/* Check status register */
	err = readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET,
				 value, value & WZRD_DR_LOCK_BIT_MASK,
				 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
err_reconfig:
	if (divider->lock)
		spin_unlock_irqrestore(divider->lock, flags);
	else
		__release(divider->lock);
	return err;
}

static long clk_wzrd_round_rate(struct clk_hw *hw, unsigned long rate,
				unsigned long *prate)
{
	u8 div;

	/*
	 * since we don't change parent rate we just round rate to closest
	 * achievable
	 */
	div = DIV_ROUND_CLOSEST(*prate, rate);

	return *prate / div;
}

static const struct clk_ops clk_wzrd_clk_divider_ops = {
	.round_rate = clk_wzrd_round_rate,
	.set_rate = clk_wzrd_dynamic_reconfig,
	.recalc_rate = clk_wzrd_recalc_rate,
};

static unsigned long clk_wzrd_recalc_ratef(struct clk_hw *hw,
					   unsigned long parent_rate)
{
	unsigned int val;
	u32 div, frac;
	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
	void __iomem *div_addr = divider->base + divider->offset;

	val = readl(div_addr);
	div = val & div_mask(divider->width);
	frac = (val >> WZRD_CLKOUT_FRAC_SHIFT) & WZRD_CLKOUT_FRAC_MASK;

	return mult_frac(parent_rate, 1000, (div * 1000) + frac);
}

static int clk_wzrd_dynamic_reconfig_f(struct clk_hw *hw, unsigned long rate,
				       unsigned long parent_rate)
{
	int err;
	u32 value, pre;
	unsigned long rate_div, f, clockout0_div;
	struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
	void __iomem *div_addr = divider->base + divider->offset;

	rate_div = ((parent_rate * 1000) / rate);
	clockout0_div = rate_div / 1000;

	pre = DIV_ROUND_CLOSEST((parent_rate * 1000), rate);
	f = (u32)(pre - (clockout0_div * 1000));
	f = f & WZRD_CLKOUT_FRAC_MASK;
	f = f << WZRD_CLKOUT_DIVIDE_WIDTH;

	value = (f  | (clockout0_div & WZRD_CLKOUT_DIVIDE_MASK));

	/* Set divisor and clear phase offset */
	writel(value, div_addr);
	writel(0x0, div_addr + WZRD_DR_DIV_TO_PHASE_OFFSET);

	/* Check status register */
	err = readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value,
				 value & WZRD_DR_LOCK_BIT_MASK,
				 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
	if (err)
		return err;

	/* Initiate reconfiguration */
	writel(WZRD_DR_BEGIN_DYNA_RECONF,
	       divider->base + WZRD_DR_INIT_REG_OFFSET);

	/* Check status register */
	return readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value,
				value & WZRD_DR_LOCK_BIT_MASK,
				WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
}

static long clk_wzrd_round_rate_f(struct clk_hw *hw, unsigned long rate,
				  unsigned long *prate)
{
	return rate;
}

static const struct clk_ops clk_wzrd_clk_divider_ops_f = {
	.round_rate = clk_wzrd_round_rate_f,
	.set_rate = clk_wzrd_dynamic_reconfig_f,
	.recalc_rate = clk_wzrd_recalc_ratef,
};

static struct clk *clk_wzrd_register_divf(struct device *dev,
					  const char *name,
					  const char *parent_name,
					  unsigned long flags,
					  void __iomem *base, u16 offset,
					  u8 shift, u8 width,
					  u8 clk_divider_flags,
					  const struct clk_div_table *table,
					  spinlock_t *lock)
{
	struct clk_wzrd_divider *div;
	struct clk_hw *hw;
	struct clk_init_data init;
	int ret;

	div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL);
	if (!div)
		return ERR_PTR(-ENOMEM);

	init.name = name;

	init.ops = &clk_wzrd_clk_divider_ops_f;

	init.flags = flags;
	init.parent_names = &parent_name;
	init.num_parents = 1;

	div->base = base;
	div->offset = offset;
	div->shift = shift;
	div->width = width;
	div->flags = clk_divider_flags;
	div->lock = lock;
	div->hw.init = &init;
	div->table = table;

	hw = &div->hw;
	ret =  devm_clk_hw_register(dev, hw);
	if (ret)
		return ERR_PTR(ret);

	return hw->clk;
}

static struct clk *clk_wzrd_register_divider(struct device *dev,
					     const char *name,
					     const char *parent_name,
					     unsigned long flags,
					     void __iomem *base, u16 offset,
					     u8 shift, u8 width,
					     u8 clk_divider_flags,
					     const struct clk_div_table *table,
					     spinlock_t *lock)
{
	struct clk_wzrd_divider *div;
	struct clk_hw *hw;
	struct clk_init_data init;
	int ret;

	div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL);
	if (!div)
		return ERR_PTR(-ENOMEM);

	init.name = name;
	init.ops = &clk_wzrd_clk_divider_ops;
	init.flags = flags;
	init.parent_names =  &parent_name;
	init.num_parents =  1;

	div->base = base;
	div->offset = offset;
	div->shift = shift;
	div->width = width;
	div->flags = clk_divider_flags;
	div->lock = lock;
	div->hw.init = &init;
	div->table = table;

	hw = &div->hw;
	ret = devm_clk_hw_register(dev, hw);
	if (ret)
		hw = ERR_PTR(ret);

	return hw->clk;
}

static int clk_wzrd_clk_notifier(struct notifier_block *nb, unsigned long event,
				 void *data)
{
	unsigned long max;
	struct clk_notifier_data *ndata = data;
	struct clk_wzrd *clk_wzrd = to_clk_wzrd(nb);

	if (clk_wzrd->suspended)
		return NOTIFY_OK;

	if (ndata->clk == clk_wzrd->clk_in1)
		max = clk_wzrd_max_freq[clk_wzrd->speed_grade - 1];
	else if (ndata->clk == clk_wzrd->axi_clk)
		max = WZRD_ACLK_MAX_FREQ;
	else
		return NOTIFY_DONE;	/* should never happen */

	switch (event) {
	case PRE_RATE_CHANGE:
		if (ndata->new_rate > max)
			return NOTIFY_BAD;
		return NOTIFY_OK;
	case POST_RATE_CHANGE:
	case ABORT_RATE_CHANGE:
	default:
		return NOTIFY_DONE;
	}
}

static int __maybe_unused clk_wzrd_suspend(struct device *dev)
{
	struct clk_wzrd *clk_wzrd = dev_get_drvdata(dev);

	clk_disable_unprepare(clk_wzrd->axi_clk);
	clk_wzrd->suspended = true;

	return 0;
}

static int __maybe_unused clk_wzrd_resume(struct device *dev)
{
	int ret;
	struct clk_wzrd *clk_wzrd = dev_get_drvdata(dev);

	ret = clk_prepare_enable(clk_wzrd->axi_clk);
	if (ret) {
		dev_err(dev, "unable to enable s_axi_aclk\n");
		return ret;
	}

	clk_wzrd->suspended = false;

	return 0;
}

static SIMPLE_DEV_PM_OPS(clk_wzrd_dev_pm_ops, clk_wzrd_suspend,
			 clk_wzrd_resume);

static int clk_wzrd_probe(struct platform_device *pdev)
{
	int i, ret;
	u32 reg, reg_f, mult;
	unsigned long rate;
	const char *clk_name;
	void __iomem *ctrl_reg;
	struct clk_wzrd *clk_wzrd;
	struct device_node *np = pdev->dev.of_node;
	int nr_outputs;
	unsigned long flags = 0;

	clk_wzrd = devm_kzalloc(&pdev->dev, sizeof(*clk_wzrd), GFP_KERNEL);
	if (!clk_wzrd)
		return -ENOMEM;
	platform_set_drvdata(pdev, clk_wzrd);

	clk_wzrd->base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(clk_wzrd->base))
		return PTR_ERR(clk_wzrd->base);

	ret = of_property_read_u32(np, "xlnx,speed-grade", &clk_wzrd->speed_grade);
	if (!ret) {
		if (clk_wzrd->speed_grade < 1 || clk_wzrd->speed_grade > 3) {
			dev_warn(&pdev->dev, "invalid speed grade '%d'\n",
				 clk_wzrd->speed_grade);
			clk_wzrd->speed_grade = 0;
		}
	}

	clk_wzrd->clk_in1 = devm_clk_get(&pdev->dev, "clk_in1");
	if (IS_ERR(clk_wzrd->clk_in1)) {
		if (clk_wzrd->clk_in1 != ERR_PTR(-EPROBE_DEFER))
			dev_err(&pdev->dev, "clk_in1 not found\n");
		return PTR_ERR(clk_wzrd->clk_in1);
	}

	clk_wzrd->axi_clk = devm_clk_get(&pdev->dev, "s_axi_aclk");
	if (IS_ERR(clk_wzrd->axi_clk)) {
		if (clk_wzrd->axi_clk != ERR_PTR(-EPROBE_DEFER))
			dev_err(&pdev->dev, "s_axi_aclk not found\n");
		return PTR_ERR(clk_wzrd->axi_clk);
	}
	ret = clk_prepare_enable(clk_wzrd->axi_clk);
	if (ret) {
		dev_err(&pdev->dev, "enabling s_axi_aclk failed\n");
		return ret;
	}
	rate = clk_get_rate(clk_wzrd->axi_clk);
	if (rate > WZRD_ACLK_MAX_FREQ) {
		dev_err(&pdev->dev, "s_axi_aclk frequency (%lu) too high\n",
			rate);
		ret = -EINVAL;
		goto err_disable_clk;
	}

	reg = readl(clk_wzrd->base + WZRD_CLK_CFG_REG(0));
	reg_f = reg & WZRD_CLKFBOUT_FRAC_MASK;
	reg_f =  reg_f >> WZRD_CLKFBOUT_FRAC_SHIFT;

	reg = reg & WZRD_CLKFBOUT_MULT_MASK;
	reg =  reg >> WZRD_CLKFBOUT_MULT_SHIFT;
	mult = (reg * 1000) + reg_f;
	clk_name = kasprintf(GFP_KERNEL, "%s_mul", dev_name(&pdev->dev));
	if (!clk_name) {
		ret = -ENOMEM;
		goto err_disable_clk;
	}

	ret = of_property_read_u32(np, "nr-outputs", &nr_outputs);
	if (ret || nr_outputs > WZRD_NUM_OUTPUTS) {
		ret = -EINVAL;
		goto err_disable_clk;
	}
	if (nr_outputs == 1)
		flags = CLK_SET_RATE_PARENT;

	clk_wzrd->clks_internal[wzrd_clk_mul] = clk_register_fixed_factor
			(&pdev->dev, clk_name,
			 __clk_get_name(clk_wzrd->clk_in1),
			0, mult, 1000);
	if (IS_ERR(clk_wzrd->clks_internal[wzrd_clk_mul])) {
		dev_err(&pdev->dev, "unable to register fixed-factor clock\n");
		ret = PTR_ERR(clk_wzrd->clks_internal[wzrd_clk_mul]);
		goto err_disable_clk;
	}

	clk_name = kasprintf(GFP_KERNEL, "%s_mul_div", dev_name(&pdev->dev));
	if (!clk_name) {
		ret = -ENOMEM;
		goto err_rm_int_clk;
	}

	ctrl_reg = clk_wzrd->base + WZRD_CLK_CFG_REG(0);
	/* register div */
	clk_wzrd->clks_internal[wzrd_clk_mul_div] = clk_register_divider
			(&pdev->dev, clk_name,
			 __clk_get_name(clk_wzrd->clks_internal[wzrd_clk_mul]),
			flags, ctrl_reg, 0, 8, CLK_DIVIDER_ONE_BASED |
			CLK_DIVIDER_ALLOW_ZERO, &clkwzrd_lock);
	if (IS_ERR(clk_wzrd->clks_internal[wzrd_clk_mul_div])) {
		dev_err(&pdev->dev, "unable to register divider clock\n");
		ret = PTR_ERR(clk_wzrd->clks_internal[wzrd_clk_mul_div]);
		goto err_rm_int_clk;
	}

	/* register div per output */
	for (i = nr_outputs - 1; i >= 0 ; i--) {
		const char *clkout_name;

		clkout_name = kasprintf(GFP_KERNEL, "%s_out%d", dev_name(&pdev->dev), i);
		if (!clkout_name) {
			ret = -ENOMEM;
			goto err_rm_int_clk;
		}

		if (!i)
			clk_wzrd->clkout[i] = clk_wzrd_register_divf
				(&pdev->dev, clkout_name,
				clk_name, flags,
				clk_wzrd->base, (WZRD_CLK_CFG_REG(2) + i * 12),
				WZRD_CLKOUT_DIVIDE_SHIFT,
				WZRD_CLKOUT_DIVIDE_WIDTH,
				CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
				NULL, &clkwzrd_lock);
		else
			clk_wzrd->clkout[i] = clk_wzrd_register_divider
				(&pdev->dev, clkout_name,
				clk_name, 0,
				clk_wzrd->base, (WZRD_CLK_CFG_REG(2) + i * 12),
				WZRD_CLKOUT_DIVIDE_SHIFT,
				WZRD_CLKOUT_DIVIDE_WIDTH,
				CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
				NULL, &clkwzrd_lock);
		if (IS_ERR(clk_wzrd->clkout[i])) {
			int j;

			for (j = i + 1; j < nr_outputs; j++)
				clk_unregister(clk_wzrd->clkout[j]);
			dev_err(&pdev->dev,
				"unable to register divider clock\n");
			ret = PTR_ERR(clk_wzrd->clkout[i]);
			goto err_rm_int_clks;
		}
	}

	kfree(clk_name);

	clk_wzrd->clk_data.clks = clk_wzrd->clkout;
	clk_wzrd->clk_data.clk_num = ARRAY_SIZE(clk_wzrd->clkout);
	of_clk_add_provider(np, of_clk_src_onecell_get, &clk_wzrd->clk_data);

	if (clk_wzrd->speed_grade) {
		clk_wzrd->nb.notifier_call = clk_wzrd_clk_notifier;

		ret = clk_notifier_register(clk_wzrd->clk_in1,
					    &clk_wzrd->nb);
		if (ret)
			dev_warn(&pdev->dev,
				 "unable to register clock notifier\n");

		ret = clk_notifier_register(clk_wzrd->axi_clk, &clk_wzrd->nb);
		if (ret)
			dev_warn(&pdev->dev,
				 "unable to register clock notifier\n");
	}

	return 0;

err_rm_int_clks:
	clk_unregister(clk_wzrd->clks_internal[1]);
err_rm_int_clk:
	kfree(clk_name);
	clk_unregister(clk_wzrd->clks_internal[0]);
err_disable_clk:
	clk_disable_unprepare(clk_wzrd->axi_clk);

	return ret;
}

static int clk_wzrd_remove(struct platform_device *pdev)
{
	int i;
	struct clk_wzrd *clk_wzrd = platform_get_drvdata(pdev);

	of_clk_del_provider(pdev->dev.of_node);

	for (i = 0; i < WZRD_NUM_OUTPUTS; i++)
		clk_unregister(clk_wzrd->clkout[i]);
	for (i = 0; i < wzrd_clk_int_max; i++)
		clk_unregister(clk_wzrd->clks_internal[i]);

	if (clk_wzrd->speed_grade) {
		clk_notifier_unregister(clk_wzrd->axi_clk, &clk_wzrd->nb);
		clk_notifier_unregister(clk_wzrd->clk_in1, &clk_wzrd->nb);
	}

	clk_disable_unprepare(clk_wzrd->axi_clk);

	return 0;
}

static const struct of_device_id clk_wzrd_ids[] = {
	{ .compatible = "xlnx,clocking-wizard" },
	{ },
};
MODULE_DEVICE_TABLE(of, clk_wzrd_ids);

static struct platform_driver clk_wzrd_driver = {
	.driver = {
		.name = "clk-wizard",
		.of_match_table = clk_wzrd_ids,
		.pm = &clk_wzrd_dev_pm_ops,
	},
	.probe = clk_wzrd_probe,
	.remove = clk_wzrd_remove,
};
module_platform_driver(clk_wzrd_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Soeren Brinkmann <soren.brinkmann@xilinx.com");
MODULE_DESCRIPTION("Driver for the Xilinx Clocking Wizard IP core");